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Exploring the Robustness: Hierarchical Federated
Learning Framework for Object Detection of UAV

Cluster
Xingyu Li, Wenzhe Zhang, Linfeng Liu, and Jia Xu,

Abstract—The deployment of Unmanned Aerial Vehicle (UAV)
cluster is an available solution for object detection missions. In
the harsh environment, UAV cluster could suffer from some
significant threats (e.g., forest fire hazards, electromagnetic
interference, and ground-to-air attacks), which could lead to
the destruction of UAVs and loss of data. To this end, we
propose a Hierarchical Federated Learning Framework for
Object Detection (HFL-OD) to enhance the robustness of UAV
cluster conducting object detection missions. In HFL-OD, UAVs
are grouped through a Three-Dimensional (3D) graph coloring
method, and an intragroup backup mechanism is provided
to prevent the data loss caused by the destruction of UAVs.
Besides, a dynamic server selection mechanism deals with the
potential destruction of servers (cluster server and group servers)
by adaptively reassigning the server roles. To further improve
the robustness and mission efficiency of UAV cluster, a two-
tier federated learning framework is introduced to make a
proper trade-off between object detection accuracy and com-
munication/computational overhead. This framework is built on
the concept of hierarchical federated learning by implementing
both intragroup parameter aggregation and global parameter
aggregation. Extensive simulations and comparisons demonstrate
the superior performance of our proposed HFL-OD, i.e., the ro-
bustness of UAV cluster conducting object detection missions can
be significantly improved, and the communication/computational
overhead is effectively reduced.

Index Terms—unmanned aerial vehicle cluster; mission robust-
ness; object detection; hierarchical federated learning; 3D graph
coloring.

I. INTRODUCTION

In recent years, with the rapid advancement of Internet of
Things (IoT) technology and the widespread deployment of
5G networks, the applications of Unmanned Aerial Vehicles
(UAVs) have been expanded largely. Among them, Unmanned
Aerial Vehicles Object Detection (UAV-OD), as one of the
fundamental applications of UAVs, has garnered considerable
interest [1], [2], [3]. Several UAVs constitute a UAV cluster,
and many sophisticated missions can be carried out.

However, when deploying the UAV-OD model into a new
mission scenario, the generalization capability of the model is
usually unsatisfactory due to the time-varying diversification
of the mission scenarios and mission objectives [4]. Therefore,
it becomes imperative to train the UAV-OD model during the
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object detection missions of the UAV cluster, allowing it to
adapt to the mission scenarios. With regard to a UAV cluster,
a Federated Learning (FL) framework [5] is suitable for
conducting the object detection missions, since each UAV can
perform the gradient descents to train the model parameters
locally based on its local dataset, thus significantly reducing
the communication/computational overhead.

When the UAV cluster utilizes the real-time data to train
the UAV-OD model, due to the harshness environment, the
UAV cluster could suffer from some threats (e.g., forest
fire hazards, electromagnetic interference, and ground-to-air
attacks) seriously, and some UAVs in the UAV cluster could
be destroyed. As illustrated in Fig. 1, the UAV cluster is
confronted with some threats, and the destruction of some
UAVs could lead to the failure of the object detection missions
due to the data loss of these UAVs.

Fig. 1: UAV cluster confronted with some threats.

It is vital to prioritize the robustness of UAV cluster against
the destruction of some UAVs, and several considerations are
provided as follows:

(i) Intuitively, to enhance the robustness of UAV cluster,
UAVs should be grouped, and the UAVs in the same groups
share and backup the local data (local business data 1 and local
model parameters) to avoid the data loss when some UAVs
are destroyed and the performance decline of object detection
missions.

1The term ”business data” refers to the data (e.g. the images of ground
objects) collected from the visual coverage of the UAV cluster that is essential
for model training.
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(ii) Naturally, the groups can be formed based on the
location distribution of UAVs, making the UAVs in the same
groups spatially adjacent [6]. However, when an airspace
inhabited by one or more groups is threatened, there is a
significant risk of losing all UAVs in those groups and the
associated data, and the business data collected from the
visual coverage of the UAV cluster is incomplete, because the
UAVs in the same groups typically collect and maintain the
same/similar business data regarding the same/adjacent ground
area. Thereby, the remaining data could be insufficient for
conducting the object detection missions. To this end, we adopt
a Three-Dimensional (3D) graph coloring method instead of
the traditional location-based grouping method for the UAV
cluster. As depicted in Fig. 2, the UAVs with the same color
are classified into the same group to ensure that the UAVs
in each group are dispersedly distributed to avoid the spatial
aggregation of the UAVs in the same group. This mechanism
ensures that when an airspace is threatened, the performance
decline of object detection missions can be largely relieved,
even though all UAVs falling into the airspace have been
destroyed.

Fig. 2: Graph coloring method for grouping UAVs.

By the two mechanisms mentioned in (i) and (ii), the
local data of the destroyed UAVs can be reserved by the
surviving UAVs as much as possible, thus greatly enhancing
the robustness of the UAV cluster.

(iii) In an FL framework, the cluster server and group
servers are responsible for the global parameter aggregation
and intragroup parameter aggregation, respectively, and a
dynamic server selection mechanism is adopted to deal with
the potential destruction of cluster server and group servers.
The dynamic server selection mechanism periodically reselects
the cluster server and group servers based on the reputations of
UAVs. The reputations of UAVs are evaluated by some factors
(data similarity, distribution uniformity deviation, residual bat-
tery electricity, and energy consumption), which can measure
the impacts of the destruction of UAVs on the performance of
object detection missions.

Moreover, considering the communication/computational
overhead of UAVs conducting the object detection missions,
we specially design a two-tier FL framework: (a) In the lower
tier, each UAV trains a local model based on its local dataset,
and then the intragroup parameter aggregation is implemented
among the UAVs in the same group to expedite the iterative op-
timization of the local model, which facilitates the generation

of the optimal group model; (b) In the upper tier, the global
parameter aggregation is implemented among all groups to
implicitly share the group model parameters among different
groups, collaboratively training the optimal global model. The
local training manner can reduce the training complexity and
expedite the training process on UAVs. Besides, the training
performance can be guaranteed through implementing the
global parameter aggregation (these model parameters are
obtained by the local training on all UAVs).

The main contributions of this paper are summarized as
follows: (a) We propose the HFL-OD, specifically designed
to enhance the robustness of UAV cluster in harsh environ-
ment. HFL-OD enables the robust object detection missions
conducted by a UAV cluster where some UAVs could be
destroyed. (b) A 3D graph coloring method is developed
to group UAVs, and this method disperses UAVs to avoid
the severe situation where all UAVs in the same group are
destroyed. We design an intragroup backup mechanism to
ensure the redundancy and recovery of local datasets of UAVs
when some UAVs are destroyed. (c) Against the destruction of
some UAVs, a two-tier FL framework is introduced to preserve
the performance of object detection missions and reduce the
communication/computational overhead as much as possible.
In this framework, a dynamic server selection mechanism is
also adopted to address the potential destruction of servers,
further improving the robustness of the UAV cluster.

The remainder of this paper is organized as follows: Sec-
tion II briefly surveys some existing related studies. Section III
provides a system model and problem formulation for the
robustness of the UAV cluster. Section IV proposes the HFL-
OD. Section V covers some further analyses on HFL-OD, in-
cluding complexity, robustness, and group number. Simulation
results for performance evaluation of HFL-OD are reported in
Section VI. Finally, Section VII concludes the paper.

II. RELATED WORK

A. Grouping of UAV Cluster

Recently, the integration of UAVs with mobile edge com-
puting has become a promising research topic. However, due
to the limited computational power of UAVs, it is necessary
to form a UAV cluster to complete the complex missions,
and the UAV cluster can largely broaden the scope of mis-
sion scenarios of the unconnected UAVs. The UAV cluster
enables the synergistic cooperations among UAVs to execute
the complex missions efficiently and cost-effectively, e.g., the
object detection missions in the realistic environment. The
collaborative approach shows potential for advancing the UAV
cluster technology in various applications [7]. For example, [8]
proposes an improved YOLO algorithm that can be applied to
UAV cluster for object detection.

[9] classifies the architectures of UAV cluster into four
types: centralized form, distributed form, multi-group form,
and multi-layer form. As shown in Fig. 3, the last three forms
typically require some UAVs to act as the backbone to facil-
itate the communications among all UAVs. For the grouping
and role assignments in the UAV cluster, [10] transforms the
grouping problem into a multiple traveling salesman problem.
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Likewise, [11] investigates the selection criteria for the role
assignments in UAV cluster, including heuristic clustering,
mobile ad hoc networks clustering, position-based cluster-
ing, weight-based clustering, destination-based clustering, and
server selection.

Fig. 3: Architectures of UAV cluster.

For the issue of server selection, [12] proposes an enhanced
gray wolf algorithm to optimize the server selection in UAV
cluster. UAVs are grouped according to the velocity and
distance similarity, and the optimal server is selected according
to the residual energy, UAV degree, and communication con-
dition. In addition, [13] designs a multi-objective clustering
model to accurately and reasonably select the server by
considering the energy consumption, residual energy, packet
loss rate, and transmission delay.

It is crucial to enhance the robustness of UAV cluster
against the destruction of some UAVs. Furthermore, the server
selection should be adaptive to the dynamic situation of UAV
cluster.

B. Federated Learning Innovations

Distributed Machine Learning (DML) is initially designed
for the computer cluster, and has proven to be highly effective
in training the large-scale Machine Learning (ML) models.
DML addresses the challenges of high computational com-
plexity, massive training data, and large-scale model.

FL is a promising case of DML, and FL has been applied in
some existing works. For instance, [14] proposes a Federated
Meta-Learning (FML) framework, where a model is first
trained across a set of source users, and then can be quickly
adapted to achieve the real-time edge intelligence. To address
the vulnerability of the meta-learning framework, an FML
framework is further proposed based on distributed robust
optimization. Furthermore, [15] introduces an algorithm that
utilizes a non-uniform device selection scheme to accelerate
the convergence. [15] integrates the user selection and resource

allocation, and employs two first-order approximation tech-
niques [16] to reduce the computational complexity. As for
the aggregation methods, [17] proposes a framework termed
FedProx to tackle the heterogeneity in federated networks.
FedProx provides the convergence guarantees when learning
over non-Independent and Identically Distributed (non-IID)
data. Additionally, [18] presents a new algorithm which uses
the control variates (variance reduction) to correct for the
client-drift in its local updates. [19] provides a novel FL
method for training neural network models distributively,
where the server orchestrates cooperations between a subset
of randomly chosen devices.

[20] proposes a DML architecture that combines Split
Learning (SL) and FL to jointly train the learning models
deployed on UAVs. UAVs with satisfactory channel qualities
and local model updates are selected to participate in the global
model updates. This architecture can provide higher learning
accuracy than FL and smaller communication overhead than
SL under both IID dataset and non-IID dataset. Moreover,
[21] provides SplitFed Learning (SFL) that combines the
parallel processing mechanism in FL and the network splitting
mechanism in SL. SFL can split the mission model and
perform parallel processing between clients and the server.

To resolve the issue of high communication resource con-
sumption which is associated with the parallel training, [22]
proposes a client-edge-cloud Hierarchical Federated Learn-
ing (HFL) framework that allows multiple edge servers to
perform the partial parameter aggregation, thus resulting in
faster training and better communication-computation trade-
off. Likewise, [23] develops a communication-efficient HFL
framework. This framework employs an adaptive algorithm to
determine the aggregation intervals. The client-edge aggrega-
tion interval decreases slowly, while the setting of edge-cloud
aggregation interval adapts to the ratio between the client-edge
propagation delay and edge-cloud propagation delay. Further-
more, [24] gives a hierarchical game framework to observe
the dynamics of edge association and resource allocation in
the HFL framework. The hierarchical game framework utilizes
an evolutionary game to model the dynamics of edge server
association. Then, a Stackelberg differential game is used to
model the strategies of the optimal bandwidth allocation and
reward allocation. In [25], an optimization-based communi-
cation resource constrained HFL framework is designed to
minimize the generalization error of the autonomous driving
model using hybrid data and model aggregation. [26] presents
a three-fold FL framework for training deep learning models
collaboratively, without the need of sharing local data among
the construction robots. The proposed method can leverage
the potential of big data while protecting the data privacy.
[27] provides a rapid-converged heterogeneous HFL frame-
work (FedRC) to address the inter-city data heterogeneity and
accelerate the convergence rate.

[28] demonstrates the feasibility of implementing an FL
framework over wireless networks. During the training pro-
cess, some specially-designed methods can be employed to
minimize the results of loss functions [29]. Additionally, there
have been some precedents of conducting FL framework for
the object detection missions of UAV cluster, such as [30].
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Besides, [31] has verified that applying the FL into object
detection missions can effectively address the challenge of
building some object detection models on centrally-stored
large-size training datasets.

The above studies focus on the practical applications of
FL in IoT. There are two key considerations in these appli-
cations: minimizing the computational complexity during the
parameter aggregation and enhancing the resource utilization
of devices. When applying FL to UAV cluster and adopting
the hierarchical Peer-to-Peer (P2P) architecture, the mission
efficiency of the UAV cluster can be significantly enhanced,
and the communication/computational overhead can be largely
reduced.

C. UAV Cluster Robustness Assurance

Despite extensive research on UAV communications, path
planning, and mission collaborations, the robustness of the
UAV cluster remains a great challenge.

With regard to the robustness issue, [32] explores the
biological robustness and designs a reliable UAV cluster to
resist the UAV failures, thereby ensuring the reliable end-to-
end communications. In addition, [33] investigates the effect
of erasure codes on cost-effective data storage at the edges,
aiming to minimize the storage cost while ensuring that all
users can be served. The problem in [33] is mapped into
an integer linear programming problem, which is NP-hard
problem.

When some UAVs in the UAV cluster are destroyed, it
is vital to improve the robustness of the UAV cluster and
maintain the missions undertaken by the UAV cluster. Re-
garding the robustness of the UAV cluster, [34] proposes a
self-healing mechanism that finds alternative links to bypass
the destroyed UAVs. [35] proposes a self-healing trajectory
planning algorithm that utilizes a monitoring mechanism and
a graph convolutional neural network to identify the recovery
topology of the UAV cluster.

However, the UAV cluster may suffer from some threats.
To this end, our work introduces a novel approach by imple-
menting a 3D graph coloring method to group UAVs in the
UAV cluster. This method disperses UAVs to avoid the severe
situation where all UAVs in the same groups are destroyed.
Moreover, an intragroup backup mechanism is realized by
the data fault tolerance method to ensure the redundancy and
recovery of local datasets of UAVs. Thus, the data of destroyed
UAVs could be restored during the object detection missions,
thus greatly bolstering the robustness of the UAV cluster. Our
work proposes a two-tier FL framework specially tailored for
the object detection missions of the UAV cluster.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We first describe the robustness problem of the UAV cluster.
TABLE I provides an overview of the main notations. Time
is divided into discrete time slots with an equal length of ts,
and some relevant definitions are given as follows:

The distribution of UAVs in the UAV cluster typically
resembles a cloud-like structure. In the UAV cluster, each UAV
can be considered as a node occupying different coordinates

TABLE I: Main notations

Parameter Description
U UAV cluster
χ Number of groups in U
t∗ Update epoch (number of time slots)
Gk The k-th group in U
Nd Number of destroyed UAVs
Vd(Gk) Set of destroyed UAVs in group Gk

p(vi)
(t) Coordinate of UAV vi at the t-th time slot

D(vi, t) Local dataset of UAV vi at the t-th time slot
DB(vi, t) Business data of UAV vi in D(vi, t)

B(vi)
(t) Business data collected from the visual

coverage of UAV vi at the t-th time slot
D(Gk, t) Dataset of group Gk at the t-th time slot

DL(Gk, Vd(Gk))
Data loss of group Gk due to the destroyed
UAVs in Vd(Gk)

OH(U, χ)
Communication overhead and backup
overhead of U

in a 3D airspace. Therefore, we employ the 3D graph coloring
method to group UAVs in the UAV cluster.

To evaluate the performance of the object detection mis-
sions, the effectiveness of object detection missions can be
measured by the mean Average Precision (mAP) and detection
accuracy of ground objects.

A. UAVs

Suppose there are N UAVs in a UAV cluster denoted by
U = {v1, · · · , vN}. The coordinate of a UAV vi at the t-th
time slot is denoted by p(vi)

(t) = {xi, yi, zi}. We assume
that all UAVs in the UAV cluster are trustable and their
cooperations are reliable, without any malicious attackers or
data stealers. Due to the fact that the communication range
of a UAV is typically large (e.g., the communication range of
a UAV is 400 m in [36], and the maximum communication
range of a UAV even reaches 200 km [37]), we assume that
in the UAV cluster each UAV can directly communicate with
others.

The local dataset of a UAV vi at the t-th time slot is
denoted by D(vi, t) which is comprised of two parts: (a)
The business data collected from the visual coverage of vi
denoted by DB(vi, t) = {B(vi)

(0), · · · , B(vi)
(t)}; (b) The

business data backed up and shared with other UAVs in
the same group (suppose vi belongs to the group Gk), i.e.,⋃

vj∈Gk\vi
DB(vj , t).

B. UAV Groups

In our work, all UAVs are taken as the participants to
collaboratively train the object detection model of the UAV
cluster U. U is divided into χ groups by a graph coloring
method.

The dataset of each group is updated every t∗ time slots,
through each UAV sharing its local dataset with the group
server (every t∗ time slots). In Gk, the group server gk obtains
the group dataset D(Gk, t) by consolidating the local datasets
received from all UAVs in Gk. Then, the group dataset is
shared among the UAVs in Gk.
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D(Gk, t) =
⋃

vi∈Gk

D(vi, t). (1)

Assuming that the UAV cluster suffers from some threats,
making Nd UAVs destroyed, and the set of destroyed UAVs
in the group Gk is denoted by Vd(Gk).

C. Objective Functions

To evaluate the robustness of the UAV cluster, the problem
objectives are given as follows: max mAP ′

mAP
,

min
∑χ

k=1 DL(Gk, Vd(Gk)),
min OH(U, χ),

(2)

where mAP denotes the mAP of object detection missions,
and mAP ′ denotes the mAP under the destruction of some
UAVs. mAP ′

mAP represents the performance maintenance of the
object detection missions under the destruction of some UAVs.
DL(Gk, Vd(Gk)) denotes the data loss. OH(U, χ) denotes the
sum of communication overhead and backup overhead.

To maximize mAP ′

mAP , a two-tier FL framework is introduced
to preserve the performance of object detection missions and
reduce the communication/computational overhead as much
as possible. Additionally, an intragroup backup mechanism
ensures the redundancy and restoration of local datasets of
UAVs, and helps to output the superior training results. To
minimize

∑χ
k=1 DL(Gk, Vd(Gk)), we will develop a 3D graph

coloring method to group the UAVs to avoid the severe
situation (all UAVs in the same group are destroyed). Fur-
thermore, the intragroup backup mechanism can improve the
robustness of UAV cluster and relieve the negative impacts
of destroyed UAVs on the performance of object detection
missions. As for min OH(U, χ), HFL-OD makes a proper
trade-off between object detection accuracy and communica-
tion/computational overhead by properly setting the number of
groups. The decrease of the number of groups results in higher
communication/computational overhead of UAVs, which can
confine the number of global epochs.

In the next section, we specify the design of HFL-OD,
where UAVs are grouped by a 3D graph coloring method.
UAVs in the same groups share and backup the local business
data to avoid the data loss and the performance decline of
object detection missions when some UAVs are destroyed.
Moreover, each UAV can perform the gradient descents for
the training of local model to minimize the training loss based
on the local dataset.

IV. ROBUSTNESS FRAMEWORK FOR OBJECT DETECTION
MISSIONS OF UAV CLUSTER

As outlined in Section I, it is crucial to prioritize the
robustness of the UAV cluster confronted with the potential
destruction of some UAVs. In response to this imperative,
the UAV cluster is first grouped by a balanced graph col-
oring method, where the UAVs in the same groups share
and backup the local business data. Moreover, we specially
design a dynamic server selection mechanism and a two-tier
FL framework for the object detection missions. As shown

in Fig. 4, a detailed overview of our proposed HFL-OD is
provided.

Fig. 4: Overview of HFL-OD.

A. Graph Coloring Method

A balanced graph coloring method is adopted to achieve
a uniform distribution of UAVs in the same group. This
method ensures that when an airspace is threatened, the
performance decline of object detection missions can be
largely relieved, even though all UAVs falling into the airspace
have been destroyed. In the UAV cluster U, if the euclidean
distance L

(t)
2 (vi, vj) between two UAVs vi and vj satisfies that

L
(t)
2 (vi, vj) ≤ dmax (dmax denotes the maximum distance for

establishing the edge between two UAVs), and then there exists
an edge e(t)(vi, vj). The coordinates of all UAVs constitute
the vertex set P (t), and all edges between UAVs constitute
the edge set E(t). An undirected graph regarding the UAV
cluster is expressed as (P (t), E(t)).

The graph coloring denotes the mapping of each vertex to a
color such that the adjacent vertices are assigned with different
colors [38]. The set of vertices with the same color is taken as
a color group. The total number of colors is termed coloring
number or chromatic number [39], denoted by χ.

In our work, the grouping of the UAV cluster by assigning
colors to UAVs is completed by the graph coloring method
during χ iterations. In the beginning, all UAVs in U are not
assigned to any color group, and the set of uncolored UAVs
U(0)

0 = U. During the i-th iteration (suppose at the t-th time
slot), the set of uncolored UAVs is denoted by U(t)

i , and a
new color is given to establish a new color group CG

(t)
i that

differs from the colors marked in previous iterations.
An uncolored UAV vϱ is randomly selected from U(t)

i . We
examine the edge set E(t) to identify the adjacent UAVs of
vϱ, denoted by V

(t)
ϱ , where each UAV vε (vε ∈ V

(t)
ϱ ) satisfies

that e(t)(vϱ, vε) ∈ E(t). If none of the UAVs in V
(t)
ϱ falls into

CG
(t)
i , and then vϱ is colored by the new color (vϱ is assigned

into CG
(t)
i ). Then, the set of uncolored UAVs is updated as:

U
(t)
i ← U

(t)
i \ vϱ. The above process will be repeated until

the set of uncolored UAVs is empty and each UAV in U has
been assigned to a color group.
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After completing the graph coloring, we further balance
these color groups. Different from the equitable graph col-
oring [40] which requires that each color group has the same
size (the number of UAVs in each color group is equal to
γ, where γ = N

χ ), our proposed HFL-OD allows the slight
difference in the size of color groups. The color groups whose
size is greater than γ are referred to as the over-size groups,
while those whose size is smaller than γ are referred to as
the under-size groups. In the over-size groups, some UAVs
could be recolored by the colors associated with the under-size
groups. Thus, each color group is approximately assigned γ
UAVs.

An example is given in Fig. 5, where the number of UAVs is
100 (N = 100), and χ is set to 5. Note that UAVs in the same
color groups are dispersedly distributed to avoid the spatial
aggregation. The balanced graph coloring ensures that when
an airspace including some UAVs is attacked, the performance
decline of the object detection missions can be relieved, even
though all UAVs in the airspace are destroyed.
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Fig. 5: Example of balanced graph coloring.

The overhead of conducting the 3D graph coloring method
is tolerable, because the 3D graph coloring process is con-
ducted before the object detection missions of the UAV cluster.
The 3D graph coloring is calculated by a designated UAV, and
the graph coloring results are then sent back to all UAVs to
complete the grouping.

B. Dynamic Server Selection

After grouping UAVs, one UAV in each color group is
selected as the group server responsible for the intragroup
parameter aggregation. To mitigate the risk of the destruction
of group servers, we employ a dynamic server selection
mechanism to update the group servers periodically. The group
servers are selected on basis of the reputations of UAVs
(measured by data similarity, distribution uniformity deviation,
residual battery electricity, and energy consumption).

(i) Data similarity: Data similarity is taken to quantify the
alignment between the business data collected by different
UAVs. A larger data similarity of a UAV contributes to a
larger reputation, indicating that the business data of the UAV
matches the standard dataset more closely. For example, the
data similarity of a UAV vi is expressed as:

DS(vi) =
cov(d⃗i, d⃗s)

σi · σs
, (3)

where cov(d⃗i, d⃗s) denotes the covariance between the data
vector d⃗i of vi and the data vector d⃗s of standard dataset.
σi denotes the standard deviation of the data vector of vi,
and σs denotes the standard deviation of the data vector of
standard dataset. These data vectors are obtained by applying
the feature extraction method to the business data, which is
converted into high-dimensional numerical vector. cov(d⃗i, d⃗s)
is computed as:

cov
(
d⃗i, d⃗s

)
=

1

n− 1

n∑
j=1

(di,j − µi) (ds,j − µs) , (4)

where di,j and ds,j denote the j-th elements of vectors d⃗i
and d⃗s, respectively. µi and µs denote the mean values of
the respective data vectors. n represents the dimension of the
feature vectors.

The value of data similarity falls into the numerical interval
[0,1]. A larger data similarity implies that the UAV is more
valuable and reputable for the object detection missions.

(ii) Distribution uniformity deviation: To enhance the ro-
bustness of UAV cluster, the spatial aggregation of group
servers should be prevented as well, i.e., the group servers of
different groups should also be uniformly distributed as much
as possible. The reputation of each UAV is also evaluated by
the distribution uniformity deviation (the spatial uniformity
of group servers). For example, the uniformity deviation of a
UAV vi is calculated by:

UD(vi) =

∣∣∣∣Ni

χ
− V(vi)

V(U)

∣∣∣∣ , (5)

where V(vi) denotes the volume of the cube centered on vi,
V(U) denotes the volume of the 3D space where UAV cluster
is located. Ni denotes the number of group servers in the
cube. If the group servers are uniformly distributed in the
UAV cluster, the ratio of the volume of the cube centered
on vi to V(U) should be close to the ratio of the number
of group servers in the cube to the total number of group
servers. Therefore, the difference between these two ratios
can be used to measure the distribution uniformity of group
servers. The value of distribution uniformity deviation falls
into the numerical interval [0,1]. Note that the reputation
of a UAV is inversely related to its distribution uniformity
deviation, implying that the reputation of the UAV decreases
as the distribution uniformity deviation increases.

(iii) Residual battery energy: Most of the battery energy of
UAVs is spent on flights. The propulsion power consumption
of a UAV for the flight movement is given by [41], [42], [43]:

Pmove =

√
Q3

2π · r2p · np · α +
P̃ − P

ν̃
· νf + P , (6)

where Q, rp, np, and α denote the gravity of UAV, propeller
radius, number of propellers, and air density, respectively. νf
denotes the flight speed of the UAV. P̃ and P denote the
hardware power levels when the UAV is moving at full speed
ν̃ and when the UAV is hovering, respectively. When the UAV
hovers around a point to collect the business data (e.g. the
images of ground objects) in the visual coverage, the power
consumption Phover is calculated by substituting νf = 0 in
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(6). Besides, the energy consumption for moving from a point
c to another point c′ is written as:

Ec,c′
move =

∥ c− c′ ∥
νf

· Pmove. (7)

To conduct the collaborative object detection missions in
the UAV cluster, UAVs transmit the business data when they
are hovering. We assume that the hovering time of each UAV
is equal to the time spent on the data transmission. Hence, the
energy consumption of the UAV vi hovering around a hovering
point (e.g. the point c) is given by:

Ec
hover =

Di,c

ζ
· (Phover + Pcom), (8)

where Di,c denotes the amount of business data that is
collected and transmitted by vi, ζ denotes the average trans-
mission rate of UAVs, and Pcom denotes the communication
power of each UAV.

Hence, by integrating (6) into (7), the total energy consump-
tion of a flying UAV vi is written as:

Ei =

K∑
k=0

E
ck
hover +

K∑
k=0

K∑
j=0
j ̸=k

E
ck,cj
move

=

K∑
k=0

Di,c

ζ
·

(√
Q3

2π · r2p · np · α + P + Pcom

)

+

K∑
k=0

K∑
j=0
j ̸=k

∥ ck − cj ∥ ·(P̃ − P )

ν̃

+

K∑
k=0

K∑
j=0
j ̸=k

∥ ck − cj ∥
νf

·

(√
Q3

2π · r2p · np · α + P

)
,

∀ck, cj ∈ C

(9)

where C = {c, . . . , ck, . . . , cK} denotes the set of flight
trajectory points of vi. (9) indicates that Ei is inversely
proportional to the flight speed νf [41]. We assume that the
initial battery energy of all UAVs is the same, denoted by
Einit. Then, the residual battery energy of each UAV (e.g.
vi) is normalized into State of Charge (SOC) to calculate the
reputation, i.e., SOC(vi) =

Einit−Ei

Einit
.

Combining the three aforementioned factors, the reputation
RP (vi) of UAV vi is given by:

RP (vi) = DS(vi)− UD(vi) + SOC(vi). (10)

Each group server is responsible for aggregating the local
model parameters from UAVs in the same color group and
will be periodically reselected. In addition, the cluster server is
selected from the group servers according to their reputations.
Likewise, the cluster server is responsible for aggregating
the group model parameters uploaded by group servers. The
dynamic server selection mechanism avoids the vulnerability
caused by the destruction of group servers or cluster server
and greatly enhances the robustness of the UAV cluster.

During the process of dynamic server selection, each UAV
calculates and sends the obtained reputation to the current
group server. With regard to each color group, the UAV with
the largest reputation is selected as the new group server. After
that, the new group server informs the intragroup UAVs of the

update of group server. Likewise, the group server with the
largest reputation is selected as the new cluster server.

Note that during the object detection missions of UAV
cluster, the network topology of the UAV cluster could con-
tinuously change. To enhance the robustness, the UAV cluster
needs to be regularly updated and maintained. Every update
epoch (t∗ time slots), the reputations of UAVs are recalculated
for the update of the two-tier FL framework (both the group
servers and cluster server are reselected), and the local dataset
of each UAV is shared with the group server and other UAVs
in the same group.

To further enhance the robustness and fairness of the dy-
namic server selection, the current servers (group servers and
the cluster server) are excluded from participating in the next
selection epoch. This ensures dynamic selection by altering
the server roles among UAVs and preventing any single UAV
from acting as a server multiple times, except in unavoidable
cases, e.g., when the group size γ is smaller than the number
of global epochs κ3, it is inevitable that some UAVs could act
as servers multiple times.

C. Two-tier Federated Learning

With regard to the model training for the object detection
missions, the primary objective is to identify an optimal
mapping function Hw : X −→ Y , where X denotes the set
of training samples, Y denotes the corresponding ground-truth
labels, and w denotes the model parameters. By minimizing
the value of the sample-wise loss function l(Hw(X ),Y), the
optimal model parameters w∗ can be obtained. The model
training is expressed as:

w∗ = argmin
w

F (w) = argmin
w

∑
x∈X ,y∈Y l(Hw(x), y)

|X | . (11)

We adopt a two-tier FL framework (Fig. 6), where the object
detection model is trained in a hierarchical and collaborative
manner. Each UAV independently updates the local model
parameters using the Stochastic Gradient Descent (SGD)
method. The model parameter aggregation (using the FedAvg
algorithm) is comprised of two stages: lower-tier parameter
aggregation and upper-tier parameter aggregation, as shown in
Fig. 7. Besides, the UAVs in the same color group exchange
the local datasets and model parameters with each other. To
reduce the frequent communications among UAVs, each UAV
uploads the local model parameters to the group server every
update epoch.

(i) Lower-tier parameter aggregation: Each UAV trains a
local model based on its local dataset, and the intragroup
parameter aggregation is implemented among the UAVs in
the same color group to expedite the convergence of the local
model. For example, UAV vi trains the local model based on
the local dataset D(vi, t), and then sends the parameters of
the trained local model w∗

i to the group server gk. The group
server gk aggregates the local model parameters received from
all UAVs in the color group Gk, and yields the group model
parameters.

(ii) Upper-tier parameter aggregation: This mechanism fa-
cilitates the aggregation of group model parameters uploaded
by all group servers, providing a mechanism for the implicit
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Fig. 6: Two-tier FL framework.

Fig. 7: Training in two-tier FL framework.

data sharing and collaborative enhancement of the perfor-
mance of the global model. Each group server periodically
uploads the group model parameters to the cluster server,
and the cluster server implements the parameter aggregation,
and finally yields the global model parameters. Then, the
cluster server releases the global model parameters to all group
servers.

Specifically, at the t-th time slot, the local loss function for
UAV vi is expressed as:

Fi

(
w(t)

)
=

∑
(xj ,yj)∈D(vi,t)

l(Hw(xj), yj)

|D(vi, t)|
, (12)

where l(Hw(xj), yj) denotes the sample-wise loss function
quantifying the prediction error of the local model with model
parameters w on the training samples xj and the corresponding
labels yj . The global loss function based on all the datasets
of UAVs at the t-th time slot is represented as:

F
(
w(t)

)
=

∑
(xj ,yj)∈

⋃
i D(vi,t)

l(Hw(xj), yj)

|
⋃

i D(vi, t)|
=

N∑
i=1

ςi · Fi(w
(t)),
(13)

where ςi denotes the model weight of UAV vi, which is set
according to the deviation of the local model parameters devi-
ated from the global model parameters. The learning process

is to minimize the output of F (w(t)), i.e., the optimal global
model parameters are obtained by: w∗ = argminF (w(t)).

Based on the received global model parameters w(t), each
UAV vi uses the SGD method to compute the gradient
∇Fi

(
w(t)

)
based on its local dataset to update the local model

parameters: w(t+1) = w(t) − η · ∇Fi

(
w(t)

)
, where η denotes

a learning rate.
The obtained local model parameters will be transmitted

to the group server for intragroup parameter aggregation. For
example, the group model parameters aggregated by the k-th
group server are expressed as:

P(t)
k =

∑
i∈G

(t)
k

∇ςiFi(w
(t)),

(14)

where ∇ςi denotes the aggregation weights for UAV vi (vi ∈
Gk), and ∇ςi is defined as:

∇ςi =
|D (vi, t) |
|D (Gk, t) |

. (15)

Then, each group server uploads the group model parame-
ters to the cluster server for global parameter aggregation:

P(t) =

χ∑
k=1

∇ςkP
(t)
k , (16)

where ∇ςk denotes the aggregation weights of group Gk, and
it is defined as:

∇ςk =
|D (Gk, t) |∣∣⋃χ
k=1 D (Gk, t)

∣∣ . (17)

Note that the transmissions of all UAVs are carried out in
a synchronized manner. The cluster server updates the global
model parameters by the FedAvg algorithm. The above process
is repeated until the global model has converged.

D. Intragroup Backup Mechanism

In the harsh environment, the UAV cluster is susceptible to
some threats which could cause the destruction of some UAVs.
To deal with this issue, an intragroup backup mechanism is
specially designed to bolster the robustness of the UAV cluster,
as shown in Fig. 8. The intragroup UAVs share and backup
the local data (local business data and local model parameters)
to avoid the data loss and the performance decline of object
detection missions when some UAVs are destroyed. The local
data of destroyed UAVs can be easily restored through the data
backup of surviving UAVs in the same color group.

When one or some UAVs are destroyed, if they are not the
servers (group servers or cluster server), the object detection
accuracy of HFL-OD will not be affected due to the implement
of the intragroup backup mechanism. If they are servers, the
object detection accuracy could be slightly affected in the
current update epoch, because the servers are periodically
reselected (every update epoch) according to the dynamic
server selection mechanism. The pseudo-code of HFL-OD is
given in Algorithm 1.

Essentially, the intragroup backup mechanism ensures the
dataset redundancy, and thus avoids the performance decline
of HFL-OD caused by the destruction of some UAVs.
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Fig. 8: Intragroup backup in a UAV cluster.

V. THEORETICAL ANALYSIS OF HFL-OD

A. Complexity

TABLE II shows the communication complexity and com-
putational complexity of our proposed HFL-OD.

TABLE II: Complexity of HFL-OD

Module Communication
complexity

Computational
complexity

Graph coloring O(N + N2

χ
) O(N ·m)

Server selection O(N
χ

+ χ2) O(N)

Two-tier FL O(κ3 · (N + χ)) O(L ·K2
s · Cin · Cout ·W ·H)

Total O(N + N2

χ
+ N

χ
+

χ2 + κ3 · (N + χ))

O(L ·K2
s · Cin · Cout ·W ·H

+N ·m+N)

1) Communication complexity: In the graph coloring pro-
cess, UAVs send their current coordinates to a designated
UAV, which is responsible for calculating the graph coloring
results and sending the results back to all UAVs, which incurs
a communication complexity of O(N). Moreover, UAVs in
the same color groups could exchange the local business data
with each other, leading to a communication complexity of
O(N

2

χ ). Consequently, the communication complexity for the
graph coloring is written as O(N + N2

χ ).
In the dynamic server selection, each UAV calculates the

reputation and sends it to the current group server. The new
group server informs the intragroup UAVs of the group server
update. Thus, the communication complexity for information
exchange reaches O(χ·( N

χ2 +χ)), where O( N
χ2 +χ) denotes the

communication complexity of information exchange in each
color group.

In the two-tier FL framework, each UAV uploads its local
model parameters to the group server for the intragroup
parameter aggregation, and the group model parameters are
then uploaded to the cluster server. The cluster server releases
the global model parameters to the group servers and then
to all UAVs. The communication complexity for this process
is up to O(N + χ). Assuming κ3 epochs are required for
the model training, the communication complexity reaches
O(κ3 · (N + χ)).

Therefore, the total communication complexity of HFL-OD
is of O(N + N2

χ + N
χ + χ2 + κ3 · (N + χ)).

Algorithm 1 Pseudo-code of HFL-OD.

Require: UAV cluster, number of groups, training epoch,
update epoch.

1: UAV Grouping
2: UAVs are grouped by a balanced graph coloring method.

3: Dynamic Server Selection
4: while Every update epoch (t∗ time slots) do
5: The reputation of each UAV is recalculated based on

data similarity, distribution uniformity deviation, and
residual battery energy.

6: UAVs with the highest reputation are selected as group
servers and/or cluster server.

7: end while
8: Intragroup Data Backup
9: while Every update epoch (t∗ time slots) do

10: for Each UAV do
11: Local data is shared among group server and UAVs

in the same group.
12: end for
13: end while
14: Two-Tier Federated Learning
15: while Every training epoch do
16: for Each UAV do
17: Local model is trained.
18: end for
19: end while
20: while Every update epoch (t∗ time slots) do
21: for Each UAV do
22: Local model parameters are uploaded to group server.
23: end for
24: for Each group server do
25: Local model parameters are aggregated to update

group model.
26: Group model is uploaded to cluster server.
27: end for
28: Cluster server aggregates group models to update global

model.
29: Global model is released to group servers and UAVs.
30: end while

2) Computational complexity: The graph coloring is im-
plemented through a sequential greedy scheme, and thus the
computational complexity is of O(N ·m), where m denotes
the maximum degree in the UAV cluster. The additional
computational overhead required for achieving the balanced
graph coloring does not surpass the upper bound of the original
graph coloring. Thus, the computational complexity of the
graph coloring is written as O(N ·m).

In the dynamic server selection, UAVs calculate the rep-
utations for the selection of group servers. The reputation
calculation incurs a computational complexity of O(N).

In the two-tier FL, each UAV trains a local object detection
model. Supposing the input image dimension is of W × H ,
and the convolution kernel size is of Ks×Ks. The number of
input/output channel in each layer is denoted by Cin and Cout,
respectively. There are L layers, A anchor boxes, ξ classes,
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and the predictions made across S scales with the reduced
dimension W ′×H ′ for the feature maps. Thus, the complexity
contribution of the convolutional layers is approximated as
O(L ·K2

s ·Cin ·Cout ·W ·H). For the prediction layers, where
each anchor box predicts a bounding box (center coordinates
and dimensions), a confidence score, and class probabilities.
The complexity is approximatively written as O(S ·A ·(5+ξ) ·
W ′ ·H ′). Therefore, the computational complexity for training
the object detection model is approximated as:

O
(
L ·K2

s · Cin · Cout ·W ·H + S ·A · (5 + ξ) ·W ′ ·H ′) ,
(18)

where W ′ and H ′ are typically smaller than W and H ,
which depend on the network structure and input dimension.
Therefore, by training the object detection model in the two-
tier FL framework, the total computational complexity is of
O(L ·K2

s · Cin · Cout ·W ·H +N ·m+N).

B. Model Convergence

Each UAV executes κ1 training epochs of the local model
parameters before uploading them to the group server. Then,
the group server aggregates the local model parameters. Every
κ2 aggregations, the group model parameters are uploaded to
the cluster server. This procedure ensures that the global model
parameters are updated every κ1 · κ2 training epochs. For the
convergence analysis, we focus on the discrepancy between
the global model parameters aggregated at the K-th epoch
(denoted by PK), and the optimal model parameters P∗

K .
Assuming that P∗

K is obtained after κ3 parameter aggregations
on the cluster server. For any UAV (e.g. vi), the loss function
Fi(w

(t)) is ρ-continuous, β-smooth, and non-convex, and there
is:

∥ w(K) − w∗ ∥≤ H(κ1 · κ2, η), (19)

where
H(κ1 · κ2, η) = h (κ1 · κ2,∆, η) + h (κ1, δ, η)+

κ1 · κ2 ·
(1 + η · β)κ1·κ2 − 1

(1 + η · β)κ1 − 1
· h (κ1, δ, η) .

(20)

For example, h(κ1, δ, η) is defined as:

h(κ1, δ, η) =
δ

β
· [(η · β + 1)κ1 − 1]− η · β · κ1. (21)

In (20), δ and ∆ denote the gradient divergence at the UAV
level and the group level, respectively. δ and ∆ can measure
the non-IIDness of the data distribution. Essentially, a larger
gradient divergence indicates a more pronounced deviation
away from the ideal IID data distribution, highlighting the het-
erogeneity inherent in the business data collected or processed
by different UAVs or groups. Specifically, when the business
data is IID (δ = ∆ = 0), there exists H(κ1 · κ2, η) = 0,
implying that the global model parameters can converge [22],
[44].

In the situation of non-IID data, the hierarchical aggregation
in HFL-OD helps reduce the heterogeneity in business data
by the intragroup parameter aggregation. Considering the
delay-sensitive requirement of object detection missions in the
realistic environment, the object detection missions in HFL-
OD begin with deploying a pre-trained model, i.e., HFL-OD

is initialized from w(0), Finf = F (w∗), and U is divided into
χ color groups. After K (κ1 · κ2 · κ3 ≤ K) local updates, the
expected average-squared gradients of F (w(K)) is bounded
by:

∑K
k=1 η· ∥ ∇F (w(k)) ∥2

K · η

≤

[
χ−1
N

+ (1− η)κ1·κ2
]κ3 ·

[
F (w(0))− F (w∗)

]
K · η

+
(1−

[
χ−1
N

+ (1− η)κ1·κ2
]κ3) · ρ · κ3 ·H(κ1 · κ2, η)

K · η

+
β2 · κ1 · κ2 · κ3· ∥ H(κ1 · κ2, η) ∥2

K · η

−
[
χ−1
N

+ (1− η)κ1·κ2
]κ3 · β2 · κ1 · κ2 · κ3· ∥ H(κ1 · κ2, η) ∥2

K · η .

(22)

As K →∞, (22) converges to 0.

C. Setting of Group Number

After performing the balanced graph coloring, the number
of UAVs in each color group is approximately the same. Note
that the number of color groups (group number) χ is strongly
related to the group size and the communications among
UAVs. In addition, since we adopt an intragroup backup
mechanism in each color group, the variation of χ leads to
the non-IIDness of group datasets, thus affecting the training
effect of the object detection model. To obtain the optimal
setting of χ, the objective function is rewritten as:

min
κ3,χ

R ·
[
F (w(0))− F (w∗)

]
+ (1−R) · (ρ · κ3 ·H(κ1 · κ2, η)

+ β2 · κ1 · κ2 · κ3· ∥ H(κ1 · κ2, η) ∥2), (23)

where R =
[
χ−1
N + (1− η)κ1·κ2

]κ3
< 1, and R is related

to κ3 and χ. For setting the group number χ and the update
epoch (κ1 · κ2 time slots), it is vital to consider the budget
of communication overhead ℓc and the backup overhead ℓb.
Each UAV in the color group Gk is assumed to spend ck
units of resource on communications and bk units on data
backup during each epoch of global parameter aggregation.
Accordingly, the total resource consumption over κ3 global
epochs across all color groups is expressed as OH(U, χ) =∑χ

k=1
κ3·N ·bk·ck

χ .
Moreover, the interval between two global parameter aggre-

gations of the color group Gk incurs a time overhead ιk against
a given time budget T . The number of training epochs within
the budget, denoted by T

ιk
, is assumed to follow a Gaussian

distribution with the mean of Tce [45].
Based on the above assumptions, the constraints for κ3 are

established as follows: κ3 must satisfy that κ3 ≤ ℓb+ℓc
N
χ ·(bk+ck)

and κ3 ≤ Tce · χ. Hence, the optimal value of κ3 is obtained
by:

κ3 = min

{
(ℓb + ℓc) · χ
N · (bk + ck)

, Tce · χ
}
. (24)
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Despite of the value attributed to κ3, κ3 can be expressed
in the form of κ3 = λ ·χ, where λ is a finite real number. For
the simplicity, κ3 is taken into R, and hence there is:

Z(χ) =

[
χ− 1

N
· (1− (1− η)κ1·κ2) + (1− η)κ1·κ2

]λ·χ
. (25)

To analyze the effects of χ in (24) under the resource
constraints, we observe the monotonicity of (25). By defining
ϵ = 1

N · (1− (1− η)κ1·κ2), (25) is rewritten as:

Z(χ) = [ϵ · χ+ 1− ϵ · (N + 1)]λ·χ , (26)

where ϵ ·χ+1− ϵ · (N +1) > 0 and ϵ ∈
(
0, 1

N

)
. We have that

∂2R(χ)
∂χ > 0, indicating that ∂R(χ)

∂χ is monotonically increased
with the increase of χ. Consequently, we obtain the following
formula:

Z(χ, ϵ) = λ · ln(1 + χ · ϵ− (N + 1) · ϵ)

+
λ · χ · ϵ

1 + χ · ϵ− (N + 1) · ϵ) ,
(27)

where Z(χ, 0) = 0 (ϵ = 0), and ∂Z(χ,ϵ)
∂ϵ > 0. According

to [45], there is χ ∈
{
1, . . . ,

⌊
N+1
2

⌋}
.

In the practical applications, the value of Z(χ) is related to
the initial estimations of bk, ck, and Tce, which can be obtained
by offline calculations during the early training stages, thus
facilitating the search of the optimal setting of χ with a
logarithmic time complexity of O(log N+1

2 ).
(24) indicates that the decrease of χ results in higher

communication/computational overhead of UAVs, which can
confine the value of κ3 (number of global epochs). Consider-
ing the potential destruction of some UAVs, κ3 should be set
small, and we let κ3 ≤ 10. For the graph coloring process,
at least 4 colors are required, and the five-color theorem has
been proven as a weaker version [46]. In Section VI.C, we
observe the effect of group number on HFL-OD by varying χ
from 5 to 100.

VI. PERFORMANCE EVALUATIONS

In this section, we provide comprehensive performance eval-
uations for our proposed HFL-OD, along with comparisons
with other training methods or in different scenarios. Consid-
ering the evaluation cost, execution cost, and uncontrollable
conditions in the real-world deployment of UAV cluster, we
adopt the manner of simulations for performance evaluations.
The following simulations are conducted on VisDrone dataset
released by Tianjin University (http://aiskyeye.com/home/).
This dataset is comprised of 10,209 static images captured by
cameras installed on UAVs. VisDrone dataset is collected using
multiple UAV platforms in different scenarios (e.g., urban
and country scenarios), under various weather and lighting
conditions. The object detection boxes are manually annotated
and defined by the bounding boxes of over 2.6 million com-
mon objects, such as pedestrians, cars, bicycles, and tricycles.
This dataset also provides some important attributes, including
scenario visibility, object classes, and occlusion. Based on this
dataset, we simulate the missions of UAVs detecting various
ground objects. The main parameter settings for simulations
are presented in TABLE III.

TABLE III: Simulation Parameters

Parameter Description Value
N Number of UAVs 100
χ Number of groups in U 5
dmax Maximum distance in graph coloring 80 m
κ1 Training epoch (number of time slots) 5

κ2
Upload interval of group model parameters
(number of time slots) 1

t∗ Update epoch (number of time slots) 5
Nd Number of destroyed UAVs 50
Ns Number of surviving UAVs 50
η Learning rate 0.0001
Bs Batch size 64

In our proposed HFL-OD, YOLOv5 model is employed
for the object detection missions. Considering the delay-
sensitive requirement of object detection missions in the harsh
environment, YOLOv5 model is first pre-trained. During the
pre-training phase, the simulation results obtained by YOLOv5
model are observed as follows: (i) Fig. 9 shows the confusion
matrix of the pre-trained YOLOv5 model. (ii) Fig. 10 shows
the loss value and mAP value of the pre-trained YOLOv5
model. The mAP value reaches 0.329, and the object detection
accuracy for cars reaches 0.70. The above results demonstrate
that YOLOv5 model is capable of achieving preferable object
detection outcomes on the VisDrone dataset.

Fig. 9: Confusion matrix (with IoU threshold of 0.6).

In addition, Fig. 9 indicates that cars are easier to be
detected by UAVs, due to the following reasons: VisDrone
dataset provides more car instances for the model training,
and the cars typically have larger size and more distinct
shapes/reflecting surfaces compared with other objects in
VisDrone dataset, making them easier to be detected from the
perspective of UAVs (top-down perspective).

Fig. 11 illustrates that the numbers of objects belonging to
different classes are quite different, i.e., the non-IID property is
evident. To this end, we use YOLOv5n, a variant of YOLOv5
designed for edge devices such as NVIDIA Jetson Nano,
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Fig. 10: Loss value and mAP value (This figure shows the
curves of training loss and validation loss for bounding box,
objectness, and classification, as well as the two metrics
precision and recall).

which especially performs well in mobile solutions. YOLOv5n
makes a balance between performance and efficiency, which is
well-suited to UAV-OD missions, and the low computational
requirement of YOLOv5n also aligns well with the constraints
of FL.

A. Comparisons among Different Training Methods

To analyze the merits of HFL-OD, we compare HFL-OD
with ML, FL, and DML in terms of mAP value, loss value,
and training time. ML refers to a centralized learning paradigm
where UAVs transmit data to a central server for training
the model. DML refers to “Distributed Machine Learning”,
a method where the model is locally trained by UAVs in
a distributed manner. With DML, each UAV trains a local
model without any information exchanges. The key distinction
between DML and FL is that DML does not aggregate the
model parameters. HierFL [22] is taken as a representative

Fig. 11: Examples of object detection results.

HFL framework that allows multiple edge servers to perform
the partial parameter aggregation.

The metric mAP value is taken to assess the object detec-
tion accuracy. We use mAP50 and mAP50:95 to provide a
comprehensive understanding of the object detection accuracy
of HFL-OD. mAP50 denotes the mAP value calculated at an
IoU threshold of 0.50, and mAP50:95 denotes the average of
mAP value calculated at the IoU thresholds ranging from 0.50
to 0.95 with the step size of 0.05.

Fig. 12 indicates that the mAP value obtained by ML is
greater than that obtained by HFL-OD, FL, and HierFL, while
the loss value obtained by ML is smaller than that obtained
by HFL-OD, FL, and HierFL. These phenomena indicate
that ML can achieve the highest object detection accuracy
among these training methods, because ML is trained based
on the complete dataset. Note that the loss value of FL and
HierFL is considerably larger than others due to the client
drift [47], which inevitably decelerates the model convergence
and reduces the object detection accuracy of the models trained
based on non-IID datasets.

Fig. 12: Comparisons among different methods.

Moreover, FedProx and FL exhibit similar performance,
while Scaffold and FedDyn achieve better performance, since
that both Scaffold and FedDyn incorporate some measures
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to tackle the heterogeneity in FL, and thus they improve
the performance and mitigate the impact of non-IID data
and insufficient local data. However, HFL-OD outperforms
these methods, due to the following mechanisms adopted
in HFL-OD: (i) the adoption of HFL framework enhances
the robustness of the UAV cluster significantly, and (ii) the
utilization of an intragroup backup mechanism helps output
the superior training results, making HFL-OD more suitable
for the object detection missions of UAV cluster.

As illustrated in Fig. 13, the communication delay of ML
is slightly smaller than that of HFL-OD, because HFL-OD
involves the transmissions of the model parameters while ML
does not. The training time of DML is approximately equal to
that of FL, since the communication delay for transmitting the
local model parameters is much shorter than the training time.
Moreover, the training time of ML is evidently longer than the
other two methods, as ML is based on the local datasets of
all UAVs. Therefore, ML is not an available solution for the
object detection missions of the UAV cluster.

10 20 30 40 50 60 70 80 90 10001002003004005006007008009001000

Trainin
g time 

(s)

Number of UAVs

 Train ing time of HFL-OD Train ing time of ML Train ing time of DML Train ing time of FL Communication delay of HFL-OD =8.764s Communication delay of ML =5.80s

Fig. 13: Comparisons among different frameworks on training
time and communication delay (transmission speed of data is
set to 20Mbps).

The simulation results presented in Fig. 12 and Fig. 13 indi-
cate that our proposed HFL-OD can make a preferable trade-
off between the object detection accuracy and training time
(training time is related to the communication/computational
overhead).

B. Impact of Intragroup Backup Mechanism on HFL-OD
We consider the destroyed UAVs are randomly selected in

the following evaluations due to the unpredictable threats. In
HFL-OD, UAVs are grouped through a 3D graph coloring
method, and an intragroup backup mechanism is provided
to prevent the data loss caused by the destruction of UAVs.
Besides, a dynamic server selection mechanism deals with the
potential destruction of servers.

Specifically, the intragroup backup mechanism is imple-
mented through a data fault tolerance method to ensure the
redundancy and restoration of local datasets of destroyed
UAVs. By the intragroup backup mechanism, the local datasets
of some destroyed UAVs could be restored, thus significantly
enhancing the robustness of the object detection missions.

The intragroup backup mechanism is applied to FL and
DML to validate the effectiveness as well. Fig. 14 illus-
trates the performance of HFL-OD, FL, DML (without the

aggregations of model parameters), FL-G (FL with the intra-
group backup mechanism), DML-G (DML with the intragroup
backup mechanism), and HierFL [22]. The simulation results
in Fig. 14 indicate that FL-G and DML-G perform signif-
icantly better than FL and DML, respectively. Additionally,
HierFL performs better than FL, indicating that the HFL helps
achieve superior training results, and HFL-OD performs better
than HierFL due to the intragroup backup mechanism.
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Fig. 14: Effect of intragroup backup mechanism.

We also conduct an ablation experiment to validate the
effects of coloring grouping, intragroup backup, and dynamic
server selection, respectively. Fig. 15 indicates that each of the
three components: coloring grouping, intragroup backup, and
dynamic server selection exerts a unique and indispensable
effect on the object detection accuracy.

Fig. 15: Ablation experiment.

Furthermore, Fig. 16 demonstrates the impact of destruction
of UAVs on these training methods. With the intragroup
backup mechanism, HFL-OD, FL-G, and DML-G can restore
the data of destroyed UAVs, while FL, DML, and HierF
suffer the data loss due to the destruction of UAVs seriously.
Fig. 17 shows the variations in the training effect when half
of the UAVs have been destroyed. The training effect of
FL and HierFL fluctuates wildly due to the data loss, while
the training effect of HFL-OD and FL-G almost remains
unchanged, implying that the intragroup backup mechanism
can largely improve the robustness of UAV cluster and relieve
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the negative impacts of destroyed UAVs on the performance
of object detection missions.

 HierFL

Fig. 16: Data loss among different methods under different Ns

(the number of surviving UAVs).

 HierFLm
A

P 
(%

)

Global epoch

Fig. 17: Training effect of surviving UAVs among different
methods.

C. Effect of Group Number on HFL-OD

Two-tier FL is employed in the UAV cluster to reduce the
communication overhead. From Fig. 18, we can observe that
the mAP value decreases with the increase of χ. Note that
χ is increased with the decrease of group size (the increase
of heterogeneity among different group datasets). This is
because when χ increases, the impact of the non-IID datasets
during the training process becomes more pronounced, which
degrades the training performance of HFL-OD. Fig. 18 also
indicates that the performance of HFL-OD can be enhanced
by properly setting the value of χ. The maximum mAP value
in Fig. 18 reaches 0.286 when χ = 5.

Moreover, Fig. 19 and Fig. 20 illustrate the results of the
object detection missions by varying the value of χ. The
results include the object detection accuracy (measured by
mAP50 and mAP50:95 in Fig. 19), and the value of three
types of loss functions (classification loss (cls loss), object
loss (obj loss), and box regression loss (box loss) in Fig. 20).
The best performance of object detection missions can be
obtained when χ = 5, implying that the object detection
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Fig. 18: Impact of χ on mAP value. (The number following
D represents χ, which is the number of color groups in the
UAV cluster)

accuracy and communication/computational overhead can be
balanced by properly setting the value of χ, also enabling the
UAV cluster to conduct the object detection missions more
efficiently and cost-effectively.

Fig. 19: χ vs. mAP value.

Fig. 20: χ vs. loss value.
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D. Robustness

Fig. 21 indicates that the surviving UAVs can maintain the
object detection missions after the UAV cluster suffers from
the threats (some UAVs are destroyed). As the number of
surviving UAVs decreases, the performance of object detection
missions declines. Nevertheless, the performance decline of
the object detection missions can be obviously relieved by
HFL-OD, even though when more UAVs are destroyed. Fig. 21
demonstrates that HFL-OD effectively mitigates the impact of
data loss on object detection accuracy. The training effect is
well maintained even when the proportion of destroyed UAVs
reaches 75%, which verifies the strong robustness provided by
HFL-OD.

 10
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Fig. 21: Impact of surviving UAVs number on mAP value.

By Fig. 22 and Fig. 23, we can observe the effects of the
number of surviving UAVs on the object detection accuracy
and model loss. As illustrated in Fig. 22 and Fig. 23, the ro-
bustness of UAV cluster can be enhanced by HFL-OD, thereby
the number of surviving UAVs does not obviously affect the
object detection accuracy and model loss. In Fig. 23, the
model loss is quite small when the number of surviving UAVs
is 75 or 90, compared with the model loss when the UAV
cluster remains unaffected. This phenomenon also indicates
the potential for a more optimal group dataset configuration,
which could further enhance the training effect and model
performance on non-IID datasets.
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Fig. 22: Robustness of UAV cluster on mAP value.
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Fig. 23: Robustness of UAV cluster on loss value.

E. Evaluation across Different Datasets

As shown in Fig. 24, we evaluate the generalization capabil-
ity of HFL-OD across different datasets. Specifically, DOTA
dataset is a dataset for object detection in aerial images, which
contains 2,806 aerial images with 188,282 instances. UAVDT
dataset serves as a challenging UAV detection and tracking
benchmark for three fundamental missions in UAV-based vi-
sion, i.e., object detection, single-object tracking, and multiple-
object tracking. To provide a more intuitive demonstration of
the performance, we validate the effectiveness in single-object
detection on UAVDT. Additionally, we conduct some evalua-
tions on COCO, which is a widely used benchmark dataset for
the general object detection missions. The simulation results
demonstrate that HFL-OD consistently exhibits robustness and
strong performance across differnet datasets.

Fig. 24: Evaluations across different datasets.

VII. CONCLUSION

We have studied the robustness of UAV cluster conduct-
ing object detection missions, and a Hierarchical Federated
Learning Framework for Object Detection (HFL-OD) of UAV
cluster has been proposed. In HFL-OD, UAVs are first grouped
through a balanced graph coloring method, and an intragroup
backup mechanism is provided to avoid the data loss due to
the destruction of some UAVs. Specially, a dynamic server
selection mechanism is employed to deal with the destruction

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3562812

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on June 18,2025 at 10:31:41 UTC from IEEE Xplore.  Restrictions apply. 



16

of cluster server and group servers. Furthermore, consid-
ering the communication/computational overhead of UAVs
conducting the object detection missions, a two-tier federated
learning framework is proposed to preserve the performance
of the object detection missions as much as possible, through
enhancing the robustness of UAV cluster.

Some practical issues need to be considered in future
when applying our proposed HFL-OD: (i) HFL-OD does not
consider the intergroup backup mechanism. The intergroup
backup mechanism can be designed by considering the com-
munication/computational overhead and the requirement of
privacy/security jointly. (ii) In the harsh environment, when
some UAVs are destroyed, it is crucial that the UAV cluster
should swiftly relocate to another safe area and promptly
reconfigure the cluster topology, which necessitates that the
UAV cluster can make the reasonable decisions regarding the
flight path planning and topology reconfiguration. (iii) For the
protection of data privacy of different UAVs, an erasure coding
method or alternative backup strategy could be adopted to
avoid the privacy disclosure. (iv) Although HFL-OD primarily
leverages the hierarchical aggregation and grouping method
to handle the non-IID data, we could further enhance the
adaptivity to different non-IID datasets by integrating some
advanced FL methods such as Scaffold or FedDyn. (v) The
number of color groups should be properly set to make a
reasonable tradeoff between object detection accuracy and
communication/computational overhead, and it can be adjusted
according to different mission scenarios.
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