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Assignment Strategy with Profit-Maximizing
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Abstract—In Internet of Electric Vehicles (IoEV), mobile
charging stations (MCSs) have been deployed to complement
fixed charging stations. Typically, MCSs are assigned to charge
the electric vehicles with insufficient electricity which have
made charging requests (termed IEVs). Moreover, there are
some electric vehicles with insufficient electricity which have
not made charging requests (termed quasi-IEVs). If idle
MCSs are allowed to actively track quasi-IEVs according to
their potential charging demand, then more IEVs could be
promptly charged, and thus the charging profits of MCSs
could be increased. However, due to the private ownership of
electric vehicles, some private information cannot be provided
in the potential charging demand of quasi-IEVs (e.g., the
destinations and residual electricity), making the potential
charging profits of idle MCSs hard to be evaluated, and
thereby the proper assignments of idle MCSs are difficult
to decide. To this end, we introduce the profit-maximizing
heat maps to depict the potential charging demand of quasi-
IEVs and evaluate the potential charging profits of idle
MCSs. A profit-maximizing heat map remarks the positions
around quasi-IEVs and displays them as continuous areas.
Specifically, the different shades of colours are used to
distinguish the quantities of potential charging profits of idle
MCSs, and the sizes of coloured areas are used to indicate
the possibility of quasi-IEVs passing through these positions.
In this paper, we propose a Profit-Maximizing Assignment
Strategy of Idle MCSs (PMASIM) to properly assign the idle
MCSs to charge IEVs at selected charging positions, or track
some quasi-IEVs according to the profit-maximizing heat
maps. Extensive simulations and comparisons demonstrate
the superior performance of PMASIM, i.e., with the profit-
maximizing heat maps, the charging profits of MCSs are
increased, and the proportion of charged IEVs is enhanced
as well.

Index Terms—Internet of Electric Vehicles; mobile charging
station; profit-maximizing heat map; MCS assignment.

I. INTRODUCTION

Recently, the number of electric vehicles (EVs) in the
transportation network is increased quickly, due to the
increasing concern on greenhouse gas emission [1], [2]. In-
ternet of Electric Vehicles (IoEV) [3] is mainly constituted
by EVs and charging facilities.

The battery condition of EVs is quite sensitive to external
environment (such as the air temperature), and the mileage
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endurance of EVs is not stable as gasoline vehicles. Thus,
the ”mileage anxiety” of EVs is much more serious than
that of gasoline vehicles, especially in the zones where
fixed charging stations (FCSs) are sparsely deployed or
absent. To provide active charging services for EVs, mobile
charging stations (MCSs) [4], [5] (Fig. 1) have been intro-
duced as an alternative charging solution [6]. At present,
there are two strategies for the usage of MCSs: (i) The
main strategy of MCSs is to remain stationary and move
towards EVs only after being requested, i.e., MCSs move
to charge EVs only when they have received the charging
requests; (ii) MCSs also play the role of ”movable FCSs”,
e.g., MCSs could move into some hotspots on holidays to
provide charging services, and they do not move after being
deployed until the end of holidays.

Fig. 1: An MCS charges an EV.

Some EVs do not have sufficient electricity to sustain
the travels to their destinations. An EV with insufficient
electricity could make a charging request to the cloud
server for the mobile charging service. Upon receiving the
charging request, the cloud server assigns an MCS to charge
the EV. In this paper, an EV with insufficient electricity
which has made a charging request to the cloud server is
referred to as an IEV, and an EV with insufficient electricity
which has not made a charging request is referred to as
a quasi-IEV. Apparently, quasi-IEVs must be charged in
future, although they have not made the charging requests.
However, the time points of quasi-IEVs making charging
requests are difficult to predict, due to the different charging
considerations and charging habits of their drivers. For ex-
ample, some drivers are prone to make quasi-IEVs charged
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earlier (when quasi-IEVs are with more residual battery
electricity), while other drivers are prone to make quasi-
IEVs charged when there is less residual battery electricity
because they think they could encounter some FCSs along
the routes to the destinations (the charging price of FCSs
is lower than that of MCSs).

Naturally, the charging profits of MCSs (the profits
earned by charging IEVs) could be increased if idle MCSs
are allowed to actively track some quasi-IEVs, since more
quasi-IEVs can be promptly charged in future when idle
MCSs actively move close to some quasi-IEVs. An example
is given in Fig. 2 with an idle MCS and a quasi-IEV.
The idle MCS actively moves close to the quasi-IEV, and
thus the quasi-IEV is likely to be charged by the MCS
once it makes a charging request and turns into an IEV.
Accordingly, the charging profit of this MCS is increased.

Fig. 2: An idle MCS is assigned to track a quasi-IEV.

The proper assignments of idle MCSs can increase the
charging profits of MCSs and enhance the proportion of
charged IEVs. In this paper, we investigate the assignments
of idle MCSs in the following two cases:

Case A. Assignments of idle MCSs for IEVs. The cloud
server assigns idle MCSs to charge IEVs at the selected
positions.

Case B. Assignments of idle MCSs for quasi-IEVs.
Typically, MCSs are sparsely distributed on a road lattice,
and many quasi-IEVs could not be charged within an
allowable extra delay after they turn into IEVs, because they
may be far away from MCSs. Thus, the cloud server could
assign idle MCSs to move towards the tracking positions of
some quasi-IEVs (i.e., idle MCSs actively track some quasi-
IEVs) for the potential charging in future. The tracking
positions of quasi-IEVs are selected from the available
charging positions provided and updated by the quasi-IEVs.

In Case B, quasi-IEVs periodically determine and upload
their potential charging demand including the insufficient
electricity and the tracking positions. Note that the privacy
protection is a vital issue for EVs, and some private
information regarding EVs (e.g., the destinations and the
residual electricity 1) should not be uploaded to the cloud

1Because the private travel intention of a quasi-IEV is revealed by
the destination information, and the possible scope of destination can be
inferred from the residual electricity.

server. Lack of these private information, the cloud server
is hard to measure the possibility of quasi-IEVs passing
through the tracking positions in future, especially when
the road segments have extremely different lengths and/or
shapes. Thereby, the potential charging profits of idle MCSs
are hard to be evaluated.

An example is illustrated in Fig. 3 with a quasi-IEV and
ten tracking positions. The destination information of the
quasi-IEV is not uploaded to the cloud server, and hence the
cloud server cannot foreknow that the quasi-IEV will move
towards Area 1 or Area 2, and how far it will move before
making a charging request, which implies that the future
charging position cannot be predicted. Accordingly, the
potential charging profit obtained by an MCS for charging
this quasi-IEV cannot be evaluated. Suppose the quasi-IEV
moves towards Area 1, an idle MCS could move towards
Area 1 (track the quasi-IEV) for earning a charging profit
from the quasi-IEV.

Fig. 3: Future movement of a quasi-IEV.

To this end, the concept of heat maps [7], [8] is applied to
depict the potential charging demand of quasi-IEVs. A heat
map is a graphical representation of data where the individ-
ual values contained in a matrix are represented as colours.
In our proposed Profit-Maximizing Assignment Strategy of
Idle MCSs (PMASIM), the profit-maximizing heat maps
remark the tracking positions of quasi-IEVs and display
them as continuous areas. In the profit-maximizing heat
maps, different shades of colours are used to distinguish the
quantities of potential charging profits of idle MCSs, and
the sizes of coloured areas are used to indicate the possi-
bility of quasi-IEVs passing through the tracking positions.
Thus, idle MCSs are assigned to charge IEVs at selected
charging positions, or move towards the tracking positions
of quasi-IEVs by the profit-maximizing heat maps.

As shown in Fig. 4, in PMASIM, when the cloud server
receives the charging requests from IEVs, it selects the
optimal idle MCSs and charging positions on the basis
of the objective of charging profit maximization, and then
assigns these idle MCSs to charge IEVs at the selected
charging positions. Furthermore, the cloud server evaluates
the potential charging profits of tracking quasi-IEVs by the
profit-maximizing heat maps, and assigns idle MCSs to

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3247441

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on February 22,2023 at 23:49:07 UTC from IEEE Xplore.  Restrictions apply. 



3

Fig. 4: A framework for assignments of idle MCSs.

move towards the Profit-Maximization Tracking Positions
(PMTPs) of some quasi-IEVs for the potential charg-
ing in future. Especially, the overlapped areas in profit-
maximizing heat maps are observed, and an idle MCS can
move towards a PMTP shared by several quasi-IEVs. Such
mechanism can further reduce the charging cost of MCSs
and increase their charging profits.

The remainder of this paper is organized as follows:
Section II surveys some related works. Section III for-
mulates the problem of MCS assignments. Section IV
proposes the Profit-Maximizing Assignment Strategy of
Idle MCSs (PMASIM). Section V provides some analyses
on PMASIM, in terms of complexity and expected charging
profit of an MCS. Section VI presents some simulation
results to evaluate the performance of PMASIM. Section
VII concludes this paper.

II. RELATED WORK

A. Charging with Fixed Charging Stations

As a major charging solution, FCSs have been deployed
in many cities to provide the charging services for EVs, and
some related research has investigated the optimal charging
routes of EVs and the optimal layout of FCSs. In [9], a
VANET-enhanced charging strategy is developed to reduce
the energy consumption and travel cost of EVs while avert-
ing the overload of power system. Likewise, [10] attempts
to optimize the route selections and charging/discharging
schedules to minimize the total cost of all EVs, and the A∗

algorithm is adopted to find the K-shortest route paths for
EVs.

However, the mobility of charging stations is not consid-
ered in most of the related works regarding FCSs.

B. Charging with Mobile Charging Stations

Some relevant research has been conducted on the prob-
lem of MCS assignments. For example, a Lyapunov-based
optimization algorithm is presented in [5] to increase the
business profits of MCSs, through deciding the optimal
strategy of power management. In [11], a framework is
designed for assigning MCSs to charge EVs according
to the charging demand of EVs. Besides, an optimization
problem is introduced in [12] to minimize the charging cost
while satisfying the movement constraints of MCSs and the
deadline constraints of charging requests, and a method of
modified Clarke and Wright Saving’s heuristics is proposed
to solve this problem.

[6] provides a reservation-based approach (RBA) based
on the context collected from the charging network, and
readily available MCSs can be predicted and scheduled
toward EVs with charging demand. In [13], the route
scheduling problem of EVs is formulated to maximize the
total residual electricity of EVs and make all EVs can reach
their destinations before deadlines. Our early works [14],
[15] investigate the problem of MCS assignments. In [14],
the assignments of MCSs are decided according to the
charging requests of IEVs, and these assignments can be
dynamically rescheduled with the time-variant charging
demand of IEVs. Specially, the assignments of idle MCSs
for potential charging demand are not considered in [14].
Besides, [15] decides the assignments of idle MCSs by
learning the historical routes and charging records of MCSs,
and the information of EVs does not need to be provided
to MCSs.

In the above works, the potential charging demand of
quasi-IEVs is not taken into account, and the potential
charging demand is hard to be estimated, especially when
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some private information regarding quasi-IEVs is not re-
trievable.

C. Heat Maps and Applications

In some previous works, the heat maps have been ex-
ploited to visualize some data sets or events, such as [16],
[17], where the heat maps are taken to reflect the population
density in some hot spots, and thus the maximum air-
conditioning load can be estimated. In [18], the traffic
accident data of Olomouc city is visualized by changing
the color range, kernel size, radius, and transparency of the
heat maps.

Heat maps can depict the interaction of heterogenic data
at different levels over time. To the best of our knowledge,
the heat maps have not been applied to depict the potential
charging demand of quasi-IEVs. In our work, the profit-
maximizing heat maps concerning the potential charging
demand of quasi-IEVs are generated: The different shades
of colours are used to distinguish the quantities of potential
charging profits of idle MCSs, and the sizes of coloured
areas are used to indicate the possibility of quasi-IEVs
passing through positions. The profit-maximizing heat maps
conceal the private information of quasi-IEVs, and the
potential charging demand uploaded to the cloud server
does not contain the destinations and residual electricity
of quasi-IEVs. Based on the profit-maximizing heat maps,
the cloud server can determine the PMTPs of quasi-IEVs
and assign some idle MCSs to move towards these PMTPs.

III. SYSTEM MODEL AND PROBLEM FORMULATION

The road lattice in the 2D plane is denoted by R. The sets
of road segments and road intersections are denoted by S
and I, respectively. The road segments could have different
lengths and/or different forms. The charging positions and
tracking positions are selected from I.

The charging scenario occurs in the zones where FCSs
are sparsely deployed or absent, and some MCSs are
deployed to provide the charging services for IEVs. Several
charging parks could be set up for MCSs charging IEVs,
which can be taken as a special case of this system model
where MCSs can charge IEVs at any road intersections.
Time is divided into discrete time slots with an equal length
of ts. TABLE I shows the list of main notations.

A. Mobile Charging Stations and Electric Vehicles

There are M MCSs, and the set of MCSs is denoted
by M. For an MCS ψj which is assigned to charge one
or more IEVs at the t-th time slot, the selected charging
position of ψj is labeled by pc(ψj)

(t), where pc(ψj)(t) ∈
I. An MCS which is not assigned to charge any IEVs is
referred to as an idle MCS.

There are N EVs, and the set of EVs is denoted by E .
The departure position and the destination of an EV vi are
denoted by si and di, respectively, where si, di ∈ I. vi
moves at a speed of ms(vi), and c units of electricity are
consumed for moving through a unit distance.

TABLE I: Main notations

Parameter Description
R Road lattice
I Set of road intersections
S Set of road segments
E Set of EVs
M Set of MCSs
ms(vi) Moving speed of EV vi
e(vi)

(t) Residual electricity of EV vi at the t-th time slot
e(vi)

(0) Battery capacity of EV vi
p(vi)

(t) Current position of EV vi at the t-th time slot
p(ψj)

(t) Current position of MCS ψj at the t-th time slot
pc(ψj)

(t) Charging position of MCS ψj at the t-th time slot

Em(vi, p̃)
Extra movement of EV vi being charged at the
position p̃

Em(ψj)
(t) Movement distance of MCS ψj if ψj is in the

idle state at the t-th time slot

V(ψj , p̃)
Set of IEVs to be charged by MCS ψj at the
position p̃

tw(vi, ψj , p̃)
Time of EV vi waiting for MCS ψj at the
position p̃

D̃ Allowable extra delay
ξ Charging power of MCSs

delay(vi, ψj , p̃)
Extra delay of EV vi after being charged by
MCS ψj at the position p̃

Exp(vi, ψj , p̃) Charging expense of EV vi paid to MCS ψj
Profit(ψj) Charging profit of MCS ψj

re
Unit price of electricity transferred from MCSs
to IEVs

r0
Unit price of electricity purchased from power
grid

Suppose an EV vi does not have sufficient electricity to
move from si to di (i.e., e(vi)(0) < c · |si − di|, where
|si − di| denotes the travel distance from si to di), and
then vi is taken as a quasi-IEV. When vi detects a low
battery state (e.g., e(vi)(t) ≤ e(vi)

(0)

γ at the t-th time slot),
or makes a charging request to the cloud server before the
low battery state, then vi is taken as an IEV.

B. Charging Model for MCSs and IEVs

When an MCS ψj is assigned to charge an IEV vi at the
selected charging position p̃ at the t-th time slot, the extra
movement (the distance deviation from the destination)
undertaken by vi is written as [15]:

Em(vi, p̃) =
∣∣∣p(vi)(t) − p̃

∣∣∣+ |p̃− di| −
∣∣∣p(vi)(t) − di

∣∣∣ , (1)

where
∣∣p(vi)(t) − p̃

∣∣ + |p̃− di| denotes the travel distance
of future movement of vi passing through the charging
position p̃, as illustrated in Fig. 5.

Note that the road segments could be with different forms
and lengths, which does not affect the assignment decisions
in our proposed strategy, because the travel distance of
MCSs and EVs is independent of the forms and lengths of
road segments. Thus, our proposed strategy can be applied
in different road networks.

When ψj charges vi, the amount of electricity transferred
from ψj to vi is expressed as:

△e(vi, p̃) =

min
{
c · {|si − di|+ Em(vi, p̃)} − e(vi)

(0), e(vi)
(0)
}
,

(2)
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Fig. 5: Extra movement of an IEV.

where △e(vi, p̃) is calculated as the insufficient electricity
of vi for supporting the future movement to the destination
di. (2) indicates that an IEV only get the essential electricity
from MCSs, due to the facts that the charging price of
MCSs is larger than that of FCSs, and MCSs typically
provide the emergent charging services.

When vi takes a long-distance travel, there is c ·
{|si − di|+ Em(vi, p̃)} − e(vi)

(0) > e(vi)
(0), i.e.,

△e(vi, p̃) = e(vi)
(0), and vi should be charged by some

MCSs several times.
Besides, the time of vi waiting for ψj at the charging

position p̃ is calculated by:

tw(vi, ψj , p̃) =

 0, if
|p(vi)(t)−p̃|
ms(vi)

≥ |p(ψj)
(t)−p̃|

ms(ψj)
,

|p(ψj)
(t)−p̃|

ms(ψj)
− |p(vi)(t)−p̃|

ms(vi)
, otherwise.

(3)

Then, the extra delay of vi is expressed as:

delay(vi, ψj , p̃) =
Em(vi, p̃)

ms(vi)
+ tw(vi, ψj , p̃) +

△e(vi, p̃)
ξ

,

(4)

which indicates that the extra delay of vi is comprised of
three parts: the time consumed for the extra movement, the
time of waiting for the assigned MCS, and the time of being
charged by the assigned MCS.

The extra delay of each IEV should be restricted by
an allowable extra delay D̃ to guarantee the travel ex-
perience and prompt arrival. For an IEV vi there must
be delay(vi, ψj , p̃) ≤ D̃. The setting of allowable extra
delay is related to the QoS requirements of EV drivers.
A shorter allowable extra delay indicates more emergent
travel intentions of EV drivers.

C. Charging Expenses of IEVs and Charging Profits of
MCSs

Suppose an IEV vi makes a charging request to the cloud
server, and an MCS ψj is assigned to charge several IEVs
(including vi) at the charging position p̃. The charging
expense of vi paid to ψj is calculated by:

Exp(vi, ψj , p̃) = re · △e(vi, p̃), (5)

where re denotes the unit price of electricity transferred
from MCSs to IEVs. The charging profit obtained by ψj is
expressed as:

Profit(ψj) =


−r0 · c · Em(ψj)

(t), if ψj is idle,∑
vi∈V(ψj ,p̃)

{Exp(vi, ψj , p̃)− r0 · △e(vi, p̃)}
−r0 · c ·

∣∣∣p(ψj)(t) − p̃
∣∣∣ , otherwise,

(6)

where Em(ψj)
(t) denotes the movement distance of ψj if

ψj is in the idle state at the t-th time slot. r0 denotes the unit
price of electricity purchased by MCSs from power grid.
If ψj has been assigned to charge IEVs, V(ψj , p̃) denotes
the set of IEVs to be charged by ψj at the position p̃.

In (6),
∣∣p(ψj)(t) − p̃

∣∣ is the distance of ψj moving from
current position to the charging position p̃. Thus, r0 · c ·
Em(ψj)

(t) and r0 · c ·
∣∣p(ψj)(t) − p̃

∣∣ denotes the charging
cost of ψj .

D. Objective Function

To maximize the charging profits of MCSs, the problem
objective of MCS assignments is formally presented as
follows:

max
∑
ψj∈M

T∑
t=1

Profit(ψj), (7)

where
∑T
t=1 Profit(ψj) denotes the cumulative charging

profit of ψj during an observation period T · ts (such as a
day or a week).

In the next section, we will propose a Profit-Maximizing
Assignment Strategy of Idle MCSs (PMASIM) to properly
assign the idle MCSs. In PMASIM, the idle MCSs are
assigned to charge IEVs at the selected charging positions.
Moreover, some idle MCSs are assigned to actively move
towards the PMTPs of some quasi-IEVs to track them,
through generating and exploiting the profit-maximizing
heat maps. Therefore, more IEVs can be promptly charged,
and the charging profits of MCSs can be increased.

In essence, the objective of charging profit maximization
enables MCSs to spend as much time as possible on
charging IEVs and reduce their charging cost, which can
enhance the charging efficiency of MCSs and the proportion
of charged IEVs.

IV. HEAT MAP BASED ASSIGNMENT STRATEGY OF
IDLE MCSS

There are two cases for the assignments of idle MCSs:
the assignments of idle MCSs for IEVs, and the assign-
ments of idle MCSs for quasi-IEVs. In this section, we
provide the detailed stages of PMASIM, as depicted in
Fig. 6. Specially, at each time slot Stage A is executed
before Stage B, i.e., the idle MCSs are preferentially
assigned to charge IEVs rather than to track quasi-IEVs,
and this arrangement will be demonstrated in Section V.B.
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Fig. 6: The stages of PMASIM.

A. Stage A: Assignments of Idle MCSs for IEVs

The set of IEVs at the t-th time slot is denoted by E(t)
R

.
The set of idle MCSs at the t-th time slot is denoted by
M(t)

I
, and the set of MCSs having been assigned to charge

IEVs at the previous time slots is denoted by M(t)
R

.

Suppose an IEV vi makes a charging request at the t-th
time slot, and the charging request of vi is expressed as:

CR(vi, t) =
∪
p̃∈I

{p̃,△e(vi, p̃), Em(vi, p̃),ms(vi)} ,

s.t. e(vi)
(t) ≥ c ·

∣∣∣p(vi)(t) − p̃
∣∣∣ . (8)

In (8), CR(vi, t) is comprised of several quadruples,
where each quadruple {p̃,△e(vi, p̃), Em(vi, p̃),ms(vi)}
has four components: (i) a potential charging position
p̃ determined by vi, and p̃ should satisfy the constraint
e(vi)

(t) ≥ c ·
∣∣p(vi)(t) − p̃

∣∣, indicating that the residual
electricity of vi can support the movement from the current
position p(vi)

(t) to the charging position p̃; (ii) the elec-
tricity of vi to be charged at p̃; (iii) the extra movement of
vi for being charged at p̃; (iv) the moving speed of vi.

After receiving the charging requests from the IEVs in
E(t)

R
, the cloud server selects the optimal idle MCSs and

charging positions according to the objective of charging
profit maximization. The optimal idle MCSs and charging

positions are selected by:

argmax
∑

vi∈E(t)
R
,ψj∈M(t)

I

{
Exp(vi, ψj , p̃)− r0 · △e(vi, p̃)
−r0 · c ·

∣∣∣p(ψj)(t) − p̃
∣∣∣

}
,

where p̃ ∈ CR(vi, t), delay(vi, ψj , p̃) ≤ D̃.
(9)

In (9), delay(vi, ψj , p̃) ≤ D̃ implies that the extra delay
of vi must be shorter than the allowable extra delay D̃. (9)
implies that the optimal idle MCSs and charging positions
are selected to maximize the charging profits of MCSs.

Especially, an idle MCS could be assigned to charge
several IEVs simultaneously at the same charging position,
and thus the charging profit of this MCS can be increased
due to the reduction of charging cost. As illustrated in
Fig. 7, three adjacent IEVs make the charging requests to
the cloud server, and an idle MCS is assigned to charge
them at the charging position p̃ simultaneously.

B. Stage B: Assignments of Idle MCSs for Quasi-IEVs

Typically, MCSs are sparsely distributed on the road
lattice, and thus the potential charging demand of quasi-
IEVs should be uploaded to the cloud sever in advance
for the charging preparations. Thus, the cloud server could
assign idle MCSs to track quasi-IEVs for the potential
charging in future. Otherwise, many quasi-IEVs could not
be charged promptly, since they may be far away from
idle MCSs when they turn into IEVs and make charging
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Fig. 7: An idle MCS is assigned to charge several IEVs.

requests.

Stage B.1. Quasi-IEVs upload the potential charging
demand to cloud server. At the start of each time slot, each
quasi-IEV uploads the potential charging demand to the
cloud server. Similar to (8), the potential charging demand
of a quasi-IEV vi at the t-th time slot is expressed as a set
of quadruples:

CD(vi, t) =
∪
p̂∈I

{p̂,△e(vi, p̂), Em(vi, p̂),ms(vi)} ,

s.t. e(vi)
(t) ≥ c ·

∣∣∣p(vi)(t) − p̂
∣∣∣ , (10)

where E(t)
D

denotes the set of quasi-IEVs at the t-th time
slot. In a quadruple {p̂,△e(vi, p̂), Em(vi, p̂),ms(vi)},
the tracking position p̂ is determined by vi, and it is an
available charging position supposing that vi makes a
charging request at the t-th time slot.

Stage B.2. Cloud server generates the profit-maximizing
heat maps for idle MCSs. Upon receiving the potential
charging demand from quasi-IEVs, the cloud server gen-
erates a profit-maximizing heat map for each idle MCS.

The profit-maximizing heat map of an idle MCS ψj
(at the t-th time slot) is denoted by Ω(ψj)

(t), which is
composed of several circular areas around the tracking
positions.

An example of the profit-maximizing heat map is pro-
vided in Fig. 8, where pm and pn denote two tracking
positions. In Fig. 8(b), the diameter of the circular area
C(vi, pm) around the tracking position pm is given by:

W (vi, pm) =

{
0, if delay(vi, ψj , pm) > D̃,

W ·
(
1− c·Em(vi,p̂)

△e(vi,p̂)

)
, otherwise,

(11)

where W is a datum diameter, and the value of W (vi, pm)
indicates the possibility of the quasi-IEV vi passing through
the tracking position pm. In (11), the circular area where
the quasi-IEV undertakes a shorter extra movement is with
a larger diameter, due to the fact that quasi-IEVs prefer to
undertake shorter extra movements.

Fig. 8: A profit-maximizing heat map.

Besides, the hue of the circular area C(vi, pm) indicates
the potential charging profit of ψj (obtained by charging vi
at the position pm), and the hue is calculated by:

H(vi, ψj , pm) =

(
1− pf(vi, ψj , pm)− pfmin(ψj)

pfmax(ψj) + 1− pfmin(ψj)

)
× 240,

(12)

where ”×240” enables the value of H(vi, ψj , pm) to fall in-
to the hue range (0, 240) (from red to blue). pfmin(ψj) and
pfmax(ψj) denote the minimum potential charging profit
and the maximum potential charging profit respectively, and
they are calculated by ψj according to the received potential
charging demand of quasi-IEVs.
pf(vi, ψj , pm) denotes the potential charging profit of ψj

when ψj charges vi at the position pm, and pf(vi, ψj , pm)
is expressed as:

pf(vi, ψj , pm) =Exp(vi, ψj , pm)− r0 · △e(vi, pm)

− r0 · c ·
∣∣∣p(ψj)(t) − pm

∣∣∣ . (13)

By the above mechanism, idle MCSs are directed to the
areas where they could obtain larger charging profits in
future.

Stage B.3. Cloud server determines the gravity coordi-
nates of local areas of quasi-IEVs. In the profit-maximizing
heat map Ω(ψj)

(t), the gravity coordinate of the local area
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of vi is denoted by g(vi, ψj)(t) and is determined by [19]:

g(vi, ψj)
(t) =(∑

(x,y)∈Ω(ψj)
(t) x · w(x, y)∑

(x,y)∈Ω(ψj)
(t) w(x, y)

,

∑
(x,y)∈Ω(ψj)

(t) y · w(x, y)∑
(x,y)∈Ω(ψj)

(t) w(x, y)

)
,

(14)

where (x, y) denotes a discrete coordinate, and (x, y) could
be covered by several circular areas. We take a weight
w(x, y) to measure the overlapped hue on (x, y): w(x, y) =∑

(x,y)∈C(vi,pm)
1

H(vi,ψj ,pm) , ∀C(vi, pm) ∈ Ω(ψj)
(t).

Because the hue of a circular area indicates the potential
charging profit of an idle MCS, the gravity coordinate
calculated by (14) can be taken as the position where the
idle MCS could charge some IEVs and approximatively
obtain the maximum potential charging profit. However,
the gravity coordinate could not be located on the road
lattice, and thus the Profit-Maximization Tracking Position
(PMTP) of vi in Ω(ψj)

(t) is selected as the available
charging position on the road lattice which is closest to
the gravity coordinate:

P(vi, ψj) = arg min
pm∈CD(vi,t)

|g(vi, ψj)(t) − pm|,

s.t. delay(vi, ψj , pm) ≤ D̃.
(15)

Stage B.4. Cloud server assigns idle MCSs to track
quasi-IEVs. Some idle MCSs are selected by cloud server
to move towards the PMTPs of quasi-IEVs. The idle MCSs
are selected by:

argmax
∑

vi∈E(t)
D
,ψj∈M(t)

I


Exp(vi, ψj ,P(vi, ψj))
−r0 · △e(vi,P(vi, ψj))

−r0 · c ·
∣∣p(ψj)(t) − P(vi, ψj)

∣∣
 .

(16)

In (16), the idle MCSs are selected to increase the
potential charging profits as much as possible.

As a special case, some adjacent quasi-IEVs are allowed
to share the same PMTP. For example, there are three quasi-
IEVs v1, v2, and v3, as shown in Fig. 9. If v1, v2, and v3
have some common tracking positions, and then a common
tracking position p̂ is selected as the shared PMTP:

P(v1, v2, v3, ψj) =

argmin

{
|g(v1, ψj)(t) − p̂|+ |g(v2, ψj)(t) − p̂|
+|g(v3, ψj)(t) − p̂|

}
,

where p̂ ∈ CD(v1, t)
∩

CD(v2, t)
∩

CD(v3, t).

(17)

Then, an idle MCS can be assigned to move towards the
shared PMTP to track v1, v2, and v3 simultaneously.

V. ANALYSIS OF PMASIM

A. Complexity

TABLE II shows the communication complexity and
computational complexity of the proposed PMASIM.

With regard to the communication complexity: (i) At
each time slot, the charging requests (or potential charging
demand) of IEVs (or quasi-IEVs) are uploaded to the cloud
server, and the number of uploads is at most O(N). (ii) The

Fig. 9: Several adjacent quasi-IEVs share a PMTP.

current positions of idle MCSs are uploaded to the cloud
server. The cloud server assigns idle MCSs to charge IEVs
or track quasi-IEVs, and the number of communications for
MCS assignments reaches O(M).

With regard to the computational complexity: (i) In
Stage A, the cloud server selects the optimal idle MCSs
to charge IEVs, and the optimal assignments of idle M-
CSs are selected from N · M available assignments. (ii)
In Stage B.1, each quasi-IEV determines the potential
charging demand, and the computational complexity of
Stage B.1 is O(N) in the worst case. (iii) In Stage B.2,
the cloud server generates a profit-maximizing heat map
for each idle MCS, and a profit-maximizing heat map
includes at most N circular areas, thereby the computation
amount in Stage B.2 is O(N · M). (iv) In Stage B.3
and Stage B.4, the cloud server determines the gravity
coordinates in profit-maximizing heat maps and selects the
idle MCSs to track quasi-IEVs, and hence the computa-
tional complexity of Stage B.3 and Stage B.4 reaches
O(N ·M).

TABLE II: Complexity of PMASIM

Stage Communication
complexity

Computational
complexity

A O(N +M) O(N ·M)
B.1 O(N) O(N)
B.2 0 O(N ·M)
B.3 0 O(N ·M)
B.4 O(M) O(N ·M)
Total O(N +M) O(N ·M)

Therefore, the communication complexity and computa-
tional complexity of PMASIM are written as O(N +M)
and O(N ·M), respectively.

B. Expected Charging Profit of an MCS
Suppose the initial battery electricity of EVs follows a

Gaussian distribution N (µ, δ2) [20], and then the expected
probability of an EV exhausting its battery electricity before
arriving at the destination is expressed as:

P
(
c · E(d̃) > x > 0

)
= Φ

(
c · E(d̃)− µ

σ

)
− Φ

(−µ
σ

)
, (18)

where x denotes the initial battery electricity of an EV,
and E(d̃) denotes the expected distance from the departure
position to the destination.
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For an IEV vi, the insufficient electricity △e(vi, p̃)
includes two parts: (i) the insufficient electricity for sup-
porting the movement to the destination, written as c ·
|si − di| − e(vi)

(0); (ii) the electricity consumed for the
extra movement, written as c · Em(vi).⌊

x
γ·c

⌋
denotes the longest extra movement of an IEV

whose initial battery electricity is x. When EVs are de-
ployed on a regular road lattice, the number of available
charging positions (an IEV undertakes the extra movement
distance of k) is k + 1, and thus (k+1)∑⌊ x

γ·c⌋
κ=0 (κ+1)

denotes

the probability of an IEV undertaking the extra movement
distance of k. Then, the expected extra movement of an
IEV is expressed as:

1

2
·
∫ emax

emin

exp
(
− (x−µ)2

2δ2

)
√
2π · δ

·

⌊
x

γ·c

⌋∑
k=0

(k + 1) · k∑⌊
x

γ·c

⌋
κ=0 (κ+ 1)

dx, (19)

where emax and emin denote the maximum battery elec-
tricity and the minimum battery electricity of EVs, respec-
tively.

Thereby, the expected insufficient electricity of an IEV
vi is expressed as:

E(△e(vi, p̃)) =

∫ c·E(d̃)
emin

exp
(
− (x−µ)2

2δ2

)
·
(
c · E(d̃)− x

)
dx∫ c·E(d̃)

emin
exp

(
− (x−µ)2

2δ2

)
dx

+
c

2
·
∫ emax

emin

exp
(
− (x−µ)2

2δ2

)
√
2π · δ

·

⌊
x

γ·c

⌋∑
k=0

(k + 1) · k∑⌊
x

γ·c

⌋
κ=0 (κ+ 1)

dx,

(20)

where

∫ c·E(d̃)
emin

exp

(
− (x−µ)2

2δ2

)
·(c·E(d̃)−x)dx∫ c·E(d̃)

emin
exp

(
− (x−µ)2

2δ2

)
dx

denotes the expect-

ed insufficient electricity for supporting the movement to
the destination.

Each quasi-IEV uploads the potential charging demand
to the cloud server until it detects a low battery state. In
the worst case, a quasi-IEV uploads the potential charging
demand when it is with the initial battery electricity, i.e.,
it remains a quasi-IEV when the residual electricity falls
into the range [µγ , µ]. Thus, the number of time slots for an
idle MCS tracking a quasi-IEV is up to (γ−1)·µ

γ·c , and the

charging cost of an idle MCS is at most r0 ·(γ−1)·µ
γ .

Moreover, due to the constraint of the allowable extra
delay D̃, the maximum distance from the current position
to the tracking position is written as µ

γ·c + D̃ ·ms, when
each EV is assumed to move at the same moving speed ms.
Therefore, the expected charging profit of an MCS will be
larger than the value of the following formula:

(re − r0 ) · E(△e(vi, p̃))−
r0 · (γ − 1) · µ

γ
− r0 · c ·

{
µ

γ · c
+ D̃ ·ms

}
= (re − r0 ) · E(△e(vi, p̃))− r0 · µ− r0 · c · D̃ ·ms,

(21)

which indicates that a larger µ or D̃ makes the movements
of quasi-IEVs more uncertain, and thereby could reduce
the charging profits of MCSs. To this end, in PMASIM
the idle MCSs are preferentially assigned to charge IEVs

rather than to track quasi-IEVs, especially when the number
of idle MCSs is very small.

VI. PERFORMANCE EVALUATIONS

In this section, we provide some performance evaluations
on our proposed PMASIM. The simulations are conducted
on a taxi dataset provided by Didi Corporation [21]. This
dataset contains the GPS trajectories of more than 10,000
taxis during the period from Oct. 1, 2018 to Oct. 31, 2018
in Chengdu city, China. Each GPS trajectory is represented
by a sequence of timestamps, latitudes, longitudes, and taxi
ID. Note that the passengers of taxis and the drivers of EVs
have similar travel intentions in their daily lives. Thus, this
dataset is adopted for our simulations, and we use these
taxi trajectories to simulate the movements of EVs.

Some examples of profit-maximizing heat maps selected
from different time intervals are shown in Fig. 10, which
indicates that the charging demand of EVs during the time
interval from 4:00 AM to 8:00 AM is the smallest, and
that during the time interval from 16:00 PM to 24:00 PM
is the highest. The main parameter settings are shown in
TABLE III.

TABLE III: Simulation parameters

Parameter Description Value
N Number of EVs 500
M Number of MCSs 18
ts Length of each time slot 60 s

T
Number of time slots in an observation
period 1440

ξ Charging power of MCSs 240 kw
D̃ Allowable extra delay 450 s
ms Moving speed of each EV or each MCS 11.1 m/s
e(vi)

(0) Battery capacity of each EV 90 kwh
µr Average residual electricity of IEVs 12.5 kwh

δr
Standard deviation of residual electricity
of IEVs 5 kwh

c
Electricity consumption for moving
through a unit distance

0.5
kwh/km

re
Unit price of electricity transferred from
MCSs to IEVs 2.4 /kwh

r0
Unit price of electricity purchased from
power grid 1.0 /kwh

γ
Low battery parameter for an IEV making
a charging request 18

γd
Low battery parameter for a quasi-IEV
uploading a potential charging demand 9

W Datum diameter 500 m

A. Charging Experience of IEVs

The proportion of charged IEVs and the average waiting
time of IEVs can measure the charging experience of IEVs.

Fig. 11 illustrates the impacts of µr, δr, D̃, N , and
M on the proportion of charged IEVs. In Fig. 11(a), the
proportion of charged IEVs is increased with the increase
of µr or D̃. This is because the IEVs with more residual
electricity or restricted by a longer allowable extra delay
could have more available MCSs, and hence they are more
likely to be charged by MCSs.
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Fig. 10: Some examples of profit-maximizing heat maps selected from different time intervals.

In Fig. 11(b) and Fig. 11(c), the proportion of charged
IEVs is decreased with the increase of δr or N , since
more IEVs exist and compete for the charging services of
MCSs. Thus, the proportion of uncharged IEVs becomes
larger. Besides, the proportion of charged IEVs is evidently
increased when more MCSs are deployed on the road
lattice, as illustrated in Fig. 11(c).

Fig. 12 shows that the average waiting time of IEVs is
shortened with the increase of M , which is attributed to
the fact that IEVs can be charged more conveniently when
more MCSs are provided. Note that the average waiting
time of IEVs is nearly independent of N . This is because
when more IEVs exist and are distributed more densely,
some IEVs can be simultaneously charged (as depicted in
Fig. 7), while more IEVs also intensify the competition of
charging services (e.g., some IEVs are charged after MCSs
have charged other IEVs). This phenomenon indicates that
PMASIM has a favorable scalability in terms of the average
waiting time of IEVs, due to the mechanism adopted in
PMASIM that an idle MCS is allowed to charge several
IEVs or track several quasi-IEVs simultaneously.

B. Average Profit of MCSs and Average Movement Dis-
tance of MCSs

The charging profits of MCSs are related to the number
of charged IEVs, i.e., a larger number of charged IEVs
typically gives rise to larger charging profits of MCSs.
Fig. 13(a) suggests that the average profit of MCSs is
increased with the increase of EVs’ number, due to the

fact that larger charging profits are obtained by MCSs when
there are more IEVs to be charged by MCSs.

Besides, the curve with a larger M is lower than that with
a smaller one. This is because the charging services and
charging profits are shared by all MCSs, and the average
profit of MCSs is reduced when more MCSs are deployed
on the road lattice. However, with more MCSs, IEVs can
be charged more promptly, and the charging experience of
IEVs is certainly improved.

With the increase of N or the decrease of M , an MCS
could charge more IEVs simultaneously, and a tradeoff
should be made among these IEVs regarding the selection
of the charging position. Thus, the average movement
distance of MCSs after being requested is increased, as
shown in Fig. 13(b).

C. Average Expense of IEVs

In Fig. 14(a), the average expense of IEVs is increased
with the increase of EVs’ number, and the reason is that
longer extra movements are undertaken by the charged
IEVs when more IEVs compete for the charging services
of MCSs. In contrast, IEVs are more likely to be charged
when there are more MCSs (a larger M ), and hence the
average expense of IEVs is decreased.

Fig. 14(b) shows that the average expense of IEVs
is reduced when the average residual electricity of IEVs
becomes larger, because less electricity is required by IEVs.
Besides, the average expense of IEVs is slowly increased
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Fig. 11: Proportion of charged IEVs.

with the increase of δr, since a larger δr implies that the
insufficient electricity of IEVs becomes larger.

D. Average Charging Cost of MCSs

As shown in Fig. 15(a), the average charging cost of
MCSs is reduced with the increase of µr or the decrease
of D̃. A larger µr implies that IEVs have more residual
electricity to undertake longer extra movements, and thus
reduce the movements of MCSs. Under a larger D̃, more
IEVs could stay and wait for the arrivals of MCSs, which
increases the movements of MCSs.

Fig. 12: Average waiting time of IEVs.
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Fig. 13: Average profit of MCSs, and average movement
distance of MCSs after being requested.

Moreover, Fig. 15(b) indicates that smaller charging cost
is produced by MCSs when fewer EVs or more MCSs are
deployed, because the movements of MCSs can be reduced
when better idle MCSs are selected to charge IEVs or track
quasi-IEVs.
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E. Strategy Comparisons

To further verify the merits of PMASIM, we compare
PMASIM with some related strategies, such as stationary
strategy (idle MCSs remain stationary), random walk strat-
egy (idle MCSs move randomly), CWSH strategy (Clarke
and Wright Saving’s Heuristics [12]), and RBA [6]. These
strategies are compared in terms of proportion of charged
IEVs, average waiting time of IEVs, average profit of
MCSs, average expense of IEVs, and average charging
cost of MCSs. The simulation results are given in Fig. 16,
Fig. 17, and Fig. 18.

Fig. 16 indicates that PMASIM achieves preferable re-
sults in terms of proportion of charged IEVs and average
waiting time of IEVs. The reason is that PMASIM evaluates
the potential charging profits of idle MCSs and properly
assigns idle MCSs to track quasi-IEVs, and thus quasi-IEVs
could be promptly charged after they turn into IEVs, which
enhances the proportion of charged IEVs and shortens the
waiting time of IEVs. Accordingly, PMASIM yields the
shortest average movement distance of MCSs (Fig. 17(a)).

In particular, RBA achieves the shortest average waiting
time of IEVs in Fig. 16(b), because RBA selects the charg-
ing positions where IEVs could spend the shortest time
on being charged, and the assigned MCSs always arrive at
the charging positions prior to IEVs. However, the average
movement distance of MCSs obtained by RBA is much
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Fig. 15: Average charging cost of MCSs.

larger than that of PMASIM (Fig. 17(a)), due to the fact that
IEVs are far away from idle MCSs when the assignments
of idle MCSs for quasi-IEVs are not considered.

In real MCS charging scenarios, a tradeoff among the
charging profits of MCSs, charging expenses of IEVs, and
charging cost of MCSs should be made. In Fig. 17(b), the
average profit obtained by CWSH is slightly larger than
that obtained by PMASIM, since the extra movements of
IEVs in CWSH are much longer than those in PMASIM,
and thereby MCSs earn more profits through charging more
electricity to IEVs. However, the charging expenses of IEVs
obtained by CWSH are much larger than others (Fig. 18(a)),
which is unbearable to EV owners. Essentially, CWSH
increases the charging profits of MCSs by increasing the
charging expenses of IEVs, rather than promoting the
charging efficiency of MCSs.

The random walk strategy yields the smallest average
profit of MCSs and the largest average charging cost of M-
CSs, indicating that the random walks of idle MCSs worsen
the charging efficiency significantly. On the contrary, with
regard to the stationary strategy, the average expense of
IEVs (Fig. 18(a)) and the average charging cost of MCSs
(Fig. 18(b)) are the smallest among the four strategies,
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Fig. 16: Comparisons of proportion of charged IEVs, and
average waiting time of IEVs.

while the average profit of MCSs is not preferable.
The above results suggest that our proposed PMASIM

can make a preferable tradeoff among the charging profits
of MCSs, charging expenses of IEVs, and charging cost of
MCSs.

VII. CONCLUSION

We have studied the problem of MCS assignments in an
IoEV, and the Profit-Maximizing Assignment Strategy of
Idle MCSs (PMASIM) has been proposed. In PMASIM,
the profit-maximizing heat maps are applied to depict the
potential charging demand of quasi-IEVs and evaluate the
potential charging profits of idle MCSs. The idle MCSs
are assigned to charge IEVs at selected charging positions,
or track quasi-IEVs according to the profit-maximizing
heat maps. Consequently, PMASIM increases the charging
profits of MCSs and enhances the proportion of charged
IEVs effectively.

Moreover, there are some practical issues related to the
problem of MCS assignments: (i) The electric capacity
of MCSs is limited as well, and some MCSs could be
temporarily offline due to the lack of electric energy. These
MCSs should be charged by the power grid, and therefore
the route schedules of MCSs should take into account
both charging IEVs and being charged by the power grid.
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Fig. 17: Comparisons of average movement distance of
MCSs after being requested, and average profit of MCSs
(confidence interval=0.95).

(ii) This work mainly focuses on the assignments of
MCSs, and FCSs are not considered in the model and
the proposed strategy. IoEV with both FCSs and MCSs is
more practical. Specially, these FCSs and MCSs could have
different moving speed, charging capacity, and number of
charging interfaces. How to improve the charging efficiency
by properly utilizing the heterogeneous charging facilities
remains another important issue.
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