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Optimizing Comprehensive Cost of Charger Deployment in Multi-hop
Wireless Charging
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The multi-hop wireless charging technology has attracted a lot of attention as it largely extends the charging range of chargers.
Different from the existing work with single cost optimization, the objective of this paper is to optimize the comprehensive cost, which
is the combination of energy cost and deployment cost. We decompose the target problem into two sub-problems. The first sub-problem
aims to minimize the deployment cost with energy capacity constraints. The proposed algorithm follows the greedy strategy, where
the subset of sensor nodes for any charger is determined by finding the capacitated minimum spanning tree. The second sub-problem,
which aims to maximize the reduction of comprehensive cost by adding chargers to the solution of the first sub-problem, is proved to
be an unconstrained submodular set function maximization problem, and can be solved by a 1/2-approximation randomized linear
time algorithm for its equivalent problem. Through extensive simulations, we demonstrate that the proposed solution can reduce the
comprehensive cost by 57.55% comparing with the benchmark algorithms.
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1 INTRODUCTION

Wireless Rechargeable Sensor Network (WRSN) has witnessed huge development and attractedmore andmore attentions
from both academic and industrial circles in recent years. There are many applications based on WRSN in various fields,
such as automobile, military target tracking and surveillance, natural disaster relief, biomedical health monitoring, and
hazardous environment exploration [17]. The cost and efficiency of power transform of WRSN largely depends on the
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2 Sixu Wu, Lijie Xu, Haipeng Dai, Linfeng Liu, Fu Xiao, and Jia Xu

wireless charging technology. Different technologies, such as magnetic resonance [19, 25], inductive coupling [9, 22],
RF [4, 26, 31, 34] and microwave [7], have different properties and are applicable for various scenarios.

Magnetic resonance wireless charging technology can be easily realized by using copper coils with low cost. More
importantly, magnetic resonance has higher charging efficiency than low power charging such as RF. As shown in [25],
through physical experiments with distance of 1𝑚, the charging efficiency of magnetic resonance is 0.78. However, the
charging efficiency of RF is less than 0.01 when the distance is 1𝑚 [15]. In addition, the charging efficiency of magnetic
resonance wireless charging depends on the receiver and transmitter’s circuitry characteristics and the distance between
the two devices [21]. The energy can be transmitted without the source and capture device sitting next to each other or
being perfectly aligned [30]. Therefore, the direction of copper coils will not affect the charging efficiency. In principle,
the physical properties of coils determine the charging efficiency of magnetic resonance wireless charging. Better
charging efficiency can be obtained by increasing the radii of the coils. Therefore, compared with low power charging,
magnetic resonance is more suitable for multi-hop wireless charging, and can still maintain considerable charging
efficiency after several hops.

From the view of whether the energy can be relayed, wireless charging technology can be classified as multi-hop
wireless charging [25, 27, 35] and single-hop wireless charging [4, 8, 26, 33, 34]. In the traditional single-hop wireless
charging, the sensor nodes only receive energy from the chargers. However, in the multi-hop wireless charging, the
sensor nodes can receive energy from both the chargers and other sensor nodes. This means that the sensor nodes have
the function of charging other sensor nodes in multi-hop wireless charging.

The multi-hop wireless charging has promising advantages comparing with the single-hop wireless charging: (1)
Multi-hop wireless charging can be viewed as a flexible extension of single-hop wireless charging. As illustrated in Fig.
1, the charging efficiency from sensor node 1 to sensor node 3 is 0.6 if the energy is transferred directly. If the energy is
transferred via sensor node 2, the charging efficiency is 0.9*0.9=0.81. Thus, the charging efficiency increases through
multi-hop wireless charging. On the other hand, in the multi-hop wireless charging setting, we can still choose the
single-hop path if the charging efficiency of single-hop path is better than that of multi-hop path. In fact, multi-hop
wireless charging integrates the advantages of single-hop path and multi-hop path, thus, the charging efficiency can be
further optimized. (2) In some specific scenarios, single-hop wireless charging is not applicable. For example, in building
structure monitoring or disaster relief, the chargers cannot be placed in desirable posotions due to environmental
constraints. The energy can only be indirectly transferred to the target sensor nodes in the way of multi-hop relay. (3)
The moving cost of mobile chargers can be reduced through multi-hop wireless charging since the number of charging
positions decreases. (4) Because the sensor nodes can relay the energy through multi-hop wireless charging, the mobile
chargers only need to visit a few sensor nodes in mobile charging, therefore, the moving cost or the number of mobile
chargers can be reduced.

As a practical project, WiTricity [30] designed a multi-hop wireless charging application based on magnetic resonance.
The resonant repeaters are placed between the source and receiver to extend the wireless charging range. The energy
can be transferred to greater distances through multi-hop relays. Additionally, there are theoretical studies on multi-hop
wireless charging [21, 25, 32]. However, they aimed to optimize the single objective, such as minimizing the number of
chargers, moving cost, or energy consumption. For example, Wang et al. [25] optimized the energy cost of multi-hop
wireless charging in mobile charging scenario. Rault et al. [21] aimed to find the least chargers that can fulfill the energy
demands of all sensor nodes. However, considering the single objective cannot accurately represent the actual cost in
complex real-world scenarios.
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Optimizing Comprehensive Cost of Charger Deployment in Multi-hop Wireless Charging 3

Fig. 1. Illustration of multi-hop wireless charging. The numbers on the edges represent the charging efficiency.

In this paper, we consider the actual comprehensive cost of wireless charging consisting of energy cost and deployment
cost. The energy cost is the expenditure for energy consumption (e.g., the payment to energy provider). The deployment
cost is the expenditure for deploying wireless chargers (e.g., rental fee, depreciation allowances, or installation cost). In
general, deployment cost is related to the number of wireless chargers. We aim to optimize the comprehensive cost,
which is the summation of energy cost and deployment cost, such that the energy demand of all sensor nodes can
be fulfilled by energy capacitated chargers in the way of multi-hop energy transfer. Because the energy forwarding
of every hop will lead to energy loss, the energy loss increases accordingly with the increasing number of hops. It is
possible to reduce the overall energy consumption by deploying more chargers, but this will increase the deployment
cost.

There are three modes of multi-hop wireless charging technology: store and forward, direct flow, and hybrid [27]. In
store and forward mode, each sensor node accepts and stores energy first, and then forwards it to the sensor nodes of
next hop. In the direct flow mode, the energy is directly sent to the target node via multiple hops. The hybrid mode is a
mixture of the above two modes. This work is based on the store and forward mode.

Since the multi-hop wireless charging in this paper is based on magnetic resonance technology, a special problem
of magnetic resonance called “conflict” has to be taken into account [25]. If multiple transmitters charge the same
receiver simultaneously, the magnetic fields of the transmitters will affect each other. If they are not exactly in the same
direction, there will be partial offset, resulting in energy loss. In order to reduce unnecessary losses, we need to avoid
the occurrence of “conflict”. In theory, we can avoid “conflict” through clock synchronization, of which the accuracy is
largely related to the synchronization time interval. In most clock synchronization algorithms, the synchronization time
interval is dozens of seconds [6, 11]. Therefore, the communication overhead increases significantly due to the periodic
clock synchronization message propagation. Moreover, clock synchronization will take more time to finish the charging
due to the time-division. Therefore, we aim to avoid “many-to-one” charging when we optimize the comprehensive
cost. Note that “one-to-many” charging is feasible.

The problem of optimizing the comprehensive cost for charger deployment in multi-hop wireless charging in WRSN
is very challenging. Our problem is a variation of Facility Location Problem (FLP) [1]. We can consider the chargers and
the sensor nodes as the facilities and the clients, respectively. However, the main difference between our problem and
FLP is that we need to ensure all sensor nodes along the same energy flow are charged by the same charger in order
to avoid “conflict”. The energy flow means that energy will flow to the sensor nodes via multiple hops. The common
solutions [1] of FLP are invalid for our problem because any client can be connected to any facility in FLP.

The main contributions of this paper are as follows:
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• We present a novel multi-hop wireless charging model and formulate the Capacitated Minimum Charging Forest

(CMCF ) problem, which is proved to be NP-hard.
• We decompose the CMCF problem into two sub-problems, and present a two-stage solution to optimize the
comprehensive cost. We propose a greedy algorithm for the first sub-problem, and solve the second sub-problem
through a (1/2)-approximation algorithm for its equivalent problem.
• Through extensive simulations, we demonstrate that the proposed solution shows significant superiority in
terms of comprehensive cost. Moreover, the proposed solution shows strong adaptivity for parameter variations.

The rest of the paper is organized as follows. Section 2 presents a brief review on the previous works. Section
3 presents the system model and problem formulation. Section 4 presents the details of our solution. Performance
evaluation is shown in Section 5. In Section 6, we discuss two important problems in actual charging. We conclude this
paper in Section 7.

2 RELATEDWORK

In this section, we briefly review the related studies on single-hop wireless charging and multi-hop wireless charging.

2.1 Single-hop Wireless Charging

As the traditional charging mode, single-hop wireless charging has been widely studied. Dai et al. [4] studied the problem
of charging task scheduling for directional wireless charger networks. They scheduled the orientations of chargers
with time in centralized offline and distributed online fashions to maximize the overall charging utility for all tasks. In
[13], Lin et al. explored the wireless signal propagation process and provided a theoretical charging model to enhance
charging efficiency by leveraging obstacles. Utilizing the concept of the Fresnel Zones, they reformalized the wireless
charging model and discretized charging power to determine the best charging spots as well as charging durations,
which can maximize the charging efficiency. In [15], the authors proposed a pragmatic energy transfer model verified
by experiments. They proposed a problem to reduce charging delay in directional wireless charging and formulated the
problem as a linear programming problem. The proposed method achieved the goal of reducing the charging delay
and could reduce the charging energy, which is not completely equivalent to the optimization of actual cost. Lin et

al. [14] addressed the issue of how to serve the 3-D WRSN with an unmanned aerial vehicle (UAV). The objective
is to maximize the charged energy for sensors supplied by the UAV with energy constraint. However, the scenario
for UAV was very different from that of this paper. In [16], the authors aimed to jointly optimize the number of dead
sensors and the energy usage effectiveness in the multi-node charging scenarios, and proposed a multi-node temporal
spatial partial-charging algorithm (MTSPC) to solve it. In [23], Tomar et al. proposed a novel charging scheme, which
integrated two popular multi-attribute decision making methods, to determine charging schedule by evaluating various
network attributes, namely residual energy, distance to mobile charger, energy consumption rate, and neighborhood
energy weightage. The studies mentioned above had various goals, but they did not consider the cost or only taked the
cost as a constraint. In this paper, we aim to minimize the cost, which is a practical concern in the vast majority of
WRSN.

[20] proposed a multi-node charging vehicle scheduling scheme following a partial charging model to minimize
the energy spent on traveling and maximize the network lifetime. First, the charging schedules of multiple charging
vehicles were generated through optimal halting points by integrating non-dominated sorting genetic algorithm and
multi-attribute decision making approach. Then the charging time at each halting point was decided for the sensor
Manuscript submitted to ACM
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nodes with the help of a partial charging timer. In order to reduce the moving cost of mobile charger, [36] relaxed the
strictness of perpetual operation by allowing some sensor nodes to temporarily run out of energy while still maintaining
target k-coverage in a network. In our paper, the charging demands of all sensor nodes should be fully satisfied. In
[26], the authors aimed to find the optimal trajectory planning for a mobile charger in terms of energy minimization.
They first found the initial charging clusters and the charging path, and then improved the path to reduce energy
consumption. However, in their paper, the multi-hop wireless charging was not involved.

2.2 Multi-hop Wireless Charging

The physical properties of multi-hop wireless charging technology for WRSNs has been studied extensively [10, 28, 35].
However, these papers did not consider the optimization problems based on multi-hop wireless charging.

There are some researches on multi-hop wireless charging in WRSN. Rault et al. [21] aimed to place the chargers on
sensor nodes and proposed an optimization model of minimizing the number of chargers, which transferred energy to
sensor nodes in the multi-hop wireless charging scenario. However, they did not take into consideration the energy
consumption. Wu et al. [32] proposed the repeater deployment method to realize full multi-hop wireless charging
coverage of WRSN such that the number of resonant repeaters is minimized. They designed the rules to remove
redundant repeaters and optimized the positions of necessary repeaters to improve the charging efficiency. The system
model of [32] is very different from this paper since there is no need to deploy additional repeaters in our charging
system.

In [25] and [12], the researchers considered the multi-hop wireless charging in the mobile charging scenario. With
the multi-hop wireless charging technology, it is not necessary to visit all sensor nodes in the network. Wang et

al. [25] carried out the regional partition through set cover algorithm, and then designed an algorithm to schedule
the mobile chargers. They set a efficiency threshold to determine the candidate charging sets and then select some
candidate charging sets to cover all sensor nodes. For each sensor node, its candidate charging set is composed of the
nearby sensor nodes, of which the charging efficiencies are larger than the efficiency threshold. However, the efficiency
threshold, which largely influence the energy consumption of mobile chargers, is hard to be predetermined. Li et al.
[12] proposed an energy efficient mobile multi-hop wireless charging strategy. By introducing the optimal central
point-based polling point selection algorithm, they constructed the best arrest point of each partition for the mobile
charger. In each partition, the multi-hop wireless charging was adopted to replenish energy for these nodes. These
studies also did not optimize the energy consumption and deployment cost jointly. In this paper, we aim to optimize the
total comprehensive cost, which is the actual expenditure to obtain wireless charging service.

Table 1 shows the difference between our paper and related works in terms of optimization problems.

3 SYSTEMMODEL AND PROBLEM FORMULATION

In this section, we present the system model and formulate the problem. We list the frequently used notations in Table
2.

3.1 System Model

We consider that there is a wireless rechargeable sensor network consisting of a set 𝑉 of 𝑛 sensor nodes. All sensor
nodes have the ability of energy store and energy forward. Each sensor node 𝑗 ∈ 𝑉 has an energy demand 𝐷 𝑗 ≥ 0.
We denote the energy demand profile of all sensor nodes as D = (𝐷1, 𝐷2, ..., 𝐷𝑛). In this paper, we consider the case
where it is impossible to set up additional chargers. The chargers are deployed at the positions of sensor nodes since
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Table 1. Summary of optimization problems in related works.

Paper Satisfy full demands Optimize deployment Optimize energy Use multi-hop wireless
of all sensor nodes cost consumption charging technology

[4][13][14][16][23] No No No No
[15] Yes No No No

[20][36] No No Yes No
[26] Yes No Yes No
[21] Yes Yes No Yes
[32] Yes No No Yes

[25][12] Yes No Yes Yes
Our paper Yes Yes Yes Yes

Table 2. Frequently Used Notations

Symbol Description

𝑉 , 𝑛 Set of sensor nodes, number of sensor nodes
𝐷 𝑗 Energy demand of sensor node 𝑗
𝑟 Maximum charging range of sensor node
𝜋𝑖 𝑗 Loss coefficient from 𝑖 to 𝑗

𝐷MAX, 𝐷𝑟 Energy capacity of charger, residual energy of charger
𝛼, 𝛽 Unit energy cost, unit deployment cost

𝐺 (𝑉 , 𝐸) Charging network
T , 𝑇𝑖 Charging forest, charging tree with root 𝑖
𝑉𝑖 , 𝐸𝑖 Set of sensor nodes in 𝑇𝑖 , set of edges in 𝑇𝑖
𝑃𝑖 𝑗 Path from 𝑖 to 𝑗

𝐸𝑃𝑖 𝑗 , 𝑉𝑃𝑖 𝑗 Set of edges in path 𝑃𝑖 𝑗 , set of sensor nodes in path 𝑃𝑖 𝑗
𝑉𝑢 Set of uncovered sensor nodes
𝐶1 Set of charger positions of stage 1

Δ𝐹 (·) Function of comprehensive cost reduction

the charger deployment can be viewed as making workers move to the positions of sensor nodes for charging. The
sensor nodes receiving energy from workers directly can be viewed as the chargers in the network. We reuse 𝑉 as the
set of candidate positions for charger deployment.

We consider that the sensor nodes are homogeneous and have identical energy capacity 𝐷MAX, 𝐷MAX ≫ 𝐷 𝑗 , for
all 𝑗 ∈ 𝑉 . When a task of direct charging is completed, the worker who completes the task is paid 𝛽 , which is the
deployment cost.

Each sensor node can transfer energy to other nodes within the maximum charging range 𝑟 as energy repeaters
through magnetic resonance wireless charging technology if its energy demand is satisfied. We consider that the sensor
nodes have the same maximal charging range. We denote by 𝜋𝑎𝑏 ≥ 1 the loss coefficient between any two sensor nodes
𝑎, 𝑏 ∈ 𝑉 within the maximal charging range. In other words, if the energy demand of 𝑏 is 𝐷𝑏 , 𝑎 needs to transfer energy
of 𝜋𝑎𝑏𝐷𝑏 to 𝑏. The loss coefficient depends on the circuitry design of magnetic resonance and the distance between the
two sensor nodes [19], and will be formulated and calculated in simulation setup (Section 5.1). According to [21], the
charging efficiency is symmetrical, i.e., 𝜋𝑎𝑏 = 𝜋𝑏𝑎 for any two sensor nodes 𝑎, 𝑏 ∈ 𝑉 .
Manuscript submitted to ACM
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Since a worker charges a sensor node directly in a very small distance, the sensor node can be charged with negligible
energy loss, i.e., 𝜋𝑎𝑏 = 1 iff 𝑎 = 𝑏. Then the sensor node transfers the stored energy in excess of the demand to other
adjacent sensor nodes with energy loss.

We define the charging network as follows:
Definition 1 (Charging Network). The charging network is an undigraph𝐺 (𝑉 , 𝐸), where𝑉 is the set of sensor nodes,

𝐸 is the set of edges connecting the sensor nodes with distance less than the maximal charging range. Each edge (𝑎, 𝑏) ∈ 𝐸 is

with a loss coefficient 𝜋𝑎𝑏 ≥ 1.
Although there is energy loss in battery energy storage in store and forward based multi-hop wireless charging due

to the self discharge, the self discharge rate of lithium-ion battery is 2%-3% per month [3]. The time of storage process
in multi-hop wireless charging is rather short, and the storage loss can be neglected.

For any two sensor nodes 𝑖, 𝑗 ∈ 𝑉 , (𝑖, 𝑗) ∉ 𝐸, the initial loss coefficient between 𝑖 and 𝑗 is infinite. However, if 𝑗
obtains energy from 𝑖 via a path 𝑃𝑖 𝑗 on 𝐺 (𝑉 , 𝐸), the loss coefficient between 𝑖 and 𝑗 can be calculated as:

𝜋𝑖 𝑗 =
∏

(𝑎,𝑏) ∈𝐸𝑃𝑖 𝑗

𝜋𝑎𝑏 (1)

where 𝐸𝑃𝑖 𝑗 is the set of edges in path 𝑃𝑖 𝑗 .
Note that a sensor node cannot be charged by multiple chargers simultaneously due to the conflict of magnetic

resonance wireless charging. Thus, if sensor node 𝑗 is charged via path 𝑃𝑖 𝑗 by charger 𝑖 , all sensor nodes in the path
must be charged by charger 𝑖 too. In order to satisfy the energy demand of all nodes in path 𝑃𝑖 𝑗 , the energy of charger 𝑖
should be at least

∑
𝑗 ′∈𝑉𝑃𝑖 𝑗

𝜋𝑖 𝑗 ′𝐷 𝑗 ′ , where 𝑉𝑃𝑖 𝑗 is the set of sensor nodes in path 𝑃𝑖 𝑗 . Any charger 𝑖 can charge multiple

sensor nodes via different paths. The paths with same source 𝑖 together construct a charging tree.
Definition 2 (Charging Tree). The charging tree is a subgraph of charging network 𝐺 (𝑉 , 𝐸). The charger locates in

the root of charging tree, and the sensor nodes in charging tree (including the sensor node located in the root) are charged by

the charger via the path of charging tree.

We denote the charging tree with root 𝑖 ∈ 𝑉 as 𝑇𝑖 . The energy cost of charging tree 𝑇𝑖 is 𝛼
∑
𝑗 ∈𝑉𝑖

𝜋𝑖 𝑗𝐷 𝑗 , where 𝛼 is the

unit energy cost and 𝑉𝑖 is the set of sensor nodes in 𝑇𝑖 . Since a sensor node cannot be charged by multiple chargers,
the deployment of chargers will divide the charging network into multiple disjoint charging trees, which construct a
charging forest.

Definition 3 (Charging Forest). The charging forest T = {𝑇1,𝑇2, . . . ,𝑇𝑛} is a partition of charging network 𝐺 (𝑉 , 𝐸)
by the disjoint charging trees.

We use an example in Fig. 2 to illustrate the charging tree, charging forest, and energy cost of charging tree. There
are 3 disjoint charging trees in the charging forest. Specifically, there are 7 sensor nodes in the right charging tree. The
combination of charger and sensor node 1 is represented by the rectangle. The sensor nodes are represented by the
disks. The number beside the sensor node represents its energy demand, and the number on the edge represents its loss
coefficient, i.e., 𝐷1 = 𝐷5 = 2, 𝐷2 = 𝐷6 = 3, 𝐷3 = 𝐷4 = 4, 𝐷7 = 5, 𝜋11 = 1, 𝜋12 = 1.1, 𝜋14 = 𝜋17 = 𝜋23 = 1.2, 𝜋45 = 1.3,
𝜋46 = 1.4. Based on (1), we have 𝜋13 = 𝜋12𝜋23 = 1.32, 𝜋15 = 𝜋14𝜋45 = 1.56, 𝜋16 = 𝜋14𝜋46 = 1.68. Then, the energy cost
of charging tree 𝑇1 is 𝛼

∑
𝑗 ∈𝑉1

𝜋1𝑗𝐷 𝑗 = 29.54𝛼 .

Definition 4 (Comprehensive Cost). The comprehensive cost 𝐹 is the sum of energy cost and deployment cost:

𝐹=𝛼
∑
𝑖∈𝑉

𝑦𝑖

∑
𝑗 ∈𝑉

𝜋𝑖 𝑗𝐷 𝑗𝑥𝑖 𝑗 + 𝛽
∑
𝑖∈𝑉

𝑦𝑖 (2)
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Fig. 2. Illustration of charging tree, charging forest, and energy cost.

where 𝑥𝑖 𝑗 ∈ {0, 1} is the binary variable to indicate whether sensor node 𝑗 is charged by charger 𝑖 . 𝑦𝑖 ∈ {0, 1} is the binary
variable to indicate whether a charger is placed at position 𝑖 .

3.2 Problem Formulation

Our objective is to construct the charging forest with capacitated energy of charger by determining 𝑥𝑖 𝑗 and 𝑦𝑖 such
that the comprehensive cost is minimized. We refer to this problem as Capacitated Minimum Charging Forest (CMCF )
problem, which can be formulated as follows:

min 𝐹=𝛼
∑
𝑖∈𝑉

𝑦𝑖

∑
𝑗 ∈𝑉

𝜋𝑖 𝑗𝐷 𝑗𝑥𝑖 𝑗 + 𝛽
∑
𝑖∈𝑉

𝑦𝑖 (3)

𝑠 .𝑡 .
∑
𝑖∈𝑉

𝑥𝑖 𝑗 = 1, ∀𝑗 ∈ 𝑉 (3a)

∑
𝑗 ∈𝑉

𝜋𝑖 𝑗𝐷 𝑗𝑥𝑖 𝑗 ≤ 𝐷MAX 𝑦𝑖 , ∀𝑖 ∈ 𝑉 (3b)

𝑥𝑖 𝑗 ′ = 1, ∀𝑗 ′ ∈ 𝑉𝑃𝑖 𝑗 , 𝑦𝑖 = 1, 𝑥𝑖 𝑗 = 1 (3c)

𝑥𝑖 𝑗 ∈ {0, 1}, ∀𝑖, 𝑗 ∈ 𝑉 (3d)

𝑦𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝑉 (3e)

The constraint (3a) ensures that each sensor node is charged by exactly one charger. The constraint (3b) ensures that
the energy cost of a charging tree is no more than the energy capacity of the charger. The constraint (3c) guarantees
that we can get the disjoint charging trees. In other words, if a sensor node is charged by one charger, then all sensor
nodes in the path of charging tree from the charger to the sensor node should be charged by the same charger.

4 ALGORITHM DESIGN FOR CMCF PROBLEM

In this section, we present the solution for CMCF problem.

4.1 Hardness and Design Rationale

We attempt to find an optimal algorithm for the CMCF problem. Unfortunately, as the following theorem shows, the
CMCF problem is NP-hard.

Theorem 1. The CMCF problem is NP-hard.
Manuscript submitted to ACM
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Proof: We consider the special case of CMCF problem by removing the constraint (3c). We demonstrate that the
special case of CMCF problem belongs to NP firstly. Given an instance of the special case of CMCF problem, we can
check whether all sensor nodes are covered and check whether the comprehensive cost is at most 𝑣 . This process can
terminate in polynomial time.

Then, we prove the NP-hardness of the special case of CMCF problem by giving a polynomial time reduction from
the Single Source Capacitated Facility Location Problem (SSCFLP) [1], which is a well-known NP-hard problem.

Instance of SSCFLP (denoted by A): For a set 𝑉 = {1, 2, · · · , 𝑛} of 𝑛 positions. Each position has a client and a facility.
Each client 𝑗 ∈ 𝑉 has a demand 𝐷 𝑗 that must be served by one open facility. The cost for serving one-unit demand of
client 𝑗 from facility 𝑖 is 𝛼𝜋𝑖 𝑗 . Let 𝛽 represent the cost of opening any facility 𝑖 ∈ 𝑉 . Let 𝐷MAX represent the maximum
demand that facility can serve. The question is to find a subset of open facilities such that the demand of each client is
met by an open facility and the total cost of facility opening and client service is at most 𝑣 .

We consider a corresponding instance of the special case of CMCF problem (denoted by B): For a set𝑉 = {1, 2, · · · , 𝑛}
of 𝑛 positions. Each position has a sensor node. The candidate positions for charger deployment are 𝑉 . Each sensor
node 𝑗 ∈ 𝑉 has an energy demand 𝐷 𝑗 that must be charged by one charger. Let 𝛼 represent the unit energy cost. Let 𝜋𝑖 𝑗
represent the loss coefficient for charging sensor node 𝑗 from charger 𝑖 . Therefore, the cost for charging one-unit energy
of sensor node 𝑗 from charger 𝑖 is 𝛼𝜋𝑖 𝑗 . Let 𝛽 represent the deployment cost of any charger 𝑖 ∈ 𝑉 . Let 𝐷MAX represent
the energy capacity that charger can serve. The question is to find a subset of positions for charger deployment such
that the energy demand of each sensor node is met by a charger and the total cost of charger deployment and energy
cost is at most 𝑣 .

This reduction from A to B ends in polynomial time. We can simply see that 𝑞 is a solution to A if and only if 𝑞 is a
solution to B. ■

Since the CMCF problem is NP-hard, it is impossible to obtain the optimal solution in polynomial time unless P=NP.
In addition, we cannot use the off-the-shelf algorithms [1, 24] for SSCFLP since we need to guarantee that the solution
produces the disjoint charging trees.

The design rationale of our solution is to decompose the CMCF problem into two sub-problems. The first sub-problem
aims to minimize the deployment cost while satisfying all the constraints of CMCF problem given in (3). Then the
second sub-problem aims to reduce the comprehensive cost based on the outcome of the first sub-problem. The whole
process consists of the following two stages:

Stage 1: Charging Forest Initialization
In this stage, we aim to initialize a charging forest to cover all sensor nodes such that the total deployment cost is

minimized. Since the deployment cost of each charger is fixed, this problem is equivalent to minimizing the number
of chargers. Specifically, we construct a charging tree for each unselected position with maximum sensor nodes by
construction of Minimum Spanning Tree with capacity constraint. Then we add the charging tree with maximum sensor
nodes into the charging forest. The above process follows the greedy approach.

Stage 2: Comprehensive Cost Reduction
In this stage, we add chargers to the charging forest obtained by Stage 1 to reduce the comprehensive cost further.

Specifically, we need to find a subset of positions, where the chargers are placed, to maximize the reduction of
comprehensive cost. We show that this problem is an unconstrained submodular function maximization problem. Then
the (1/2)-approximation algorithm can be applied to the equivalent problem [2].
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4.2 Charging Forest Initialization

In this section, we initialize a charging forest to cover all sensor nodes such that the number of chargers is minimized.
In other words, we aim to use the fewest chargers to cover all sensor nodes while satisfying all the constraints of
CMCF problem. We refer to this problem as Capacitated Deployment Cost Optimization (CDCO) problem, which can be
formulated as follows:

min
∑
𝑖∈𝑉

𝑦𝑖 (4)

𝑠 .𝑡 . (3a) - (3e)

Theorem 2. The CDCO problem is NP-hard.

Proof: We demonstrate that CDCO belongs to NP firstly. Given an instance of CDCO, we can check whether all sensor
nodes are covered and check whether the number of chargers is at most 𝑣 . This process can terminate in polynomial
time.

Next, we show the CDCO problem is harder than the well-known Set Cover (SC) problem [5].
Instance of SC (denoted by A): For a universe set 𝑉 = {1, 2, · · · , 𝑛} of 𝑛 elements, a family of sets 𝑆 = {𝑆1, 𝑆2, ..., 𝑆𝑛}

and a positive real 𝑣 . The question is to find a set 𝑆 ′ ⊆ 𝑆 with size at most 𝑣 such that every element in 𝑉 belongs to at
least one member in 𝑆 ′.

We consider a corresponding instance of CDCO (denoted by B): For a universe set𝑉 = {1, 2, · · · , 𝑛} of 𝑛 sensor nodes
and a family of charging tree sets T = {𝑇1,𝑇2, ...,𝑇𝑛}. The question is to find a set T ′ ⊆ T with size at most 𝑣 such that
every sensor node in 𝑉 is assigned to at least one charging tree in T ′.

Since the charging tree can be any subset of all uncovered sensor nodes, the number of the charging trees is
exponential in CDCO problem. Moreover, each charging tree is subject to the energy capacity of the charger. Therefore,
the CDCO problem is harder than the Set Cover problem. ■

Since the CDCO problem is NP-hard, it is impossible to compute the optimal solution in polynomial time unless
P=NP. We propose an algorithm for the CDCO problem based on the well-known greedy algorithm, which is (ln𝑛 + 1)-
approximation for the SC problem [5]. The greedy algorithm iteratively selects a set maximizing the number of newly
covered elements. Similarly, for our CDCO problem, we iteratively select a charging tree maximizing the number of
newly covered sensor nodes with the constraint of energy capacity. We call such charging tree as Capacitated Maximum

Charging Tree (CMCT ).
However, the charging tree can be any subset of all uncovered sensor nodes, thus the number of the charging trees is

exponential. We cannot find CMCT by simple enumeration. To address this problem, we use a modified Prim algorithm
to find the Capacitated Minimum Spanning Tree (CMST ) in polynomial time.

Let 𝑇𝑖 = (𝑉𝑖 , 𝐸𝑖 ) be the charging tree with charger 𝑖 , where 𝑉𝑖 and 𝐸𝑖 are the sets of sensor nodes and edges in 𝑇𝑖 ,
respectively. Let 𝑉𝑢 be the set of uncovered sensor nodes. As illustrated in Algorithm 1, we find CMST 𝑇 ′

𝑖
for all 𝑖 ∈ 𝑉𝑢

in each iteration by calling function CMST (·) (Line 6). Then we find the CMST 𝑇𝑖 with maximum size (Line 8). If there
are multiple CMSTs, any one of them can be selected. The iteration terminates when all sensor nodes are covered by
the selected CMSTs.

Note that if the charging forest T exists, T must be a partition of 𝐺 (𝑉 , 𝐸), i.e., each sensor node in 𝑉 is covered
exactly by one charging tree because of the monotonicity of comprehensive cost 𝐹 given in (2). Thus, we only construct
CMST based on the uncovered sensor node set 𝑉𝑢 .
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Algorithm 1 Charging Forest Initialization

Input: charging network 𝐺 (𝑉 , 𝐸), energy capacity 𝐷MAX, energy demand profile D
Output: charging forest T
1: foreach 𝑖 ∈ 𝑉 do
2: 𝑇𝑖 = (𝑉𝑖 , 𝐸𝑖 ) ← (∅, ∅); 𝑉𝑢 ← 𝑉 ; T ← {𝑇1,𝑇2, . . . ,𝑇𝑛};
3: end
4: while 𝑉𝑢 ≠ ∅ do
5: foreach 𝑖 ∈ 𝑉𝑢 do
6: 𝑇 ′

𝑖
← 𝐶𝑀𝑆𝑇 (𝑖,𝑉𝑢 ,𝐺 (𝑉 , 𝐸), 𝐷MAX,D);

7: end
8: 𝑖 ← arg max

𝑖′∈𝑉𝑢
|𝑉 ′
𝑖′ |;

9: 𝑇𝑖 ← 𝑇 ′
𝑖
; 𝑉𝑢 ← 𝑉𝑢\𝑉𝑖 ;

10: end
11: return T ;

As illustrated in Algorithm 2, we use a modified Prim algorithm to find the CMST. First, we add the sensor node
at position 𝑖 into the charging tree 𝑇𝑖 (Lines 2-4). Then we iteratively add the sensor node outside the charging tree
with minimum energy cost into the charging tree. The iteration terminates when the residual energy of charger 𝑖 is
smaller than the energy cost of any sensor node outside the charging tree. Specifically, in each iteration, we find an edge
( 𝑗𝑖 , 𝑗𝑜 ) ∈ 𝐸 satisfying that 𝑗𝑖 is a sensor node in 𝑇𝑖 and 𝑗𝑜 is a sensor node outside the 𝑇𝑖 with minimum 𝜋𝑖 𝑗𝑖𝜋 𝑗𝑖 𝑗𝑜𝐷 𝑗𝑜 ,
where 𝜋𝑖 𝑗𝑖𝜋 𝑗𝑖 𝑗𝑜 = 𝜋𝑖 𝑗𝑜 is the loss coefficient from charger 𝑖 to sensor node 𝑗𝑜 (Line 8). Then we add the edge ( 𝑗𝑖 , 𝑗𝑜 ) and
the corresponding sensor node 𝑗𝑜 into the charging tree (Lines 10-11).

Algorithm 2 CMST(·)
Input: charging network𝐺 (𝑉 , 𝐸), energy capacity 𝐷MAX, energy demand profileD, charger 𝑖 , uncovered sensor nodes

𝑉𝑢
Output: capacitated minimum spanning tree 𝑇𝑖
1: 𝑇𝑖 = (𝑉𝑖 , 𝐸𝑖 ) ← (∅, ∅); 𝐷𝑟 ← 𝐷MAX;
2: if 𝐷𝑟 − 𝐷𝑖 ≥ 0 then
3: 𝑉𝑖 ← 𝑉𝑖 ∪ {𝑖}; 𝑉𝑢 ← 𝑉𝑢\{𝑖}; 𝐷𝑟 ← 𝐷𝑟 − 𝐷𝑖 ;
4: else
5: return 𝑇𝑖 ;
6: end
7: while 𝐷𝑟 > 0 do
8: ( 𝑗𝑖 , 𝑗𝑜 ) ← arg min

( 𝑗, 𝑗 ′) ∈𝐸:𝑗 ∈𝑉𝑖 , 𝑗 ′∈𝑉𝑢\𝑉𝑖
𝜋𝑖 𝑗𝜋 𝑗 𝑗 ′𝐷 𝑗 ′ ;

9: if 𝐷𝑟 − 𝜋𝑖 𝑗𝑖𝜋 𝑗𝑖 𝑗𝑜𝐷 𝑗𝑜 ≥ 0 then
10: 𝐷𝑟 ← 𝐷𝑟 − 𝜋𝑖 𝑗𝑖𝜋 𝑗𝑖 𝑗𝑜𝐷 𝑗𝑜 ; 𝜋𝑖 𝑗𝑜 ← 𝜋𝑖 𝑗𝑖𝜋 𝑗𝑖 𝑗𝑜 ;
11: 𝑉𝑖 ← 𝑉𝑖 ∪ { 𝑗𝑜 }; 𝑉𝑢 ← 𝑉𝑢\{ 𝑗𝑜 }; 𝐸𝑖 ← 𝐸𝑖 ∪ ( 𝑗𝑖 , 𝑗𝑜 );
12: else
13: return 𝑇𝑖 ;
14: end
15: end

Theorem 3. The running time of Charging Forest Initialization is 𝑂 (𝑛5).
Manuscript submitted to ACM
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Proof: Algorithm 2 is dominated by while loop (Lines 7-15), which takes 𝑂 (𝑛3) time, where finding the edge with
minimum energy cost (Line 8) takes𝑂 (𝑛2). Algorithm 1 is dominated by constructing CMST (Line 6), which is executed
at most 𝑂 (𝑛2) times. Thus, the running time of whole Charging Forest Initialization is 𝑂 (𝑛5). ■

Remark: The running time of Charging Forest Initialization, 𝑂 (𝑛5), is very conservative since both the number of
charging trees and the number of sensor nodes in any charging tree are much less than 𝑛 in practice. Moreover, if we
use the improved implementation of Prim algorithm instead of the simplified version given in algorithm 2, the running
time of Charging Forest Initialization can be improved to 𝑂 (𝑛4).

4.3 Comprehensive Cost Reduction

In Charging Forest Initialization stage, we aim to minimize the deployment cost of chargers. In this subsection, we
present the details of Comprehensive Cost Reduction stage, in which we add the chargers to the charging forest of
Charging Forest Initialization stage so as to maximize the reduction of comprehensive cost.

Given any charging tree 𝑇𝑖 , if a charger is added at any position𝑤 ∈ 𝑉𝑖\{𝑖}, 𝑇𝑖 would be divided into two charging
trees by removing the edge (𝑤 ′,𝑤) where𝑤 ′ is the parent of𝑤 in 𝑇𝑖 . Such division may reduce the energy cost as the
loss coefficient of some sensor nodes are reduced. Fig. 3 illustrates the process of charging tree division by adding a
charger at position 4. Note that the new charging tree must be the sub-tree of the original charging tree, thus we do not
need to consider the energy constraint when we add charger at any position.

Fig. 3. Illustration of dividing charging tree into two charging trees by adding a charger.

Given the charger position set𝐶1 of charging forest T obtained from Charging Forest Initialization stage, the objective
of Comprehensive Cost Reduction is finding a set of positions𝐶2 ⊆ 𝑉 \𝐶1 to place the chargers such that the reduction of
comprehensive cost is maximized. We refer to this problem as Comprehensive Cost Reduction Maximization (CCRM)
problem, which can be formulated as follows:

max
𝐶2

Δ𝐹 (𝐶2) = −𝛽 |𝐶2 | + 𝛼 (
∑
𝑖∈𝐶1

∑
𝑗 ∈𝑉𝑖

𝜋𝑖 𝑗𝐷 𝑗 −
∑

𝑖∈𝐶1∪𝐶2

∑
𝑗 ∈𝑉 ′

𝑖

𝜋𝑖 𝑗𝐷 𝑗 ) (5)

where Δ𝐹 (𝐶2) presents the comprehensive cost reduction due to adding chargers at every position of𝐶2 ⊆ 𝑉 \𝐶1. 𝛽 |𝐶2 |
is the increased deployment cost. 𝛼 ( ∑

𝑖∈𝐶1

∑
𝑗 ∈𝑉𝑖

𝜋𝑖 𝑗𝐷 𝑗 −
∑

𝑖∈𝐶1∪𝐶2

∑
𝑗 ∈𝑉 ′

𝑖

𝜋𝑖 𝑗𝐷 𝑗 ) is the reduction of energy cost through adding

chargers at position set 𝐶2. Since there are different charging trees with the same root, we use 𝑉𝑖 , 𝑉 ′𝑖 , 𝑉
′′
𝑖
, and 𝑉 ′′′

𝑖
to

distinguish sensor node sets with the same root but different constituent elements in the same formula.
We give the following definition.
Definition 5 (Submodular Function). Given a finite ground set 𝑉 , a real-valued set function defined as 𝑓 : 2𝑉 → R,

𝑓 is called submodular if 𝑓 (𝐴 ∪ {𝑤}) − 𝑓 (𝐴) ≥ 𝑓 (𝐵 ∪ {𝑤}) − 𝑓 (𝐵) for all 𝐴 ⊆ 𝐵 ⊆ 𝑉 and𝑤 ∈ 𝑉 \𝐵.
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Next, we show that the function Δ𝐹 (·) defined in (5) is a submodular function.
Theorem 4. The comprehensive cost function Δ𝐹 (·) is a submodular function.

Proof:

Δ𝐹 (𝐴 ∪ {𝑤}) − Δ𝐹 (𝐴)

= −𝛽 ( |A| + 1) + 𝛼 (
∑
𝑖∈𝐶1

∑
𝑗 ∈𝑉 ′′

𝑖

𝜋𝑖 𝑗𝐷 𝑗 −
∑

𝑖∈𝐶1∪𝐴∪{𝑤 }

∑
𝑗 ∈𝑉 ′

𝑖

𝜋𝑖 𝑗𝐷 𝑗 )

− (−𝛽 ( |A|) + 𝛼 (
∑
𝑖∈𝐶1

∑
𝑗 ∈𝑉 ′′

𝑖

𝜋𝑖 𝑗𝐷 𝑗 −
∑

𝑖∈𝐶1∪𝐴

∑
𝑗 ∈𝑉𝑖

𝜋𝑖 𝑗𝐷 𝑗 ))

= −𝛽 + 𝛼 (
∑

𝑖∈𝐶1∪𝐴

∑
𝑗 ∈𝑉𝑖

𝜋𝑖 𝑗𝐷 𝑗 −
∑

𝑖∈𝐶1∪𝐴∪{𝑤 }

∑
𝑗 ∈𝑉 ′

𝑖

𝜋𝑖 𝑗𝐷 𝑗 ) (6)

Similarly, we have:

Δ𝐹 (𝐵 ∪ {𝑤}) − Δ𝐹 (𝐵) = −𝛽 + 𝛼 (
∑

𝑖∈𝐶1∪𝐵

∑
𝑗 ∈𝑉𝑖

𝜋𝑖 𝑗𝐷 𝑗 −
∑

𝑖∈𝐶1∪𝐵∪{𝑤 }

∑
𝑗 ∈𝑉 ′

𝑖

𝜋𝑖 𝑗𝐷 𝑗 ) (7)

Then, we consider the following two cases according to the position of𝑤 :
Case 1: 𝑤 ∈ 𝑉𝑖 , 𝑖 ∈ 𝐶1 ∪ 𝐴, i.e., 𝑤 doesn’t locate in the charging trees with roots in 𝐵\𝐴. We further consider the

following two subcases:
Case 1.1:𝑤 is not on the path from 𝑖 to any sensor node in 𝐵\𝐴. In this case, the same division happens on either

𝐶1 ∪𝐴 or 𝐶1 ∪ 𝐵. Due to the fact that the energy cost only changes in 𝑇𝑤 , we have:∑
𝑖∈𝐶1∪𝐴

∑
𝑗 ∈𝑉𝑖

𝜋𝑖 𝑗𝐷 𝑗 −
∑

𝑖∈𝐶1∪𝐴∪{𝑤 }

∑
𝑗 ∈𝑉 ′

𝑖

𝜋𝑖 𝑗𝐷 𝑗

=
∑
𝑗 ∈𝑉𝑤

𝜋𝑖 𝑗𝐷 𝑗 −
∑
𝑗 ∈𝑉𝑤

𝜋𝑤𝑗𝐷 𝑗

=
∑

𝑖∈𝐶1∪𝐵

∑
𝑗 ∈𝑉 ′′

𝑖

𝜋𝑖 𝑗𝐷 𝑗 −
∑

𝑖∈𝐶1∪𝐵∪{𝑤 }

∑
𝑗 ∈𝑉 ′′′

𝑖

𝜋𝑖 𝑗𝐷 𝑗 (8)

Combining (6), (7), and (8), we have:

Δ𝐹 (𝐴 ∪ {𝑤}) − Δ𝐹 (𝐴) = Δ𝐹 (𝐵 ∪ {𝑤}) − Δ𝐹 (𝐵)

Case 1.2:𝑤 is on the paths from 𝑖 to any sensor node in 𝐵\𝐴. We have
∑

𝑖∈𝐶1∪𝐵

∑
𝑗 ∈𝑉𝑖

𝜋𝑖 𝑗𝐷 𝑗 −
∑

𝑖∈𝐶1∪𝐵∪{𝑤 }

∑
𝑗 ∈𝑉 ′

𝑖

𝜋𝑖 𝑗𝐷 𝑗 =∑
𝑗 ∈𝑉 ′𝑤

𝜋𝑖 𝑗𝐷 𝑗 −
∑

𝑗 ∈𝑉 ′𝑤
𝜋𝑤𝑗𝐷 𝑗 ,𝑉

′
𝑤 ⊂ 𝑉𝑤 . Since 𝑉 ′𝑤 ⊂ 𝑉𝑤 , by using the similar deduction of Case 1.1, we can obtain:

Δ𝐹 (𝐴 ∪ {𝑤}) − Δ𝐹 (𝐴) > Δ𝐹 (𝐵 ∪ {𝑤}) − Δ𝐹 (𝐵)

Case 2:𝑤 ∈ 𝑉𝑖 , 𝑖 ∈ 𝐵\𝐴, i.e.,𝑤 locates in the charging trees with roots in 𝐵\𝐴. Without loss of generality, we consider
that 𝑇𝑖 is a sub-tree of 𝑇𝑖′ before division. We have:∑

𝑖∈𝐶1∪𝐴

∑
𝑗 ∈𝑉𝑖

𝜋𝑖 𝑗𝐷 𝑗 −
∑

𝑖∈𝐶1∪𝐴∪{𝑤 }

∑
𝑗 ∈𝑉 ′

𝑖

𝜋𝑖 𝑗𝐷 𝑗 =
∑
𝑗 ∈𝑉𝑤

𝜋𝑖′ 𝑗𝐷 𝑗 −
∑
𝑗 ∈𝑉𝑤

𝜋𝑤𝑗𝐷 𝑗 (9)

∑
𝑖∈𝐶1∪𝐵

∑
𝑗 ∈𝑉𝑖

𝜋𝑖 𝑗𝐷 𝑗 −
∑

𝑖∈𝐶1∪𝐵∪{𝑤 }

∑
𝑗 ∈𝑉 ′

𝑖

𝜋𝑖 𝑗𝐷 𝑗 =
∑
𝑗 ∈𝑉𝑤

𝜋𝑖 𝑗𝐷 𝑗 −
∑
𝑗 ∈𝑉𝑤

𝜋𝑤𝑗𝐷 𝑗 (10)
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For each 𝑗 ∈ 𝑉𝑤 , since 𝑃𝑖 𝑗 is a sub-path of 𝑃𝑖′ 𝑗 , we have:

𝜋𝑖′ 𝑗 > 𝜋𝑖 𝑗 (11)

Combining (6), (7), (9), (10), and (11), we have:

Δ𝐹 (𝐴 ∪ {𝑤}) − Δ𝐹 (𝐴) > Δ𝐹 (𝐵 ∪ {𝑤}) − Δ𝐹 (𝐵)

Thus Δ𝐹 (·) is submodular. ■

(a) (b) (c)

Fig. 4. A simple example to describe the proof process. (a) Charging tree𝑇1. (b) The case of 𝐵\𝐴 = {4}. (c) The case of 𝐵\𝐴 = {6}.

We use a simple example given in Fig. 4 to describe the proof process of Theorem 4. The meanings of the numbers in
Fig. 4 are same with Fig. 2. According to 𝐶1 ∪𝐴 and 𝐶1 ∪ 𝐵, we will have two charging forests. Consider that the only
difference of the two charging forests is the charging tree 𝑇1 in Fig. 4(a).

Case 1.1: As shown in Fig. 4(b), let𝑤 = 2, 𝐵\𝐴 = {4}, the energy savings in two cases are the same obviously.
Case 1.2: As shown in Fig. 4(c), Let𝑤 = 4, 𝐵\𝐴 = {6}, we have 𝑉 ′𝑤 = {4, 5} and 𝑉𝑤 = {4, 5, 6}. When we add𝑤 into

𝐶1 ∪𝐴, the energy reduction is (1.2-1)*4+(1.2*1.3-1.3)*2+(1.2*1.4-1.4)*3=2.16. When we add w into 𝐶1 ∪ 𝐵, the energy
reduction is (1.2-1)*4+(1.2*1.3-1.3)*2=1.32<2.16.

Case 2: As shown in Fig. 4(b), let 𝑤 = 6, 𝐵\𝐴 = {4}. When we add𝑤 into 𝐶1 ∪𝐴, the energy reduction is (1.2*1.4-
1)*3=2.04. When we add w into 𝐶1 ∪ 𝐵, the energy reduction is (1.4-1)*3=1.2<2.04.

Based on Theorem 4, we can conclude that the CCRM problem is the problem of submodular set functionmaximization
in the unconstrained setting, which is a well-known NP-hard problem [2]. When the submodular set function is non-
negative, it is known that a randomized linear time algorithm provides a (1/2)-approximation. Unfortunately, Δ𝐹 (·)
can be negative. To circumvent this issue, let ΔF (𝐶2) = Δ𝐹 (𝐶2) + 𝛽𝑛. It is clear that ΔF (𝐶2) ≥ 0 for any𝐶2 ⊆ 𝑉 . Since
𝛽𝑛 is a constant, ΔF (𝐶2) is also submodular. In addition, maximizing Δ𝐹 (·) is equivalent to maximizing ΔF (·).

Therefore, we design the algorithm of Comprehensive Cost Reduction based on the algorithm in [2], as illustrated
in Algorithm 3. We define two position sets 𝑋 and 𝑌 , where 𝑋 is empty and 𝑌 is the set of all possible positions to
add chargers. For each position 𝑤 ∈ 𝑉 \𝐶1, we denote 𝑎 and 𝑏 as the non-negative comprehensive cost reduction of
including𝑤 to 𝑋 and excluding𝑤 from 𝑌 , respectively (Lines 3-4). Then we randomly choose whether to include or
Manuscript submitted to ACM
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Algorithm 3 Comprehensive Cost Reduction

Input: function ΔF (·), charging network𝐺 (𝑉 , 𝐸), charging forest T , energy demand profileD, charger set of charging
forest 𝐶1, unit energy cost 𝛼 , unit deployment cost 𝛽

Output: charger position set 𝑋
1: 𝑋 ← ∅; 𝑌 ← 𝑉 \𝐶1;
2: foreach𝑤 ∈ 𝑉 \𝐶1 do
3: 𝑎 ← max{ΔF (𝑋 ∪ {𝑤}) − ΔF (𝑋 ), 0};
4: 𝑏 ← max{ΔF (𝑌\{𝑤}) − ΔF (𝑌 ), 0};
5: if 𝑎 = 𝑏 then
6: 𝑋 ← 𝑋 ∪ {𝑤};
7: else
8: with probability 𝑎/(𝑎 + 𝑏) do 𝑋 ← 𝑋 ∪ {𝑤};
9: with probability 𝑏/(𝑎 + 𝑏) do 𝑌 ← 𝑌\{𝑤};
10: end
11: end
12: return 𝑋 ;

exclude𝑤 with probability proportional to the ratio between 𝑎 and 𝑏 (Lines 8-9). Specifically, if 𝑎 = 𝑏,𝑤 is added into 𝑋
definitely.

Since Algorithm 3 is a randomized linear time (1/2)-approximation algorithm for the non-negative submodular set
function maximization in the unconstrained setting, we can obtain the following theorem straightforwardly.

Theorem 5. Comprehensive Cost Reduction is a polynomial and (1/2)-approximation algorithm of the equivalent

problem.

Theorem 6. Let 𝑋 ∗ be the optimal solution of the second sub-problem, and 𝑋 be a solution returned by Comprehensive

Cost Reduction. We have Δ𝐹 (𝑋 ) ≥ 1/2(Δ𝐹 (𝑋 ∗) − 𝑛𝛽).
Proof : According to the definition of ΔF (·), we have:

ΔF (𝑋 ) = Δ𝐹 (𝑋 ) + 𝑛𝛽 (12)

ΔF (𝑋 ∗) = Δ𝐹 (𝑋 ∗) + 𝑛𝛽 (13)

Because Comprehensive Cost Reduction is a 1/2 approximation for the equivalent problem of the second sub-problem,
we have:

ΔF (𝑋 ) ≥ 1/2Δ𝐹 (𝑋 ∗) (14)

By combining (12), (13) and (14), we obtain the theorem. ■

Remark: In each loop, we need to traverse all sensor nodes to get the values of 𝑎 and 𝑏. Such a loop needs to be done
𝑛 times at most. Therefore, the time complexity of Comprehensive Cost Reduction is 𝑂 (𝑛2).

5 PERFORMANCE EVALUATION

In this section, we perform simulations to evaluate the performance of our proposed algorithm.

5.1 Simulation Setup

We compare our solution (termed Comprehensive Optimization for briefness) with following two benchmark algorithms:
Manuscript submitted to ACM
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• CFI (Charging Forest Initialization): CFI is the Stage 1 of proposed solution, and the algorithms have been given in
Section 4.2. CFI adopts the modified Prim algorithm (Algorithm 2) to construct charging trees for every position,
and then selects the charging tree with the most sensor nodes greedily until all sensor nodes are covered by the
selected charging trees.
• IAASA (Improved AASA) [25]: We modify the AASA in [25] by removing the efficiency threshold and adding the
energy capacity constraint such that the algorithm can deal with our system model. IAASA adopts the modified
Prim algorithm (Algorithm 2) to construct charging trees for every position, and then selects the charging tree
with the lowest average comprehensive cost (the ratio of comprehensive cost to the size of charging tree) greedily
until all sensor nodes are covered by the selected charging trees.

For the simulations, we distribute sensor nodes in a 20𝑚×20𝑚 square area to simulate the dense WRSN environment
of precision agriculture. There may be different kinds of sensors in a 400 square meter piece of farmland to accurately
detect the condition of the piece of farmland. We set 𝑛 = 100, 𝑟 = 2𝑚, 𝐷MAX = 150𝐾𝐽 , 𝛼 = 0.5, 𝛽 = 2.5 as the default
setting, respectively. In our simulations, one unit of energy is 1𝐾𝐽 . In addition, the energy demand of each sensor node
is randomly selected in [0.8𝐾𝐽, 1.2𝐾𝐽 ]. For any sensor nodes 𝑎, 𝑏 ∈ 𝑉 , the loss coefficient is calculated based on [19]:

𝜋𝑎𝑏 =


1, 𝑎 = 𝑏

16(𝑑𝑎𝑏/
√
𝑙𝑎𝑙𝑏 )6

𝑄𝑎𝑄𝑏

, 𝑑𝑎𝑏 ≤ 𝑟, 𝑎 ≠ 𝑏

∞, 𝑑𝑎𝑏 > 𝑟, 𝑎 ≠ 𝑏

(15)

where 𝑄𝑎 and 𝑄𝑏 are the quality factors of two resonators. 𝑙𝑎 and 𝑙𝑏 are the radii of coils. 𝑑𝑎𝑏 is the distance between
𝑎 and 𝑏. For our simulations, we set all quality factors as 1000 and all coil radii as 0.1m, although Comprehensive

Optimization does not impose the assumption of homogeneous sensor nodes. Moreover, we consider 𝑑𝑎𝑏 >> 𝑙𝑎 and
𝑑𝑎𝑏 >> 𝑙𝑏 to guarantee 𝜋𝑎𝑏 ≥ 1. According to [19], the conditions for the validity of the model given by equation (15)
are 𝑑𝑎𝑏 ≥ 4.8𝑙𝑎 and 𝑑𝑎𝑏 ≥ 4.8𝑙𝑏 . In our simulations, we divide the square area into grids with side length 0.8𝑚, and
then randomly deploy the sensor nodes on the intersections of the grids to ensure that the distance between any two
sensor nodes satisfies that 𝜋𝑎𝑏 is always greater than or equal to 1.

We will vary the value of the key parameters to explore the impacts on all three algorithms. All simulations are run
on a Windows machine with Intel(R) Core(TM) i5-8300H CPU and 8 GB memory. Each measurement is averaged over
100 instances.

5.2 Charger Deployment

We first show the charger deployment for 150 sensor nodes of all three algorithms in 20𝑚 × 20𝑚 square area with
default setting. We do not use the default number of sensor nodes. This is because with more sensor nodes, we can
clearly observe the differences of three algorithms. Fig. 5(a), Fig. 5(b), and Fig. 5(c) depict the output of CFI, IAASA, and
Comprehensive Optimization, respectively. We can see that CFI, IAASA, and Comprehensive Optimization construct 61,
69, and 108 charging trees, respectively. This means Comprehensive Optimization adds 47 chargers in the Stage 2 to
reduce the Comprehensive cost further.

5.3 Impact of Number of Sensor Nodes

Then we change the number of sensor nodes from 25 to 150, and measure the number of chargers, energy consumption,
and comprehensive cost of all three algorithms. We can see from Fig. 6(a) that the number of chargers of all three
Manuscript submitted to ACM



833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Optimizing Comprehensive Cost of Charger Deployment in Multi-hop Wireless Charging 17

0 4 8 12 16 20

0

4

8

12

16

20

(a)

0 4 8 12 16 20

0

4

8

12

16

20

(b)

0 4 8 12 16 20

0

4

8

12

16

20

(c)

Fig. 5. Charger deployment. The red points represent the positions of chargers. The black points represent the positions without
chargers. The sensor nodes of charging trees are connected by blue lines. (a) CFI. (b) IAASA. (c) Comprehensive Optimization.

algorithms increases. This is because the energy demand increases, and the energy capacity is fixed. Therefore, more
chargers are needed to satisfy the energy demands of all sensor nodes. The number of chargers of Comprehensive

Optimization is much more than that of CFI and IAASA , because Comprehensive Optimization tends to reduce the
energy consumption by increasing chargers. We can see from Fig. 6(b) that the energy consumption of all algorithms
also increases and Comprehensive Optimization can obtain the least energy consumption. Although Comprehensive

Optimization increases 47.73% and 37.58% of the number of chargers on average, comparing with CFI and IAASA,
respectively, our algorithm reduces 73.83% and 55.98% of energy consumption on average, comparing with CFI and
IAASA, respectively.

As shown in Fig. 6(c), IAASA reduces 28.59% of comprehensive cost on average, comparing with CFI, because
IAASA selects the charging trees based on the average comprehensive cost. However, Comprehensive Optimization

always outputs the lowest comprehensive cost, and reduces 44.08% and 21.46% of comprehensive cost on average,
comparing with CFI and IAASA, respectively. In addition, the comprehensive cost of designed algorithm does not
increase dramatically with the increase of number of sensor nodes. When there are 150 sensor nodes, the designed
algorithm decreases 46.62% and 12.56% of comprehensive cost on average comparing with CFI and IAASA, respectively.
Our algorithm has great scalability in the aspect of comprehensive cost.
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Fig. 6. Impact of number of sensor nodes. (a) Number of chargers. (b) Energy consumption. (c) Comprehensive cost.
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5.4 Impact of Energy Capacity of Charger

We increase the energy capacity of charger from 75 to 200, and investigate the impact on three algorithms. As shown
in Fig. 7(a), the number of chargers of CFI and IAASA decreases distinctly. This is because they can construct larger
charging trees when the energy capacity increases. However, the number of chargers Comprehensive Optimization

maintains stable because Comprehensive Optimization adds chargers to decrease the comprehensive cost.
We can see from Fig. 7(b) that the energy consumption of CFI and IAASA increases markedly. When 𝐷𝑀𝐴𝑋 =

200𝐾𝐽 , the energy consumption of CFI and IAASA increases by 86.03% and 54.15% respectively, comparing with
the energy consumption when 𝐷𝑀𝐴𝑋 = 75𝐾𝐽 . This is because the decrease of chargers increases the energy loss.
However, Comprehensive Optimization can maintain stable energy consumption and reduce 76.05% and 55.68% of energy
consumption on average comparing with CFI and IAASA, respectively.

We can see from Fig. 7(c) that the comprehensive cost of CFI and IAASA increases markedly. As a contrast, the
comprehensive cost of Comprehensive Optimization increases rather slowly. Comprehensive Optimization always obtains
the lowest comprehensive cost, and reduces 48.93% and 23.35% of comprehensive cost on average, comparing with CFI

and IAASA, respectively.
Overall, CFI and IAASA is sensitive to energy capacity of charger, however, Comprehensive Optimization is insensitive

to the change of energy capacity. This verifies the strong adaptivity of designed algorithm to various real scenarios.
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Fig. 7. Impact of energy capacity of charger. (a) Number of chargers. (b) Energy consumption. (c) Comprehensive cost.

5.5 Impact of Energy Demand of Sensor Node

We increase the energy demand of sensor node from [0.4, 0.8] to [2.4, 2.8], and investigate the impact on three algorithms.
As shown in Fig. 8(a), the number of chargers of three algorithms increases since more energy is needed. However,
in Fig. 8(b), the energy consumption of CFI decreases at the beginning and then increases. This is because when the
energy demand is large, a charging tree can only cover a few sensor nodes, and the energy loss in transmission becomes
smaller. However, even if the number of sensor nodes in the charging tree reduces, the total energy consumption will
still increase when the energy demand of each sensor node further increases. Accordingly, the comprehensive cost of
CFI in Fig. 8(c) shows same trend. We can see from Fig. 8(c), on average, Comprehensive Optimization reduces 57.55%
and 34.43% of comprehensive cost, comparing with CFI and IAASA, respectively.
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Fig. 8. Impact of energy demand of sensor node. (a) Number of chargers. (b) Energy consumption. (c) Comprehensive cost.

5.6 Impact of Unit Energy Cost

Moreover, we change the unit energy cost from 0.2 to 1.2 to simulate the possible market price relation between energy
consumption and charger deployment. We can see from Fig. 9(a) and Fig. 9 (b) that the change of unit energy cost does
not impact CFI and IAASA, which means that the benchmark algorithms are insensitive to the market change. The
slight changes of the benchmark algorithms are caused by the random parameters. Different from CFI and IAASA,
our algorithm can deploy more chargers to reduce the energy consumption when the unit energy cost is high, thus
the number of chargers of our algorithm increases. When 𝛼 = 1.2, our algorithm increases the number of chargers by
11.99% and reduces the energy consumption by 16.53% comparing with when 𝛼 = 0.2.

We can see from Fig. 9(c) that the comprehensive cost of both CFI and IAASA increases significantly since the energy
consumption of them does not change and unit energy cost increases linearly. On average, our algorithm reduces 51.37%
and 25.73% of comprehensive cost, comparing with CFI and IAASA, respectively.
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Fig. 9. Impact of unit energy cost. (a) Number of chargers. (b) Energy consumption. (c) Comprehensive cost.

5.7 Impact of Unit Deployment Cost

We also change the unit deployment cost from 1 to 3.5. As shown in Fig. 10(a) and Fig. 10(b), the benchmark algorithms
are still insensitive to the market change. However, for our algorithm, the number of chargers when 𝛽 = 3.5 decreases
by 10.18% comparing with the number of chargers when 𝛽 = 1. And the energy consumption when 𝛽 = 3.5 increases
by 37.13% comparing with the energy consumption when 𝛽 = 1. This is because our algorithm tries to mitigate the
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increase in comprehensive cost by reducing the number of chargers, which will inevitably lead to the increase in energy
consumption. We can see from Fig. 10(c) that, on average, our algorithm reduces 52.46% and 27.03% of comprehensive
cost, comparing with CFI and IAASA, respectively.
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Fig. 10. Impact of unit deployment cost. (a) Number of chargers. (b) Energy consumption. (c) Comprehensive cost.

5.8 Comparison with Optimal Solution

We conduct a small-scale simulation in a square area 6𝑚 × 6𝑚 to compare our algorithm with optimal solution of
CMCF problem. In order to make the simulations more realistic, we change the coil radii from 0.1𝑚 to 0.08𝑚 and the
energy capacity of charger from 150𝐾𝐽 to 30𝐾𝐽 to adapt to the small-scale environment. By enumerating all possible
cases, we can find the optimal solution. Since the feasible solution must be a charging forest, the number of edges will
not exceed 𝑛 − 1 when the number of sensor nodes is 𝑛. Given a graph 𝐺 (𝑉 , 𝐸), if there are ℎ edges in the graph, the
possible edges will only be selected from these edges. Thus, the maximum number of edges in the charging forest is
𝑤 = min{ℎ, 𝑛 − 1}. Without considering the energy constraint, there are at most

∑
𝑧=0,1,...,𝑤

(ℎ
𝑧

)
charging forests. For a

certain forest with 𝑧 edges, the number of chargers is 𝑛 − 𝑧, and it is easy to find locations of the chargers to minimize
the energy consumption of the charging forest in order to minimize the comprehensive cost of the charging forest. By
enumerating all the cases, the optimal solution can be found from the feasible solutions, which satisfy the constraints.
As shown in Fig. 11, We can see that our algorithm only increases 17.65% of the comprehensive cost comparing with
Optimal Solution on average.

5.9 Running Time

We conduct the large-scale simulations to compare the running time of our algorithm with that of CFI and IAASA

and the small-scale simulations to compare the running time of our algorithm with that of Optimal Solution. In the
larger-scale simulations, we can see from Fig. 12(a) that our algorithm can output the solution in 0.85 seconds when
there are 150 sensor nodes, thus shows great scalability. We can see from Fig. 12(b) that Optimal Solution takes 4.5
seconds even for 20 sensor nodes. On average, our algorithm reduces 71.08% of running time comparing with Optimal

Solution.

6 DISCUSSION

In this section, we discuss some practical issues when implementing the multi-hop wireless charging, including charging
scheduling, partial charging, and robustness.
Manuscript submitted to ACM



1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Optimizing Comprehensive Cost of Charger Deployment in Multi-hop Wireless Charging 21

10 12 14 16 18 20

Number of sensor nodes (n)

20

30

40

50

60

70

80

C
o
m

p
re

h
en

si
v
e 

co
st

CFI

IAASA

Comprehensive Optimization

Optimal Solution

Fig. 11. Comparison with optimal solution.
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Fig. 12. Running time. (a) Large-scale simulations. (b) Small-scale simulations.

Charging scheduling. Although the multi-hop wireless charging may improve charging efficiency, it does not
always deduces the charging time comparing with the single-hop wireless charging because the charging processing
should be performed sequentially. Moreover, to avoid the “conflict” shown in Introduction section, some charging tasks
cannot be performed simultaneously. Therefore, the charging schedule is needed in multi-hop wireless charging. Since
the charging forest and the energy demand of each sensor node are known, it is possible to schedule the charging
tasks and calculate the accurate charging time based on the designed schedule. A promising approach is to maintain a
conflict graph for the transmitters which are ready to perform the charging tasks, and use the classic graph coloring
algorithm [29] to select a set of transmitters with same color to perform the discharge tasks at each time. Another way
is to employ the classic CSMA/CD [18] as the conflict detection protocol to avoid the “conflict”. However, it is hard to
calculate the accurate charging time if we use conflict detection protocol.

Partial charging. In our paper, the energy demands of all sensor nodes should be satisfied. Theoretically, the energy
demand of each sensor node can be satisfied by partial charging of several times from multiple chargers using multi-hop
wireless charging. We discuss the partial charging for our system model as follows: First, since the sensor nodes can be
charged by multiple chargers, there will be overlap among charging trees, thus, the charger deployment is complicated;
Second, although the energy cost could be reduced by partial charging, more charging trees are needed, thus, the
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deployment cost increases. Therefore, the mixing of partial charging with multi-hop wireless charging is not always
better than that with full charging in terms of comprehensive cost; Moreover, more charging trees aggravate the possible
“conflict”, thus, the charging scheduling is complicated, and more charging time is needed.

Robustness. Another important problem in actual charging is that some sensor nodes may fail. We cAnother
important problem is the robustness in multi-hop wireless charging. When some sensor nodes fail to transfer energy,
the energy demands of downstream sensor nodes cannot be fulfilled, thus, the self-recovery mechanism is necessary.
When the failure happens, we can construct a new charging network as follows: The sensor nodes with more energy
than their energy demands are regarded as chargers. The energy demands of sensor nodes whose energy demands
are fulfilled are set as zero. The failure sensor nodes are removed from the charging network. Then we can perform
the Charging Forest Initialization (Algorithm 1) to construct the charging forest based on the new charging network.
An illustration of the self-recovery mechanism has been given in Fig. 13. Initially, there are two charging trees where
the rectangles represent the roots of charging trees. We consider the failure happens at this moment, and then a new
charging network is generated, where the yellow nodes represent the failure sensor nodes. The blue nodes represent the
sensor nodes with more energy than their energy demands. The pink nodes represent the sensor nodes whose energy
demands are fulfilled. The green nodes represent the sensor nodes whose energy demands are not fulfilled. Then a new
charging forest based on the new charging network can be constructed through Charging Forest Initialization. Note that
due to the existence of failure sensor nodes, some charging paths will be lost, thus, the energy demands of all sensor
nodes may not be fully satisfied.

Fig. 13. Illustration of the self-recovery mechanism.

7 CONCLUSION

In this paper, we have defined a new metric, comprehensive cost, to measure the actual total economic cost for charger
deployment in multi-hop wireless charging. We have presented a multi-hop wireless charging model and formulated
the problem to minimize the comprehensive cost with energy capacity constraint of chargers. Due to the hardness
of the original problem, we have designed a two-stage solution. The first stage aims to find the minimum number of
chargers that can cover all sensor nodes with energy capacity constraint. We have proposed a greedy algorithm for the
first stage. In the second stage, we have formulated the problem to maximize the reduction of comprehensive cost by
adding chargers to the solution obtained from the first stage. We have shown that this problem is a submodular set
function maximization problem in the unconstrained setting, which can be solved by a 1/2-approximation randomized
linear time algorithm for its equivalent problem. Through extensive simulations, we demonstrate that the proposed
Manuscript submitted to ACM
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algorithm shows significant superiority in terms of comprehensive cost and can reduce the comprehensive cost by
57.55% comparing with the benchmark algorithms.
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