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Abstract—Wireless Power Transmission (WPT) has been widely used to replenish energy for wireless rechargeable sensor networks.
This paper concerns the fundamental issue of robust fault-tolerant placement of wireless chargers for directional charging. Following
the general directional charging model, we formulate the Charger Placement for Robust Coverage (CPRC) problem, which has
continuous and infinite constraints, for resisting the wireless charger failure. We transform the problem to the equivalent integer program
problem without performance loss by area partition and dominating strategy extraction. We show that the greedy algorithm achieves the
logarithmic approximation ratio. We further formulate the Charger Placement for Robust Utility (CPRU) problem for resisting the sensor
node failure. This problem also has continuous and infinite constraints. We transform the problem to the combinational optimization
problem with finite strategy space through the techniques of charging power approximation, area discretization and dominating strategy
extraction. We present the algorithm, which utilizes the combination of binary search and greedy algorithm, to solve the CPRU
problem. We conduct both simulations and field experiments to validate our theoretical results. The simulation results show that the
proposed algorithms for CPRC and CPRU can outperform comparison algorithms by at least 17.48% and 21.15%, respectively.

Index Terms—robustness, fault-tolerant, directional charging, wireless power transfer, approximation algorithm.
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1 INTRODUCTION

W IRELESS Power Transfer (WPT) technology has been
developed rapidly in recent years. Wireless Power

Consortium (WPC), an organization that aims to promote
worldwide compatibility of all wireless chargers and wire-
less power sources, has more than 400 member companies
in 2021 all over the world, including Apple Inc, General
Electric, General Motors, Google and so on. According to
the recent report of WPC, WPT technology has been used in
many applications such as laptops, tablets, drones, robots,
connected cars and the intelligent cordless kitchens. There
have been more than 8,000 WPT products by 2020, including
wireless charging pad, car wireless charger, desktop stand
and so on [1]. Furthermore, WPT technology has been used
in natural disaster relief and hazardous environment explo-
ration [2], wireless sensing platform [3, 4], public transport
[5, 6], and underwater high-power transfer system [7]. In
2020, the market of WPT has grown to 17.04 billion [8].

There have been a large body of works on static wire-
less charger placement or scheduling [9-11], and most of
them considered the placement of omnidirectional wireless
chargers. In practice, most of WPT products have directional
antennas [12]. The directional antenna can radiate or receive
greater power in specific directions, providing improved
performance over the omnidirectional antenna [13]. Based
on the experiments in [14], using directional antennas can
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achieve performance gain by three or more times of that
using omnidirectional antennas.

However, few of them considered the robustness of
charger placement. Robustness is the ability of the system
to survive under abnormal and dangerous conditions. Dai et
al. [15] studied the robustly safe charging problem that con-
sidered the jitter of aroused Electromagnetic Radiation (EMR)
of wireless chargers. Wang et al. [16] studied the robustly
charging power problem while taking the charging power
jitter into consideration. However, they did not consider
the robustness for resisting system failures of both sensing
network and charging network.

Both wireless chargers and sensor nodes have a large
number of electronic components [17], which may break
down due to various failures, such as packaging failures,
contact failures, printed circuit board failures, relay failures
and so on [18]. Further, the external environment may also
result in system failures. For example, lightning can create
an electromagnetic pulse energy and damage the wireless
chargers or sensor nodes by generating over-voltage and
power surges. The dust also affects the reliability of printed
circuit board assemblies (PCBAs) [19]. Moreover, human and
non-human failures can occur due to vibration, aging, cor-
rosion, moisture, heat and cold, and bump [20].

In this paper, we study the problem of robust fault-
tolerant placement of directional wireless chargers for resist-
ing both wireless charger failure and sensor node failure. For
the first case, we expect that each sensor node can receive
non-zero power from multiple chargers. Thus, the failure
of the minority of chargers cannot influence the whole
charging system because the sensor nodes can be charged by
other chargers. For the second case, we observe that sensor
nodes are deployed redundantly and some sensor nodes
perform the same sensing task in most sensor networks.
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Thus, we expect to distribute the replenished energy evenly
among the sensor nodes. In other words, the objective is to
maximize the minimum of charging utility of sensor nodes.
By this way, the failure of the minority of sensor nodes
cannot influence the whole sensing system because the other
sensor nodes that perform the same sensing task are still
working.

The main technical challenges are summarized as fol-
lows. First, the chargers can be placed anywhere of a 2D
plane with any orientation in [0, 2π). Thus the placement
strategy space is continuous and infinite. Second, following
the general charging model, the charging power is nonlinear
with distance. Thus the problem of maximizing the min-
imum charging utility is essentially nonlinear. Moreover,
maximizing the minimum of multiple set functions is not
submodular, even the set functions are submodular. This
brings the challenge to our optimization problem.

The main contributions of our work are summarized as
follows:

• To the best of our knowledge, this is the first work to
study the issue of robust fault-tolerant placement of
wireless chargers.

• We formulate the Charger Placement for Robust Cover-
age (CPRC) problem for resisting the wireless charger
failure and transform the problem to the equivalence
integer program problem without performance loss
through area partition and dominating strategy ex-
traction. We show that the greedy algorithm can hold
the logarithmic approximation ratio for our CPRC
problem.

• We formulate the Charger Placement for Robust Utility
(CPRU) problem for resisting the sensor node failure.
This problem has continuous and infinite constraints.
We transform the problem to the combinational op-
timization problem with finite strategy space by
charging power approximation, area discretization
and dominating strategy extraction.

• We transform the reformulated CPRU problem, and
solve the problem of maximizing the minimum
of multiple submodular functions with cardinality
lower bound through integrating approximation al-
gorithm for submodular covering problem and bi-
nary search.

• We conduct extensive simulations and field exper-
iments. The results show that the proposed algo-
rithms for CPRC and CPRU can outperform the other
algorithms by at least 17.48% and 21.15%, respec-
tively.

The rest of this paper is organized as follows. We review
the state-of-art research in Section 2. We present our system
model and formulate the problems in Section 3. The details
of algorithm design for CPRC problem and CPRU prob-
lem are presented in Section 4 and Section 5, respectively.
Extensive simulations are conducted in Section 6. Field
experiments are shown in Section 7. We discuss the mobility
problem of wireless chargers in Section 8 and conclude the
paper in Section 9.

2 RELATED WORK

Wireless charging technologies. There have been many
wireless charging technologies, including Radio Frequency
(RF) [14, 21], magnetic resonance [22] and inductive cou-
pling [23], etc. In addition, Simultaneous Wireless Infor-
mation and Power Transfer (SWIPT) [24, 25, 26], which
can transmit signals and energy simultaneously, has also
been widely studied in recent years. Boshkovska et al. [24]
proposed a practical non-linear energy harvesting model
and designed a resource allocation algorithm for the SWIPT
system. According to energy harvesting model of [24], Ku-
mar et al. [25] explored the performance of a SWIPT en-
abled cooperative Cognitive Radio Sensor Network (CRSN)
over generalized Nakagami-m faded channels. However, the
beamforming vector and the channel matrix between the
transmitter and receiver are needed to calculate the power.
In the charging system of this paper, there are multiple
transmitters and receivers with different charging distance,
thus, a large number of tests are needed, which largely
affects the applicability in large-scale networks. Baek et al.
[26] maximized the lifetime of wireless charging sensor
networks based on SWIPT and the energy harvesting model.
However, their model is not a directional charging model. In
our paper, the orientation of charger is an important strategy
of charger placement. Moreover, our scenario only involves
charging and does not involve information transmission.
In addition, the objective of our study is to guarantee or
improve the robustness of charging system for resisting
the sensor node failure or wireless charger failure, and
the energy harvesting model is not needed. Therefore, we
use the widely used classical RF wireless charging model
from [14], which can be conveniently characterized through
sampling and has been verified in our field experiments.

Omnidirectional wireless charger placement. Wu et al.
[22] presented a multi-hop wireless charging model and
formulated the problem of minimizing the comprehensive
cost such that the energy demand of all sensor nodes can be
fulfilled by the energy capacitated chargers. In [27], Wu et
al. studied the placement of multi-hop wireless chargers and
proposed a two-stage approach to minimize the comprehen-
sive cost. However, both researches adopted magnetic reso-
nance wireless charging technology rather than RF wireless
charging technology. Ding et al. [28] studied the practical
issue of deploying wireless chargers to maximize the total
achieved task utility with limited deployment cost budget.
However, these researches only considered the scenario of
omnidirectional wireless charging, and the charging direc-
tion was not involved.

Directional wireless charger placement. Dai et al. [14]
first presented the techniques to approximate non-linear
charging power and developed dominating coverage set
extraction method to solve the directional wireless charger
placement problem. Ding et al. [29] focused on finding the
strategy for placing wireless chargers from a given candi-
date location set to minimize the total number of placed
chargers such that each sensor node’s energy requirement
can be fulfilled. They addressed the problem under both
omnidirectional and directional charging models. Ding et
al. [30] also investigated the cost-minimum charger place-
ment problem under two typical scenarios in which om-
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nidirectional chargers and directional chargers are used,
respectively. Although these work studied the placement
of directional wireless chargers, they ignored the possible
failures of the sensor nodes and the wireless chargers.

Deploying mobile chargers for static rechargeable de-
vices. Xu et al. [31] utilized the multiple mobile chargers to
speed up charging significantly. The authors formulated a
novel delay minimization problem and used an approxima-
tion algorithm to solve it. In order to maximize charging
utility, Ma et al. [32] utilized a mobile charger to charge
multiple sensor nodes simultaneously under the energy
capacity constraint of the mobile charger. Xu et al. [33]
utilized the mobile charger to charge sensor nodes so that
the sum of lifetimes of sensor nodes is maximized while
the travel distance of the mobile charger is minimized.
However, the above studies did not take the charging cost
into consideration. Priyadarshani et al. [34] proposed a
multi-node charging vehicle scheduling scheme using par-
tial charging model to minimize the travel energy, however,
the robustness cannot be guaranteed.

Robust placement of wireless chargers. In recent years,
some articles studied the robustness of the placement of
wireless charger. Dai et al. [15] scheduled the placement of
chargers so that the total charging utility of all rechargeable
devices was maximized while the probability that EMR
anywhere does not exceed the threshold was not less than
a given confidence. Wang et al. [16] determined the ori-
entations of the wireless chargers to maximize the overall
expected charging utility while taking the charging power
jittering into consideration. Both of them considered the
jitter phenomenon where the EMR or the charging power
varies in a range, rather than remaining constant. Lin et
al. [35] studied the problem of maximizing the charging
utility under specific energy constraints with the presence of
obstacles. However, the robustness problems studied above
are extremely different with that in this paper. In this paper,
we study the fault-tolerant wireless charger placement to
resist both wireless charger failure and sensor node failure,
improving the robustness of sensing system and charging
system.

3 SYSTEM MODEL AND PROBLEM FORMULATION

3.1 System Model
We consider a rechargeable sensor network consisting of
a set of rechargeable sensor nodes S = {s1, s2, ..., sn}
deployed with any orientation in a 2D plane Ω. A set
of wireless chargers O can be placed anywhere with any
orientation in the plane.

Each wireless directional charger has a charging radius D
and a charging angle As. Each sensor node has a receiving
radius D and a receiving angle Ao. Any charger oj ∈ O
with orientation vector −→rθj only charges sensor nodes in a
charging area in the shape of a sector with charging angleAs
and charging radius D. A rechargeable sensor node si with
orientation vector −→rφi only receives power in a receiving
area in the shape of a sector with receiving angle Ao and
the same radius D. As illustrated in Fig. 1, the sensor node
s2 can be charged by wireless charger o1. Nevertheless, the
sensor node s1 cannot be charged by wireless charger o1

since its receiving area does not cover o1.

→rϕ1

Ao

→rϕ2
As

→rθ1

s1

s2

o1

Fig. 1. Directional charging model.

By incorporating the widely accepted empirical direc-
tional charging model [14], the charging power from the
wireless charger oj ∈ O to the sensor node si ∈ S can be
given by

P (si, oj , φi, θj)

=


α

(d(si,oj)+β)2 , d(si, oj) ≤ D,
−−→ojsi · −→rθj − d(si, oj) cos(As/2) ≥ 0,
−−→sioj · −→rφi

− d(si, oj) cos(Ao/2) ≥ 0

0, otherwise
(1)

where d(si, oj) is the distance between sensor node si and
wireless charger oj . φi and θj are the orientations of sensor
node si and placed wireless charger oj , respectively. −→rθj and−→rφi are the unit vectors standing for the orientations of the
charger oj and the sensor si. α and β are two constants
determined by the environment and hardware parameters
of chargers [14, 17].

The fading effect caused by multi-path propagation,
shadowing from obstacles, etc, will lead to power jitter [15].
Although SWIPT [24, 25, 26] has also been widely studied
in recent years, the beamforming vector and the channel
matrix between the transmitter and receiver are needed to
calculate the power, which largely affects the applicability
in large-scale networks. Moreover, SWIPT model is not a
directional charging model. In our paper, the orientation
of charger is an important strategy of charger placement.
In addition, our scenario only involves charging and does
not involve information transmission. Therefore, we use the
widely used classical RF wireless charging model from [14],
which can be conveniently characterized through sampling
and has been verified in our field experiments.

3.2 Problem Formulation
For convenience, we still use oj to denote the position of
charger oj . Let tuple (oj , θj) denote the position oj and
orientation θj of the charger oj , i.e., the placement strategy
of the charger. Let H denote the strategy space, i.e., the set
of all possible placement strategies of chargers. Considering
the fact that the chargers can be placed anywhere with
continuous orientations in [0,2π), the possible strategies are
infinite. Let Hs ⊆ H denote the strategy set of placed
chargers. Further, we define 0-1 variable x(oj , θj) to indicate
whether the placement strategy (oj , θj) is included in Hs,
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i.e., x(oj , θj) = 1 if (oj , θj) ∈ Hs, x(oj , θj) = 0 otherwise.
We define S(oj , θj) as the set of sensor nodes that can
receive non-zero power by the placement strategy (oj , θj).

For resisting the wireless charger failure, we aim to
minimize the number of wireless chargers such that each
sensor node si can receive non-zero power from at least
λi wireless chargers, where λi is the coverage demand
and is determined by the importance of si, e.g., the value,
rareness or urgency of data sensed by si. We define the
CPRC problem as follows:

(P1) min
∑

(oj ,θj)∈H

x(oj , θj) (2)

s.t.
∑

(oj ,θj),si∈S(oj ,θj)

x(oj , θj) ≥ λi, ∀si ∈ S (3)

oj ∈ Ω, 0 ≤ θj < 2π (4)

The constraint (3) ensures that each sensor node si can
receive non-zero power from at least λi wireless chargers.
The constraint (4) ensures that the chargers can be placed
anywhere with any orientation.

For resisting the sensor node failure, we aim to maximize
the minimum charging utility of all sensor nodes with
limited number of chargers. The rechargeable sensor nodes
have the upper bounds of charging power [14] because
they must prevent from the overload that could damage the
sensor nodes [36]. Given the strategy set of placed chargers
Hs, the charging utility for sensor node si is given by:

Ui(Hs) = min{
∑

(oj ,θj)∈Hs

P (si, oj , φi, θj), P
max
i } (5)

where Pmaxi is the maximum charging power of sensor
node si.

The objective is to maximize the minimum charging util-
ity of all sensor nodes. The charging utility under strategy
set Hs is given by:

U(Hs) = minsi∈SUi(Hs) (6)

We formulate the CPRU problem as follows:

(P2) max U(Hs) (7)

s.t. |Hs| ≤ m,Hs ⊆ {(oj , θj)|oj ∈ Ω, 0 ≤ θj < 2π} (8)

The constraint (8) ensures that the number of placed
chargers is not larger than m.

We list the frequently used notations in TABLE 1.

4 SOLUTION FOR CPRC PROBLEM

In this section, we present the algorithm to solve the CPRC
problem.

TABLE 1
Frequently Used Notations

Symbol Description
S,O Set of rechargeable sensor nodes, set of wireless chargers

d(si, oj) Distance between sensor node si and wireless charger oj
m,n Maximum number of wireless chargers, number of

sensor nodes
Ao, As, D

Receiving angle of sensor nodes, charging angle of
wireless chargers, charging radius

P (·) Charging power function

θj , φi
Orientation of wireless charger oj , orientation of
sensor nodes si

α, β Constants in the charging model
H,Hs Strategy space, strategy set of placed chargers

(oj , θj)
Placement strategy of the charger placed in position
oj with orientation θj

S(oj , θj)
Set of sensor nodes that can receive non-zero power
from the placement strategy (oj , θj)

Sp Coverage set of subarea Cp

λi Coverage demand of sensor node si
Pmax
i Maximum charging power of sensor node si

Ui(·), U(·) Charging utility of sensor node si, charging utility
of all sensor nodes

4.1 Hardness and Design Rationale
First of all, we attempt to find an optimal algorithm for
the CPRC problem. Unfortunately, as the following theorem
shows, the CPRC problem is NP-hard.

Theorem 1. The CPRC problem is NP hard.
Proof : We consider the special case of CPRC problem,

where the possible charger placement strategies are finite.
Then the problem changes to finding the least positions
for placing chargers such that each sensor node si can be
covered by λi chargers. This problem is the set multi-cover
problem, where each set can be picked more than once.
Obviously, this problem is a generalization of the well-
known NP-hard set cover problem [37][38]. Since the set
multi-cover problem is NP-hard, the CPRC problem is NP-
hard. �

As shown in Theorem 1, the CPRC problem is essentially
the set multi-cover problem if the strategy space is finite,
and can be solved by the approximation algorithm follow-
ing greedy approach [37][38]. Thus, we first partition the
area into subareas to get finite subareas to place chargers.
Then, we find the dominating strategies for each subarea to
get finite strategies of charger placement. By this way, the
continuous search space of strategies of chargers is reduced
to a limited number of strategies without performance loss.
Finally, the greedy algorithm with approximation ratio of
(lnn + 1) for set cover problem is employed to address the
CPRC problem. We show that the approximation ratio of
greedy algorithm still holds for our CPRC problem.

4.2 Area Partition and Dominating Strategy Extraction
Since a rechargeable sensor node only receives power in a
receiving area in the shape of a sector, we partition the 2D
plane to subareas by the receiving areas of sensor nodes.
As shown in Fig. 2, there are three sensor nodes with three
receiving areas. The 2D plane is partitioned to 7 subareas.

Based on Lemma 5 of [14], we have the following
Lemma.

Lemma 1. The number of partitioned subareas for n uniform
sections is not larger than 5n2 − 5n+ 2.
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Fig. 2. Area partition based on the receiving areas of sensor nodes.

For the CPRC problem, we only need to consider the
coverage relationship between chargers and sensor nodes
in each subarea, which depends on both positions and
orientations of chargers.

To begin with, we give the definition of dominating
strategy.

Definition 1.(Dominating Strategy): Given a set of sensor
nodes S(oj , θj), if there doesn’t exist a strategy (oj′ , θj′) such
that S(oj , θj) ⊂ S(oj′ , θj′), then (oj , θj) is a dominating
strategy.

In what follows, we aim to extract dominating strategies
for each subarea. We first consider the special case where
the subarea becomes a position. We then study the general
case.

(1) Dominating Strategy Extraction for Position Case
For each position, we rotate the orientation of charger

from 0 to 2π widdershins to cover sensor nodes one by one.
We first initialize the orientation of the charger as 0◦. During
the rotating process, if there is some covered sensor node
going to be uncovered, the current strategy consisting of
current orientation and position is marked as a dominating
strategy. And then keep rotating, if there is some covered
sensor node going to be uncovered after a new sensor node
is covered, the current strategy is marked as a dominating
strategy. During the rotating process, if the rotated angle is
larger than 2π, terminate the rotating. Obviously, for any of
unmarked strategies, there must be at least one dominating
strategy, which can cover the same set of sensor nodes.

As illustrated in Fig. 3(a), the rotation starts at 0◦, and the
charger covers s1 and s2. By rotating the charger widder-
shins, s1 goes to be uncovered on the orientation illustrated
in Fig. 3(b). s3 cannot be added in the current covered
set as otherwise {s1, s2} will be missed. Thus, the strategy
illustrated in Fig. 3(b) is a dominating strategy. Then, the
charger keeps rotating and covers new sensor nodes s3 and
s4 sequentially. When s3 goes to be uncovered, the strategy
illustrated in Fig. 3(c) is a dominating strategy. Similarly, the
strategy illustrated in Fig. 3(d) is also a dominating strategy.
Continue the rotating process until the charger rotates for
360◦. Therefore, there are 3 dominating strategies in this
example.

(2) Dominating Strategy Extraction for Subarea Case
First, we give the definition of coverage set of subarea.
Definition 2. (Coverage Set of Subarea): The coverage set Sp

of any subarea Cp are the sensor nodes that can receive non-zero

o1
s1

s2
s3

s4

s5s6

(a)

o1 s1
s2

s3
s4

s5s6

(b)

o1 s1
s2

s3
s4

s5s6

(c)

o1
s1

s2
s3

s4

s5s6

(d)

Fig. 3. Illustration of dominating strategy extraction for position case.

power by a charger in Cp.
Obviously, for any dominating strategy (oj , θj) in sub-

area Cp, S(oj , θj) is a subset of the coverage set of Cp.
The dominating strategy extraction for a give subarea Cp

is illustrated in Algorithm 1. Fig. 4 shows an example of how
the algorithm works. Given the subarea and corresponding
coverage set with six sensors as shown in Fig. 4(a), we
first draw lines passing through each pair of sensor nodes,
such as s1 and s2 in Fig. 4(b), and cross the boundaries
of the subarea at positions o1 and o2, then we obtain two
candidate dominating strategies (o1, θ1) and (o2, θ1) with
S(o1, θ1) = {s1, s2, s3} and S(o2, θ1) = {s1, s2, s3, s6},
respectively. Next, we construct a charging angel As with
two boundaries passing through each pair of sensor nodes
like s3 and s4 as shown in Fig. 4(c), and adjust As
such that the vertex of As lie rightly on the boundaries
of subarea at positions o3 and o4. Then we obtain two
candidate dominating strategies (o3, θ2) and (o4, θ3) with
S(o3, θ2) = {s3, s4, s5} and S(o4, θ3) = {s3, s4, s6}, re-
spectively. Finally, as illustrated in Fig. 4(d), we randomly
choose a position o5 on the boundaries and perform the
algorithm for dominating strategy extraction for position
case to further find three candidate dominating strategies
(o5, θ4), (o5, θ5) and (o5, θ6) with S(o5, θ4) = {s1, s2, s6},
S(o5, θ5) = {s2, s3, s6} and S(o5, θ6) = {s4, s5}, respec-
tively. At the final step, {s1, s2, s3}, {s1, s2, s6}, {s2, s3, s6},
{s4, s5} can be removed as they are subsets of {s1, s2, s3, s6}
or {s3, s4, s5}.

𝑠!

𝑠"

𝑜!
𝑜"

𝑜! , 𝜃!
𝑜" , 𝜃!

𝑠!

𝑠"

s# s$
s%s&

𝑜#
𝑜# , 𝜃$𝑜$ , 𝜃"

s# s$

𝑜$

s#

s&
𝑜%

(a) (b) (c) (d)

Fig. 4. Dominating strategy extraction for a give subarea.

Denote the dominating strategy set obtained from Algo-
rithm 1 by Hf , then we have the following theorem.

Theorem 2. Given any strategy (oj , θj), there must exist
(oj3 , θj3) ∈ Hf such that S(oj3 , θj3) ⊇ S(oj , θj).

Proof : Given a strategy (oj , θj), we move the charger
along the reverse direction of its orientation until reaching
some point oj1 on the boundary of the subarea. Suppose the
obtained strategy is (oj1 , θj1), where θj1 = θj . Obviously,
we have S(oj1 , θj1) ⊇ S(oj , θj).

Then, we fix the position oj1 , and rotate the charger
anticlockwise such that there is at least one sensor node,
say s1, touching the right boundary of the charging area.



6

Algorithm 1 Dominating Strategy Extraction for Subarea
Case
Input: subarea Cp, coverage set Sp
Output: dominating strategy set of subarea Cp

1: for each pairs of sensor node, say s1 and s2, in Sp do
2: Draw a straight line passing through s1 and s2 and

extend the line to intersect with the boundaries of
subarea Cp. Let s1 and s2 lie rightly on its charging
area’s clockwise boundary. Then insert all strategies
under current setting into the candidate dominating
strategy set.

3: Form a charging angel As with two boundaries pass-
ing through s1 and s2, respectively. Adjust As such
that the vertex of As lie rightly on the boundaries of
subarea Cp. Then insert all strategies under current
setting into the candidate dominating strategy set.

4: end for
5: Randomly select a position oj at the boundary of the

subarea, perform the algorithm for dominating strategy
extraction for position case and add the results to the
candidate dominating strategy set.

6: Remove the strategies that are subsets of some domi-
nating strategies in the candidate dominating strategy
set.

Suppose the obtained strategy is (oj2 , θj2), where oj2 = oj1 .
Obviously, we have S(oj2 , θj2) ⊇ S(oj1 , θj1).

Afterwards, we move the charger along the subarea’s
boundaries and change its orientation accordingly, and
guarantee that: (1) the newly obtained strategy (oj3 , θj3)
satisfies S(oj3 , θj3) ⊇ S(oj2 , θj2); and (2) the clockwise
boundary of the charging area must cross s1. Apparently,
(oj3 , θj3) falls into one of the three possible situations as
shown in Fig. 5.

Case 1: At some position oj3 on the boundary of the
subarea, there is some sensor node, e.g., s2 in Fig. 5(a),
that touches the clockwise boundary of the charging area
of (oj3 , θj3).

Case 2: At some position oj3 on the boundary of the
subarea, there is some sensor node, e.g., s3 in Fig. 5(b), that
touches the anticlockwise boundary of the charging area of
(oj3 , θj3).

Case 3: Neither Case 1 nor Case 2 occurs for any position
oj3 on the boundary of the subarea. (as shown in Fig. 5(c)).

The Line 2 of Algorithm 1 corresponds to Case 1. The
Line 3 of Algorithm 1 corresponds to Case 2. In Line 5
of Algorithm 1, randomly selecting a position on the sub-
area’s boundaries and extracting the dominating strategies
for position case can find all the dominating strategies
resulted from Case 3. Thus, we have (oj3 , θj3) ∈ Hf . Since
(oj3 , θj3) ⊇ S(oj2 , θj2) ⊇ S(oj1 , θj1) ⊇ S(oj , θj), we get the
theorem. �

Lemma 2. The number of dominating strategies for any
subarea is O(n2).

Proof : By Algorithm 1, for either Case 1 (Line 2) or
Case 2 (Line 3) in each subarea, the number of candidate
dominating strategies is O(n2) since the number of sensor
node pairs is C2

n = (n(n−1))
2 and each case generates only

O(1) number of candidate dominating strategies. For Case
3 (Line 5), there are O(n) candidate dominating strategies
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Fig. 5. Three situations in the proof of Theorem 2.

since there are at most n sensor nodes in the coverage set
of any subarea. Thus, there are O(n2) dominating strategies
for any subarea. �

After area partition and dominating strategy extraction,
the CPRC problem can be reformulated as:

(P3) min
∑

(oj ,θj)∈Hf

x(oj , θj) (9)

s.t.
∑

(oj ,θj),si∈S(oj ,θj)

x(oj , θj) ≥ λi, ∀si ∈ S (10)

4.3 Approximation Algorithm for CPRC

We present the approximation algorithm for CPRC problem.
Since the strategy space is finite after area partition and
finding dominating orientations, we employ the greedy
algorithm for set cover problem to solve the CPRC problem.

Algorithm 2 Approximation Algorithm for CPRC Problem
Input: strategy space Hf , set of sensor nodes S
Output: strategy set of placed chargers Hs

1: Hs ← ∅;
2: for each si ∈ S do
3: λ′i ← λi
4: end for
5: while

∑
si∈S λ

′
i 6= 0 do

6: (oj , θj)← argmax(oh,θh)∈Hf

∑
si∈S(oh,θh)min{1, λ′i};

7: Hs ← Hs ∪ {(oj , θj)};
8: for each si ∈ S(oj , θj) do
9: λ′i ← λ′i −min{1, λ′i};

10: end for
11: end while

As illustrated in Algorithm 2, the placement strategies
are sorted according to the effective coverage. Given the re-
maining multiplicity of each sensor node λ′i, si ∈ S(oh, θh),
the effective coverage of sensor node si is min{1, λ′i}. The
effective coverage of placement strategy (oh, θh) is defined
as

∑
si∈S(oh,θh)min{1, λ′i}. In each iteration of while-loop

(Lines 5-11), we select the placement strategy with the max-
imum effective coverage in the strategy space Hf (Line 6)
until the coverage can meet the requirement of multiplicity
of each sensor node in S.

Theorem 3. The time complexity of approximation algorithm
for CPRC problem is O(n5

∑
si∈S λi).

Proof : Let |Hf | be the size of strategy space, then
finding placement strategy with the maximum effective
coverage takes O(|Hf |n), where computing the value of
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si∈S(oh,θh)min{1, λ′i} takes O(n) time. Hence, the while-

loop (Lines 5-11) takes O(|Hf |n
∑
si∈S λ

′
i). This is because

the total multiplicities of all sensor nodes is
∑
si∈S λ

′
i, and

each placed charger can achieve at least 1 multiplicity. Based
on Lemma 1 and Lemma 2, the size of Hf is O(n4). Since
the while-loop (Lines 5-11) dominates the whole algorithm,
the time complexity of algorithm for CPRC problem is
O(n5

∑
si∈S λi). �

Since the CPRC problem with finite strategy space is
equivalent to the set multi-cover problem, we have the
following theorem.

Theorem 4. The algorithm for CPRC problem achieves the
approximation ratio of Hn, where Hn is harmonic function.

5 SOLUTION FOR CPRU PROBLEM

In this section, we present the algorithm to solve the CPRU
problem defined in (P2).

5.1 Hardness and Property of CPRU Problem
Theorem 5. The CPRU problem is NP hard.

Proof : Since the objective function of CPRU problem is
nonlinear and the strategy space is infinite, CPRU falls in
the realm of nonlinear programming, which is NP-hard [39].

�
To analyze the property of CPRU problem, we give the

following definition.
Definition 3. (Nonnegative, monotone, and submodular

function): Given a finite ground set V , a real-valued set function
defined as f : 2V → R, f is called nonnegative, monotone,
and submodular if and only if it satisfies following conditions,
respectively:

f(∅) = 0 and f(A) ≥ 0 for all A ⊆ V ;
f(A) ≤ f(B) for all A ⊆ B ⊆ V ;
f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) for any A,B ⊆ V

or equivalently: f(A ∪ {e}) − f(A) ≥ f(B ∪ {e}) − f(B),
A ⊆ B ⊆ V , e ∈ V \B.

Theorem 6. For any sensor node si, the function Ui(·) is a
nonnegative, monotone, and submodular function.

Proof : For any A ⊆ B ⊆ V and (oj , θj) ∈ V \B, we have
following two cases:

Case 1: Ui(A) = Pmaxi .
Because A ⊆ B, we have Ui(B) = Umaxi . Thus, Ui(A ∪

{(oj , θj)})− Ui(A) = Ui(B ∪ {(oj , θj)})− Ui(B) = 0.
Case 2: Ui(A) < Umaxi .
We further have following two subcases:
Case 2.1: Ui(B) = Umaxi .
Because the monotonicity of function Ui(·), we have:

Ui(A∪{(oj , θj)})−Ui(A) ≥ Ui(B∪{(oj , θj)})−Ui(B) = 0.
Case 2.2: Ui(B) < Umaxi .
We have: Ui(A ∪ {(oj , θj)}) − Ui(A) =

min{P (si, oj , φi, θj), P
max
i − Ui(A)}, Ui(B ∪ {(oj , θj)}) −

Ui(B) = min{P (si, oj , φi, θj), P
max
i − Ui(B)}. We discuss

the following three subcases:
Case 2.2.1: P (si, oj , φi, θj) ≤ Pmaxi − Ui(B).
Because the monotonicity of function Ui(·), we have

P (si, oj , φi, θj) ≤ Pmaxi − Ui(A). Thus, we have Ui(A ∪
{(oj , θj)}) − Ui(A) = Ui(B ∪ {(oj , θj)}) − Ui(B) =
P (si, oj , φi, θj).

Case 2.2.2: Pmaxi − Ui(B) < P (si, oj , φi, θj) < Pmaxi −
Ui(A).

We have Ui(A∪{(oj , θj)})−Ui(A) = P (si, oj , φi, θj) >
Ui(B ∪ {(oj , θj)})− Ui(B).

Case 2.2.3: Pmaxi − Ui(A) < P (si, oj , φi, θj).
We have Ui(A ∪ {(oj , θj)})− Ui(A) = Pmaxi − Ui(A) ≥

Pmaxi − Ui(B) = Ui(B ∪ {(oj , θj)}) − Ui(B). where the
inequation relies on the monotonicity of function Ui(·).

Therefore, for each sensor node si ∈ S, Ui(·) is a
nonnegative, monotone and submodular function. �

5.2 Approximation of Charging Power

Let P (d) denote the power that a sensor node receives from
a charger with distance d. We use multiple piecewise con-
stant segments P̃ (d) to approximate the charging power. Let
l(0), l(1), ..., l(K) be the end points of K constant segments
in an increasing sequence, where l(0) = 0 and l(K) = D.
Then the piecewise constant function can be defined as

P̃ (d) =


P (l(1)), d = l(0)

P (l(k)), l(k − 1) < d ≤ l(k), k = 1, 2...,K

0, d > l(K)
(11)

For example, we set K = 2 in Fig. 6. Thus, the charging
area is partitioned into 2 subareas, and any points in the
same subarea have the same power.

Charger
Subarea 1

l(1)

Subarea 2

l(2)

P

d
l(0)

Fig. 6. Approximation of charging power, whereK = 2. The black dotted
curves stand for the approximated value of charging power.

Let ε denote the constant threshold to ensure that the ap-
proximation error is not larger than ε. We have the following
theorem.

Theorem 7. Let l(0) = 0, l(K) = D, and l(k) = β((1 +

ε)k/2 − 1), k = 1, ...,K − 1, (therefore K =
⌈
ln(P (0)/P (D))

ln(1+ε)

⌉
).

For any d ≤ D, we have

P (d)

P̃ (d)
≤ 1 + ε (12)

Proof : We consider the following two cases.
Case 1: d = l(0) = 0.
P (d)

P̃ (d)
= P (0)

P (l(1)) = α/β2

α/(β((1+ε)1/2−1)+β)2
= 1 + ε.

Case 2: l(k − 1) < d ≤ l(k), k = 1, 2, . . . ,K.
P (d)

P̃ (d)
= P (d)

P (l(k)) ≤
P (l(k−1))
P (l(k)) = α/(β((1+ε)(k−1)/2−1)+β)2

α/(β((1+ε)k/2−1)+β)2
=

(1+ε)k

(1+ε)k−1 = 1 + ε. �
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5.3 Area Discretization

In this subsection, we bound the size of strategy space of
charger placement by area discretization. We draw con-
centric circles with radii l(1), l(2), ..., l(K) centered at each
sensor node, respectively. Due to geometric symmetry, if
a charger is located between two successive circles with
radii l(k) and l(k + 1) with respect to a sensor node, the
sensor node must also lie between two circles with radii
l(k) and l(k + 1) centered at the charger, leading to a
constant approximated charging power if the charger covers
the sensor node.

By this way, the receiving area of each sensor node is
divided to K subareas, and the chargers placed in the same
subarea have the same approximated charging power to the
sensor node. We combine the charging power discretization
with the area partition presented in Section 4.2. Then the
maximum number of candidate positions can be bounded.
As illustrated in Fig. 7, there are 2 sensor nodes, and each
receiving area of sensor node is partitioned into 3 subareas.
Therefore, there are total 11 subareas in this example.

s1

s2

1

2
3

4

5

8

6

9

10

11
7

Fig. 7. Area discretization for 2 sensor nodes with K = 3.

Lemma 3. The number of partitioned subareas is no more
than 5K2n2 − 5Kn+ 2, where K =

⌈
2ln((D+β)/β)

ln(1+ε)

⌉
.

Proof : Since the receiving area of each sensor node is
divided to K subareas, there are totally Kn sections which
may intersect with each other in the whole 2D plane. Fol-
lowing Lemma 1 and Theorem 7, we can conclude that the
number of partitioned subareas is not larger than 5K2n2 −
5Kn+ 2, where K =

⌈
ln(P (0)/P (D))

ln(1+ε)

⌉
=

⌈
2ln((D+β)/β)

ln(1+ε)

⌉
. �

Let Ũi(Hs) and Ũ(Hs) denote the approximated charg-
ing utility of sensor node si and approximated charging util-
ity of all sensor nodes for the strategy set Hs, respectively.
We have

Ũ(Hs) = minsi∈SŨi(Hs) (13)

Ũi(Hs) = min{
∑

(oj ,θj)∈Hs

P̃ (si, oj , φi, θj), P
max
i } (14)

where P̃ (si, oj , φi, θj) is the approximation of
P (si, oj , φi, θj).

Then, we perform dominating strategy extraction for the
discretized subareas. We still denote the strategy space by
Hf , and the CPRU problem (P2) can be reformulated as:

(P4) maxŨ(Hs) (15)

s.t. |Hs| ≤ m, Hs ⊆ Hf (16)

5.4 Algorithm Design

Obviously, P4 is a combinational optimization problem.
Specifically, Ũi(Hs) is a nonnegative, monotone, and sub-
modular function according to Theorem 6. Therefore, P4 is
to maximize the minimum of multiple submodular func-
tions with cardinality lower bound.

We first transform P4 to P5:

(P5) max k (17)

s.t. Ũi(Hs) ≥ k, ∀si ∈ S, |Hs| ≤ m,Hs ⊆ Hf (18)

where k ≥ 0 is the lower bound of minsi∈SŨi(Hs). Obvi-
ously, P4 and P5 are equivalent.

It is still difficult to solve P5 directly. We formulate P6
to find the feasible solutions of P5. For any given value of
k, we find the smallest set Hk = arg minHs⊆Hf

|Hs| by P6.
If the size of Hk is not larger than m, then |Hk| satisfies
the constraints of P5. In other words, this k is a feasible
solution of P5. Thus, if we search all possible solutions, k∗ =
max|Hk|≤mk is the optimal solution of P5.

(P6) minHs⊆Hf
|Hs| (19)

s.t. Ũi(Hs) ≥ k, ∀si ∈ S (20)

For any given value of k, if there exists the optimal
algorithm or approximation algorithm of P6, we can use
binary search to find the maximum value of k under the
constraints for given search accuracy. In each round of
binary search, for a given k, we solve P6 to find the best
Hk, and check whether this k can satisfy the constraints in
P5, so as to determine the direction of the next binary search
round. Thus, we turn our attention to P4.

To solve P4, We use the constraint Uk(Hs) =
Uk(Hf ) to replace the constraint of P6, where Uk(Hs) =
1
n

∑
si∈S Ûi,k(Hs), Ûi,k(Hs) = min{Ũi(Hs), k}, k > 0.

Each of Ûi,k(·) is monotonic submodular because it is a trun-
cated function of its corresponding monotonic submodular
function Ũi(Hs). Uk(Hs) is also monotonic submodular
since the accumulation combination of monotonic submod-
ular functions is also a monotonic submodular function [40].

Obviously, Uk(Hs) = k if and only if minsi∈SŨi(Hs) ≥
k, which indicates that P6 can be redefined to find the
smallest strategy set Hs satisfying Uk(Hs) = k. From the
monotonicity of Uk(Hs) and the value range of k, we have
k = Uk(Hf ). Then, we can reformulate P6 as:

(P7) minHs⊆Hf
|Hs| (21)

s.t. Uk(Hs) = Uk(Hf ) (22)

P7 is an instance of submodular covering problem [40],
which is NP-hard. Fortunately, as shown in Theorem 8, the
greedy algorithm can achieve the guaranteed approxima-
tion for submodular covering problem [41].

Theorem 8. Given a monotonic submodular function F on
a ground set Ω, the greedy algorithm, applied to the optimization
problem:

minS⊆Ω|S| s.t.F (S) = F (Ω)

can approximate the optimal solution within a factor of δ = 1 +
log(maxe∈ΩF ({e})).
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However, Theorem 8 also shows that the approxima-
tion ratio of greedy algorithm for P7 is δ. This means
that, in our setting, the solution of P7 is relaxed by δ =
1 + log(max(oj ,θj)∈Hf

Uk({(oj , θj)})) for any given k. Thus
we have to relax the constraint of cardinality constraint of
P5 as |Hs| ≤ δm to avoid losing any solution from P7. The
relaxed version of P5 is formulated as P8.

(P8) max k (23)

s.t. Ũi(Hs) ≥ k, ∀si ∈ S, |Hs| ≤ δm,Hs ⊆ Hf (24)

In summary, we first transform P4 to its equivalent
problem P5. Next, we construct P6 for generating Hs for
P5 by binary searching k in a valid domain. However, since
P6 is still hard to solve, we use P7 to reformulate P6. P7 can
be solved by a δ-approximation greedy algorithm. Thus, we
relax P5 to P8, and obtain the solution for P8 through the
greedy algorithm solving P7.

If we had an optimal algorithm for submodular covering
problem (P7), then we would set δ = 1, and the algorithm
solving P7 would return the optimal solution to the CPRU
problem. However, the greedy algorithm for P7 may make
the solution unfeasible to P5 when δ > 1. Thus, we set δ = 1
in our designed algorithm, which works very effectively in
our experiments.

The algorithm for CPRU problem is illustrated in Al-
gorithm 3. Based on the definition of CPRU problem and
the monotonicity of Uk(Hs), we can set the initial lower
bound and upper bound of k in binary search as kmin = 0
and kmax = minsi∈SP

max
i , respectively. The while-loop

(Lines 2-14) is a process of finding the maximum of k
through binary search such that the size of Hs is not more
than m. Let H′s be the strategy set selected in each round
of search. The while-loop (Lines 5-8) selects the charger
from Hf\H′s to H′s until Uk(H′s) ≥ k or the number of
placed chargers is not smaller than the limitation m. In each
iteration, we select the charger with the maximum marginal
contribution to function Uk(H′s) over the unselected charger
set Hf\H′s (Line 6). The binary search terminates when
(kmax − kmin) < γ, where γ ∈ (0, 1) is the search accuracy.

Algorithm 3 Algorithm for CPRU Problem
Input: strategy space Hf , set of sensor node S, search

accuracy γ, maximum number of wireless chargers m
Output: strategy set of placed chargers Hs

1: kmin ← 0; kmax ← minsi∈SP
max
i ; Hs ← ∅;

2: while (kmax − kmin) ≥ γ do
3: k ← kmin+kmax

2 ;
4: H′s ← ∅;
5: while Uk(H′s) < k and H′s 6= Hf do
6: (oj , θj) ← argmax(oh,θh)∈Hf\H′s(Uk(H′s ∪

{(oh, θh)})− Uk(H′s));
7: H′s ← H′s ∪ {(oj , θj)};
8: end while
9: if |H′s| > m then

10: kmax ← k
11: else
12: kmin ← k; Hs ← H′s
13: end if
14: end while

Theorem 9. The time complexity of algorithm for CPRU
problem is O( n

5m
γε−2 logminsi∈SP

max
i ).

Proof : Considering the search accuracy γ and search
space pmax − pmin = minsi∈SP

max
i , the binary search

(Lines 2-14) has logminsi∈SP
max
i

γ iterations. In each iteration,
finding the placement strategy with the maximum marginal
contribution (Line 6) takes O(n|Hf |) time. Since the maxi-
mum number of chargers can be placed is m, the while-loop
(Lines 5-8) takes O(nm|Hf |) time. Thus, the running time of
algorithm for CPRU is O(

nm|Hf |
γ logminsi∈SP

max
i ). Based

on Lemma 2 and Lemma 3, the size of Hf is O(K2n4).
Based on Lemma 3, we have K = O(ε−1). Therefore,
the time complexity of algorithm for CPRU problem is
O( n

5m
γε−2 logminsi∈SP

max
i ). �

6 PERFORMANCE EVALUATION

In this section, we conduct extensive simulations to evaluate
the performance of CPRC algorithm and CPRU algorithm.

6.1 Performance Evaluation of CPRC Algorithm
For CPRC problem, we conduct area partition to partition
the 2D plane to subareas. Afterwards, the dominating strat-
egy extraction (Algorithm 1) is performed for each subarea.
Finally, we execute the approximation algorithm for CPRC
problem (Algorithm 2) based on the dominating strategies
to obtain the strategy set of placed chargers.

Since there are no off-the-shelf robust charger placement
algorithms for CPRC problem so far, we compare our solu-
tion with the following three randomized algorithms:

• Randomized Position and Dominating Orientation
(RPDO). RPDO places the charger iteratively, and
randomly selects a position and a dominating ori-
entation so long as the selected strategy can increase
the coverage for at least one sensor node.

• Randomized Position and Maximum Dominating Ori-
entation (RPMDO). RPMDO improves RPDO by se-
lecting the dominating orientation covering the most
sensor nodes.

• Randomized Position and Maximum Marginal Dominat-
ing Orientation (RPMMDO) [42]. RPMMDO selects
the dominating orientation with maximum marginal
coverage, which is a widely used greedy criterion in
covering problem with the goal of minimizing the
number of subsets.

For our simulations, we uniformly distribute sensor
nodes in a 60m × 60m square area. The settings of param-
eters refer to the existing work [14], which optimizes the
overall charging utility subject to the number of chargers.
We will vary the value of the key parameters to explore
the impacts on designed algorithms. Specifically, we set
α = 100, β = 40, D = 6m, n = 100, As = π/2
and Ao = 2π/3. The coverage demand λi of each sensor
node si is a particular parameter of CPRC problem, which
represents the robustness for resisting the wireless charger
failure. In this paper, λi is a randomly selected integer
from the interval [1, 3], where λi = 1 means there is no
robustness, and λi = 3 represents the highest robustness. In
the real world, it is robust enough when the sensor node is
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Fig. 8. Number of chargers. (a) Number of chargers vs. n. (b) Number
of chargers vs. maximum coverage demand. (c) Number of chargers vs.
Ao. (d) Number of chargers vs. As.

covered by 3 chargers. In our simulations, we vary the value
of maximum coverage demand from 3 to 8. All the simula-
tions are run on a Windows machine with Intel(R) Xeon(R)
CPU E5-2603 v2 and 16 GB memory. Each measurement is
averaged over 100 random topologies.

(1) Number of chargers. The CPRC problem optimizes
the number of chargers with the constraint of robustness
(coverage demand). As shown in Fig. 8(a), the number of
chargers of all algorithms increases with n. CPRC outper-
forms RPDO, RPMDO and RPMMDO by 22.32%, 18.65%,
and 17.48%, respectively, in terms of n averagely. The
number of chargers of CPRC increases more slowly than
the other algorithms, indicating that CPRC shows better
expansibility. Then, we vary the coverage demand by vary-
ing the upper bound of the uniformly distribution, called
maximum coverage demand, from 2 to 8. The results in
Fig. 8(b) show that the number of chargers of all algo-
rithms increases linearly with the maximum coverage de-
mand. CPRC outperforms RPDO, RPMDO and RPMMDO
by 28.09%, 23.95% and 21.47%, respectively, in terms of
the maximum coverage demand averagely. Our simulation
results in Fig. 8(c) shows that the number of chargers of
all algorithms decreases slowly with the receiving angle
Ao. This is because the sensor nodes with larger Ao can
receive the power from more chargers, reducing the num-
ber of chargers. CPRC outperforms RPDO, RPMDO and
RPMMDO by 28.91%, 24.99% and 22.18%, respectively, in
terms of Ao averagely. Fig. 8(d) shows that the number of
chargers of all algorithms decreases with the charging angle
As. CPRC outperforms RPDO, RPMDO and RPMMDO by
29.35%, 24.91% and 22.65%, respectively, in terms of As
averagely. The number of chargers of CPRC decreases faster
than the other algorithms, thus, CPRC shows greater supe-
riority with larger charging angles. The experiment results
in Fig. 8 have shown that our algorithm can obtain the least
chargers under various network settings, including different
coverage demands. This indicates that our algorithm can
meet the robustness with fewer chargers (lower cost).

(2) Running time. We can see from Fig. 9 that the
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Fig. 9. Running time of CPRC. (a) Running time vs. n. (b) Running time
vs. maximum coverage times.

running time of CPRC increases sharply with the number
of sensor nodes, and increases almost linearly with the
maximum coverage demand. The result is consistent with
the time complexity analysis given in Theorem 3. CPRC can
be terminated within 12.95 ms when λi ∈ [1, 3] with 100
sensor nodes.

6.2 Performance Evaluation of CPRU Algorithm
For CPRU problem, we first use the piecewise constant
function to obtain the approximation of charging power.
Then, we conduct the area discretization. Afterwards, the
dominating strategy extraction (Algorithm 1) is performed
for each subarea. Finally, we execute the algorithm for CPRU
problem (Algorithm 3) based on the dominating strategies
to obtain the strategy set of placed chargers.

We compare our solution with the following two algo-
rithms:

• PLOT [14]. PLOT selects the placement strategy with
the maximum marginal total charging utility itera-
tively until m chargers are placed.

• Maximizing Marginal Utility of the Worst (MMUW).
MMUW selects the placement strategy with the max-
imum marginal charging utility of the senor node
with the worst utility iteratively until m chargers are
placed.

For our simulations, we set ε = 0.2 and γ = 0.001,
n = 90, m = 100 and Pmaxi = 0.14W for each si ∈ S.
The other parameter settings are the same as those provided
in Section 6.1. The search accuracy γ and approximation
error ε are the particular parameters of the algorithm for
CPRU problem. We set γ = 0.001, which is small enough
to guarantee the accuracy of binary search. Moreover, we
set ε = 0.2 to guarantee the gap between approximation
power and real power is small. Note that search accuracy
and approximation error are two parameters to tradeoff
the performance and running time. Setting small values of
search accuracy and approximation error can obtain high
performance but leads to long running time. We will vary
the value of the key parameters to explore the impacts on
designed algorithms.

(1) Charging utility. The CPRU problem optimizes the
robustness (the minimum charging utility of all sensor
nodes) subject to the number of chargers. As shown in Fig.
10(a), the charging utility of all three algorithms decreases
with the increase of n since there will be more sensor nodes,
which need to be charged. CPRU outperforms PLOT and
MMUW by 120.11% and 54.61%, respectively, with different
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Fig. 10. Charging utility. (a) Charging utility vs. n. (b) Charging utility vs.
m. (c) Charging utility vs. Ao. (d) Charging utility vs. As. (e) Charging
utility vs. Pmax

i . (f) Charging utility vs. ε.

values of n averagely. With a small n (less than 70), the
charging utility of three algorithms is close to each other.
This is because the default number of chargers is 100, and
is sufficient to cover all sensor nodes. With a larger n,
the difference of three algorithms becomes larger since the
chargers are insufficient. When there are more than 110
sensor nodes, the charging utility of PLOT is zero because
PLOT aims at maximizing the total utility rather than the
minimum utility, therefore, some sensor nodes cannot be
charged. We can see from Fig. 10(b) that the charging utility
of all three algorithms decreases with the increase of m,
and becomes stable when there are enough chargers (more
than 100). This is because there is a maximum charging
power for each sensor node, and increasing the number of
chargers cannot help to increase the charging utility. CPRU
outperforms PLOT and MMUW by 53.25% and 32.81%, re-
spectively, with different values ofm averagely. As shown in
Fig. 10(c), when the receiving angle increases, the charging
utility increases since the sensor nodes can receive power
from more changers. CPRU outperforms PLOT and MMUW
by 23.01% and 70.23%, respectively, with different values of
Ao averagely. Similarly, as shown in Fig. 10(d), the charging
utility increases with As, and CPRU outperforms PLOT and
MMUW by 44.73% and 37.01%, respectively, with different
values of Ao averagely. With the increase of the maximum
charging power of sensor nodes, the charging utility of
CPRU and MMUW increases slowly. We can see from Fig.
10(e), CPRU outperforms PLOT and MMUW by 80.87% and
64.77%, respectively, with different values of the maximum
charging power averagely. However, the charging utility
of PLOT decreases sharply when the maximum charging

power is larger than 0.14. This is because PLOT aims to
maximize the total charging utility rather than allocate the
power evenly over all sensor nodes. When the sensor nodes
receive higher power, some sensor nodes may not obtain
any power. As shown in Fig. 10(f), the charging utility of
all three algorithms decreases with the increase of ε. When
ε is smaller than 0.32, the charging utility of CPRU can
remain stable. CPRU outperforms PLOT and MMUW by
21.15% and 58.96%, respectively, with different values of
ε averagely. The experiment results in Fig. 10 have shown
that our algorithm can obtain the highest robustness under
various network settings.

Fig. 11. Charging utility vs. number of failure sensor nodes.
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Fig. 12. Running time of CPRU. (a) Running time vs. n. (b) Running time
vs. m. (c) Running time vs. γ. (d) Running time vs. ε.

Fig. 13. Testbed.

(2) Charging utility with failure sensor nodes. To verify
the robustness for resisting the sensor node failure, we have
added the experiments to measure the minimum charging
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utility of all sensor nodes with the varying number of failure
sensor nodes from 20 to 60. To ensure that the normal sensor
nodes are more than the failure sensor nodes, the total
number of sensor nodes is set as 130. After obtaining the
placement of chargers, we randomly remove some sensor
nodes to simulate sensor node failure. We can see from
Fig. 11 that the charging utility of CPRU and MMUW is
stable with the increase of number of failure sensor nodes.
This is because both CPRU and MMUW try to improve the
minimum charging utility of sensor nodes, and the charging
utility is evenly distributed among the sensor nodes in the
rough. Thus, the sensor node failure has little impact on
the charging utility. However, PLOT selects the placement
strategy with the maximum marginal total charging utility
iteratively, which may lead to great difference of charging
utility. As a result, the charging utility increases with the
increase of number of failure sensor nodes. Overall, CPRU
outperforms PLOT and MMUW by 378.61% and 75.99% in
terms of charging utility, respectively.

(3) Running time. We can see from Fig. 12(a) and Fig.
12(b) that the running time of all three algorithms increases
with the increase of n or m. As shown in Fig. 12(c), the
running time of CPRU decreases with the increasing search
accuracy, nevertheless, PLOT and MMUW do not apply the
binary search, and the running time remains unchanged. We
can see from Fig. 12(d) that CPRU can be terminated within
1.28 s when ε = 0.32 with 100 sensor nodes.

7 FIELD EXPERIEMNTS

We have conducted the field experiments to evaluate the
proposed algorithms on the Lifetime Power Energy Har-
vesting Development Kit for Wireless Sensors (P2110-EVAL-
01), which is a complete demonstration and development
platform for creating battery-free wireless sensors (passive
wireless sensor tags) powered by RF energy (radio waves)
[12]. The wireless sensor nodes are powered by the P2110
Powerharvester Receiver, which converts RF energy into DC
power. In this kit, the TX91501 transmitter is the source of
RF energy (915MHz). The communication from the sensor
nodes to the Access Point (AP) is 2.4GHz using 802.15.4-
compliant radios. When the sensor nodes receive energy
from chargers, they begin to work and send data packets,
including temperature, humidity, light and received power
information, to the AP. The AP is connected to the laptop
through the USB interface, then we can read power and data
through HyperTerminal called CoolTerm [43].

7.1 Field Experiments of CPRC Algorithm

We conduct the experiments in a 4m × 4m square area,
where four sensor nodes are placed at the randomly selected
positions in the area with coordinates (1.72, 0.95), (2.75,
2.16), (0.84, 1.94), and (3.22,1.91), and the coverage demands
2, 1, 2, and 1.

The detailed strategies of four algorithms are shown in
TABLE 2 and Fig. 14. We can see that CPRC only uses 5
chargers to cover all sensor nodes. However, the number of
chargers of RPDO, RPMDO and RPMMDO is 11, 8, and 9,
respectively.

TABLE 2
Charger Placement Strageties of Four Algorithms

# RPDO RPMDO RPMMDO CPRC
1 〈(3.27, 1.93), 11◦〉 〈(1.41, 1.08), 101◦〉 〈(1.41, 1.08), 101◦〉 〈(3.09, 2.44), 11◦〉
2 〈(3.43, 1.72), 2◦〉 〈(0.82, 1.95), 95◦〉 〈(0.82, 1.95), 95◦〉 〈(1.41, 1.08), 101◦〉
3 〈(3.52, 1.66), 3◦〉 〈(3.52, 1.66), 3◦〉 〈(3.42, 1.72), 2◦〉 〈(1.37, 1.15), 97◦〉
4 〈(3.09, 2.44), 42◦〉 〈(1.37, 1.15), 97◦〉 〈(3.05, 2.03), 11◦〉 〈(0.82, 1.95), 95◦〉
5 〈(3.05, 2.03), 11◦〉 〈(3.27, 1.93), 11◦〉 〈(3.05, 2.03), 94◦〉 〈(0.64, 1.59), 142◦〉
6 〈(1.41, 1.08), 101◦〉 〈(3.42, 1.72), 2◦〉 〈(3.27, 1.93), 11◦〉
7 〈(3.27, 1.93), 34◦〉 〈(3.05, 2.03), 11◦〉 〈(3.09, 2.44), 42◦〉
8 〈(0.82, 1.95), 95◦〉 〈(0.64, 1.59), 142◦〉 〈(1.37, 1.15), 97◦〉
9 〈(0.64, 1.59), 142◦〉 〈(0.64, 1.59), 142◦〉
10 〈(3.05, 2.03), 94◦〉
11 〈(1.37, 1.15), 97◦〉
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Fig. 14. Charger placement strategies of RPDO, RPMDO, RPMMDO
and CPRC. The blue triangles represent the sensor nodes, and the red
dots represent the chargers.

7.2 Field Experiments of CPRU Algorithm
We conduct the experiments in a 4m × 4m square area,
where six sensor nodes are placed at the randomly selected
positions in the area with coordinates (1.32,1.65), (1.07, 1.26),
(2.89, 2.38), (1.53, 1.19), (0.97, 1.95), and (1.06, 2.91). Note that
we set ε = 0.2, γ = 0.001, m = 8 and Pmaxi = 0.14W for
each sensor node.

TABLE 3
Charger Placement Strageties of Three Algorithms

# PLOT MMUW CPRU
1 〈(1.01, 1.26), 108◦〉 〈(1.32, 1.65), 2◦〉 〈(1.01, 1.26), 108◦〉
2 〈(1.32, 1.65), 2◦〉 〈(1.06, 1.27), 72◦〉 〈(1.01, 1.60), 117◦〉
3 〈(1.06, 1.27), 72◦〉 〈(2.85, 2.54), 74◦〉 〈(2.85, 2.54), 74◦〉
4 〈(1.01, 1.60), 117◦〉 〈(1.12, 2.54), 162◦〉 〈(1.12, 2.54), 162◦〉
5 〈(1.32, 1.65), 51◦〉 〈(1.47, 1.14), 133◦〉 〈(1.32, 1.65), 51◦〉
6 〈(2.85, 2.54), 74◦〉 〈(0.93, 1.74), 153◦〉 〈(1.42, 2.77), 12◦〉
7 〈(1.12, 2.54), 162◦〉 〈(1.42, 2.78), 12◦〉 〈(1.32, 1.65), 2◦〉
8 〈(1.42, 2.77), 12◦〉 〈(2.32, 2.26), 118◦〉 〈(2.32, 2.26), 118◦〉

The detailed strategies of three algorithms are shown in
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TABLE III and Fig. 15. Fig. 16 shows the charging utility
for each sensor node for the three algorithms. We can see
that our algorithm CPRU outperforms PLOT and MMUW
by at least 68.97% and 58.06%, respectively. Specifically, the
sensor node 3 has the minimum charging utility 0.058 in
PLOT. The sensor node 2 has the minimum charging utility
0.062 in MMUW, and the sensor node 4 has the minimum
charging utility 0.098 in CPRU.
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Fig. 15. Charger placement strategies of PLOT, MMUW and CPRU. The
blue triangles represent the sensor nodes, and the red dots represent
the chargers.

1 2 3 4 5 6

Sensor node ID

0.00

0.05

0.10

0.15

C
h
ar
gi
n
g
u
ti
li
ty

PLOT

MMUW

CPRU

Fig. 16. Charging utility of sensor nodes.

8 DISCUSSION

Both CPRC and CPRU need to place the wireless chargers in
the specified positions. Therefore, in the actual implementa-
tion, we need to consider how to move the wireless charg-
ers to these target positions. Since the moving of wireless
chargers needs additional cost, it is necessary to minimize
the total moving distance. If all the wireless chargers are
concentrated in an initial position, we only need to move the
wireless chargers directly to the target positions. However,
in actual sensor networks, the wireless chargers are often
distributed in different positions. For example, when the
state of sensor network or the placement algorithm changes,
we should schedule the moving of wireless chargers to
the target positions with objective of minimizing the total
moving distance. This problem is actually the unbalanced
assignment problem, which can be solved by Hungarian
algorithm [44].

9 CONCLUSION

In this paper, we have studied the fundamental issue of ro-
bust fault-tolerant placement of wireless chargers for direc-
tional charging. The CPRC problem with continuous and in-
finite constraints has been formulated for resisting the wire-
less charger failure. We have transformed the problem to the

equivalence integer program problem without performance
loss by area partition and dominating strategy extraction.
We show that the greedy algorithm for set cover problem
can hold the logarithmic approximation ratio for our CPRC
problem. Moreover, we have formulated the CPRU problem
for resisting the sensor node failure. Through the techniques
of charging power approximation, area discretization and
dominating strategy extraction, the continuous search space
of strategies of chargers has been reduced to a limited
number of strategies without performance loss. We have
transformed the reformulated CPRU problem, and solved
the problem of maximizing the minimum of multiple sub-
modular functions with cardinality lower bound through
the integrating of approximation algorithm for submodular
covering problem and binary search. The results of both
simulations and field experiments show that the proposed
algorithms for CPRC and CPRU can outperform the compar-
ison algorithms by at most 29.35% and 120.11%, respectively.
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