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Abstract— At present, mobile charging stations (MCSs) are
taken as an important complement of fixed charging stations.
Currently, the strategy of MCSs is to move towards the electric
vehicles to be charged (EVCs) only after being requested.
To shorten the charging delay of EVCs and enhance the pro-
portion of charged EVCs, idle MCSs should actively move to
the areas with large potential charging demand rather than
remaining stationary. The distribution of idle MCSs in different
areas should be taken into account to prevent excessive idle
MCSs from moving into the same areas simultaneously. To this
end, we introduce the concept of charging demand force to
depict the potential charging demand of EVCs, and then pro-
pose the Placement Strategy for Idle Mobile Charging Stations
(PS-IMCS). In PS-IMCS, each idle MCS can measure the poten-
tial charging demand in neighboring areas through obtaining the
resultant force composed of attraction force and repulsion force,
and an MDP model is specially designed to make placement
decisions for idle MCSs. Extensive simulations and comparisons
demonstrate the performance superiority of PS-IMCS, i.e., the
charging delay of EVCs can be significantly shortened, and the
proportion of charged EVCs can be effectively enhanced.

Index Terms— Internet of Electric Vehicles, mobile charging
station, charging demand force, placements of idle MCSs.

I. INTRODUCTION

DUE to the increasing shortage of fuel and the press-
ing need to relieve the atmospheric pollution, electric

vehicles (EVs) which are typically powered by batteries
have been popularized rapidly [1], [2]. EVs can realize the
vehicle-to-everything (V2X) communications with their wire-
less communication modules, and thus constituting an Internet
of Electric Vehicles (IoEV) [3] (Fig. 1).

The limited battery capacity of EVs is a bottleneck which
restricts the further popularity of EVs seriously, therefore pro-
viding convenient charging services is vital to EVs. At present,
the main charging solutions include fixed charging stations
(FCSs) and mobile charging stations (MCSs) [4], [5]. Com-
pared with FCSs, MCSs can provide more agile charging
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Fig. 1. An IoEV with mobile charging stations.

services with lower cost, since MCSs do not require the
deployment locations and can move freely. Currently, MCSs
(e.g., NIO Power, Porsche Turbo, and MOBI Charger) have
been gradually deployed in many cities as an important
charging solution [6].

Typically, when the state of charge (SOC) [7] of an EV
is lower than a threshold, the EV makes a charging request
to the neighboring idle MCSs. After receiving the charging
request, an idle MCS could move to charge the EV at a nego-
tiated charging position. To simplify the following description,
an EV to be charged by MCSs is referred to as an EVC.

MCSs are sparsely distributed in the road network (the
number of MCSs is much smaller than that of EVs), implying
that EVCs could be far away from idle MCSs when they make
charging requests, and the charging delay of EVCs could be
very large. Therefore, EVCs cannot be agilely charged by idle
MCSs, if idle MCSs move towards EVCs only after being
requested, i.e., idle MCSs should actively move to some new
positions for the future charging. This problem motivates us to
investigate the proper placements of idle MCSs, thus helping
MCSs to charge EVCs timely and increase the proportion of
charged EVCs.

For example, in Fig. 2 with an EVC and an idle MCS,
the EVC makes a charging request to the neighboring idle
MCSs when it detects a low SOC, and the EVC can be
rapidly charged if an idle MCS has moved close to the EVC
in advance.

Naturally, idle MCSs should actively move to the areas
with large charging demand (more EVCs and/or EVCs
requiring more electricity) rather than remaining stationary.

1558-0016 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on November 12,2023 at 02:23:05 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-0824-6203
https://orcid.org/0000-0003-3109-2553
https://orcid.org/0000-0002-0523-9673


2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 2. An MCS charges an EVC.

Fig. 3. The attraction force and repulsion force in nature.

The distribution of idle MCSs in different areas should be
taken into account to prevent excessive idle MCSs from
moving into the same areas simultaneously. Motivated by
the above considerations, the concept of charging demand
force is introduced to depict the potential charging demand
of EVCs. Specifically, the effects of neighboring EVCs and
idle MCSs on the potential charging demand around an idle
MCS are mapped into the attraction force and repulsion force,
respectively.

The attraction force and repulsion force are very common
in nature. The attraction force denotes the force drawing or
holding the particles together, and the repulsion force denotes
the force causing particles to repel one another. As shown
in Fig. 3, the charging demand relation between an idle
MCS and a neighboring EVC is assimilated to the attraction
force between a proton and an electron in nature, and the
charging demand relation between two neighboring idle MCSs
is assimilated to the repulsion force between two protons.

Moreover, a centralized method for the placement decisions
of idle MCSs is typically not feasible, because a centralized
method leads to extremely large communication overhead and
computational complexity. Thus, a distributed method for the
placement decisions of idle MCSs is more preferable.

In this paper, we propose a Placement Strategy for Idle
Mobile Charging Stations (PS-IMCS), where each idle MCS
can measure the potential charging demand in neighboring
areas through obtaining the resultant force composed of

attraction force and repulsion force, and a Markov decision
process (MDP) model [8] is designed to make placement
decisions for idle MCSs.

The remainder of this paper is organized as follows:
Section II briefly surveys some existing related studies.
Section III provides a system model and problem formulation
for the problem of placements of idle MCSs. An MDP model
for solving this problem is proposed in Section IV, and
the Placement Strategy for Idle Mobile Charging Stations
(PS-IMCS) is presented in Section V. Section VI covers some
analyses on PS-IMCS, including the complexity, convergence,
and convergence rate. Extensive simulation results for perfor-
mance evaluation of PS-IMCS are reported in Section VII.
Finally, Section VIII concludes this paper.

II. RELATED WORK

A. Charging With Fixed Charging Stations

FCSs can provide the electricity replenishment for EVs at
fixed charging sites with some installed charging facilities.
EVs need to travel to FCSs for charging their batteries. The
key considerations for FCSs are twofold: optimal layout of
FCSs, and charging task arrangement.

The deployment of FCSs is quite costly, and thus the site
selections for the installations of FCSs are very important.
To minimize the deployment cost of FCSs and the charging
delay of EVs, some research has been conducted, such as [9]
and [10]. In [9], a bi-level optimization model is employed to
find a virtually-optimal charging station deployment, and thus
the installation cost and power losses are reduced. In [10], the
optimal sites of FCSs are identified according to the estimation
of the actual charging demand throughout the urban area. The
proposed method can reduce the waiting time, travel time, and
charging time of EVs. There are also some studies focusing
on the optimal number of FCSs which should be deployed,
such as [11] and [12].

As for the charging task arrangement, the major concern
is that how to schedule EVs to improve the charging effi-
ciency of FCSs. Due to the different charging demand during
different time intervals, some existing literatures investigate
the pricing strategies based on the interactions between EVs
and FCSs, and the typical works include [13], [14], where the
charging price is adaptively adjusted during peak hours and
off-peak hours. Reference [13] defines the price elasticity by
a linear demand-price function. The aggregated charging of
unoccupied EVs is scheduled in each parking lot to maximize
the charging profit, and the electricity consumption is paid
at the locational marginal price. To achieve the effective use
of FCSs, the dynamic pricing problem is formulated into
a mixed competitive-cooperative multi-agent reinforcement
learning task in [14]. A shared meta generator is provided
to generate individual customized dynamic pricing policies
for diverse agents, and hence the utilization of all FCSs is
improved.

B. Charging With Mobile Charging Stations

Due to the capability of mobility, MCSs can offer charging
services more agilely, and the number of deployed MCSs has
been increasing in recent years [15].
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MCSs can deliver the electricity from FCSs or power grid
to EVCs conveniently, and some research has been conducted.
For example, in [6] an intelligent mobile charging control
mechanism termed R-COST is provided for EVCs, by pro-
moting the charging reservations (service start time, expected
charging time, and charging location). Reference [16] presents
an optimization framework where an MCS can be dispatched
to an overloaded FCS to reduce the number of waiting EVs.
Some models or methods have been adopted to solve the
scheduling problem of MCSs, such as Stackelberg game [17],
and mixed integer optimization model [18]. A parallel mobile
charging service is proposed in [18] to schedule MCSs to
charge EVs at their parking spots, and each MCS is allowed to
charge multiple EVs simultaneously. Due to the heavy traffic
and the constraints of charging locations, an operational mode
through temporarily stationing MCSs at different places is
proposed in [19]. A dynamic charging scheduling scheme for
MCSs is given by [20] to realize the fast responses, reduce the
electricity consumption, and improve the charging efficiency.
Likewise, an assignment rescheduling mechanism of MCSs is
presented to reduce the charging expenses of EVs and enhance
the proportion of charged EVs [21]. In [22], the scheduling of
MCSs is modeled as an MDP problem which is solved by a
reinforcement learning method. Reference [23] investigates the
fleet management of electricity providers, and the minimum
number of electricity providers dispatched to serve the electric
vehicles is analyzed.

As a similar problem, the problem of relocating idle vehicles
has been studied. For example, [24] proposes a queueing-based
formulation to depict this problem in an on-demand mobility
service, and the proposed algorithm can reduce the relocation
cost largely. Specially, the projection from a continuously
updated vector field of taxi travel momentum to the points
of interest can be generated by [25]. For the vehicle-sharing
operations, a rebalancing policy using cost function approxi-
mation is presented in [26], and the cost function is modeled
as a p-median relocation problem with the minimum cost flow
conservation.

Typically, the destinations and future routes of EVs cannot
be provided to MCSs due to the privacy protection of EV
drivers. Thus, the unpredictability in the future movements of
EVCs makes MCSs difficult to quickly respond to the charging
requests of EVCs, which could lead to the long waiting time
and large charging expenses of EVCs. This issue has not been
considered in the above works.

C. Attraction Force and Repulsion Force

The attraction-repulsion model has been applied in some
research [27], [28], [29], [30]. In [27], Kang et al. investigate
an attraction-repulsion Keller-Segel system with a degrada-
tion source of a sub-quadratic power in a bounded domain.
In [28], a weighted superposition attraction-repulsion mecha-
nism based on meta-heuristic algorithm is proposed to achieve
a superior balance between solution accuracy and computa-
tional cost. Depending on the tendencies of attraction force and
repulsion force between members, [29] presents a performance
improvement for a flocking task with an unknown target zone.
Moreover, [30] gives a graph contrastive learning network

for unsupervised domain adaptive graph learning, which is
based on the concepts of attraction force and repulsion force.
An attraction force encourages the node features from two
domains to be largely consistent, whereas a repulsion force
ensures that the node features are discriminative to differenti-
ate the graph domains.

The attraction-repulsion model can depict the interaction
between charging demand and charging supply in areas over
time, and thus can measure the potential charging demand of
EVCs in future. At present, to the best of our knowledge, the
attraction-repulsion model has not been applied to measure
the potential charging demand of EVCs and help to make
placement decisions for idle MCSs.

D. Motivation of Our Work

Without the private information of EVCs (e.g., destinations,
future routes), idle MCSs usually track the EVCs with larger
charging demand and move into the areas with few idle MCSs
(smaller charging supply). To offer agile charging services, the
proper placement decisions should be made for idle MCSs.
We measure the potential charging demand according to the
resultant force which is composed of the following two parts:
the attraction force reflecting the potential charging demand of
EVCs, and the repulsion force reflecting the potential charging
supply of idle MCSs.

Note that a centralized strategy is not feasible for the
placement decisions of idle MCSs due to the extremely large
communication complexity and computational complexity, and
a distributed strategy is more preferable. Thus, in this work
each idle MCS independently measures the potential charging
demand in the neighboring area. MDP is a discrete-time
stochastic control process which can model the decision mak-
ing in situations where outcomes are partly random and partly
under the control of decision makers. Therefore, an MDP
model is applied for the problem formulation and the local
placement decisions of idle MCSs.

III. SYSTEM MODEL AND PROBLEM FORMULATION

The road network in the 2D plane is denoted by L (as shown
in Fig. 4). In L, there are N EVs and M MCSs. The set of EVs
and the set of MCSs are denoted by E = {v1, · · · , vN } and
M = {ϕ1, · · · , ϕM }, respectively. The location set of charging
parks is denoted by P, and the charging positions and the
placements of idle MCSs are selected from P. Time is divided
into discrete time slots with an equal length of ts . The current
position and residual electricity are detected by each EV every
time slot, and the placement decision of each idle MCS is
made every time slot as well.

Several definitions are first given to depict the problem of
placements of idle MCSs:

Definition 1 (Electric Vehicles): Each EV (each MCS) has
the same communication range Rc. For an EV vi , vi travels
at a speed of ms(vi ) from the departure position oi to the
destination di , and c unit of battery electricity is consumed
for travelling through a unit distance.

In the t-th time slot, the current position and the residual
battery electricity are denoted by p(vi )

(t) and e(vi )
(t),

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on November 12,2023 at 02:23:05 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 4. A road network with EVCs and MCSs.

respectively. When vi detects a low battery state
(e.g., e(vi )

(t)
≤

e(vi )
(0)

γ
), vi turns into an EVC.

Definition 2 (Mobile Charging Stations): The travel speed
of an MCS ϕ j is denoted by ms(ϕ j ). In the t-th time slot,
the current position and the residual electricity1 (which can be
provided to EVCs) of ϕ j are denoted by p(ϕ j )

(t) and e(ϕ j )
(t),

respectively. emax denotes the maximum battery capacity of
each MCS, i.e., the residual electricity of an MCS is equal
to emax after it is recharged by the power grid. The charging
speed of each MCS is marked by ϖ , and c unit of battery
electricity is consumed for travelling through a unit distance.

An MCS that receives and approves a charging request
(from an EVC) is a busy MCS, and an MCS that does
not receive or approve a charging request is an idle MCS.
Each MCS can obtain the information of its current position
and residual electricity. Moreover, every time slot each idle
MCS can also obtain the current positions and the required
electricity of neighboring EVCs, the current positions and
the residual electricity of neighboring idle MCSs. However,
the destinations and future routes of EVCs, the historical
trajectories of EVCs and other MCSs, are not provided to the
idle MCS due to the privacy protection.

Definition3 (An MCS charges an EVC):. Suppose an MCS
ϕ j is assigned to charge an EVC vi at the position p̂, and then
the extra travel distance of vi is calculated by:

L(vi , p̂) = D(p(vi )
(t), p̂)+ D( p̂, di )− D(p(vi )

(t), di ), (1)

where D(p(vi )
(t), p̂) denotes the travel distance from p(vi )

(t)

to p̂. The amount of electricity required by vi (i.e., the amount
of electricity transferred from ϕ j to vi ) is expressed as:

E(vi , p̂) = c · {D(oi , di )+ L(vi , p̂)} − e(vi )
(0). (2)

Then, the residual electricity of MCS ϕ j is reduced by
E(vi , p̂)+ c · D(p(ϕ j )

(t), p̂) after it has charged EVC vi .

1The battery capacity of MCSs is limited as well, and MCSs will be
unavailable due to the lack of electricity. The MCSs lacking electricity should
be recharged by FCSs or power grid.

The charging delay of vi is computed by:

Delay(vi ) =
L(vi , p̃)
ms(vi )

+ Tw(vi , ϕ j , p̂)+
E(vi , p̂)
ϖ

, (3)

which indicates that the charging delay of vi is comprised
of: (i) The delay for the extra travel of vi ; (i i) The delay
for waiting the arrival of ϕ j (when vi arrives at the charging
position prior to ϕ j ); (i i i) The delay for transferring electricity
from ϕ j to vi . Specifically, Tw(vi , ψ j , p̂) is computed as [21]:

Tw(vi , ϕ j , p̂) =



0,

if
D(p(vi )

(t), p̂)
ms(vi )

≥
D(p(ϕ j )

(t), p̂)
ms(ϕ j )

,

D(p(ϕ j )
(t), p̂)

ms(ϕ j )
−

D(p(vi )
(t), p̂)

ms(vi )
,

otherwise.
(4)

If the waiting delay Tw(vi , ϕ j , p̂) is larger than the maxi-
mum waiting delay D̃, and then it is regarded as a charging
failure, i.e., the assigned MCS ϕ j fails to charge the EVC vi .
Likewise, the waiting delay of the assigned MCS ϕ j is
calculated as

Tw(ϕ j , vi , p̂) =



0,

if
D(p(vi )

(t), p̂)
ms(vi )

<
D(p(ϕ j )

(t), p̂)
ms(ϕ j )

,

D(p(vi )
(t), p̂)

ms(vi )
−

D(p(ϕ j )
(t), p̂)

ms(ϕ j )
,

otherwise,

and if Tw(ϕ j , vi , p̂) is larger than D̃, then there is a charging
failure as well.

Definition 4 (Charging Demand Force):. Each idle MCS
measures the potential charging demand in the neighbor-
ing area through obtaining the resultant force composed
of attraction force and repulsion force. For an idle MCS
ϕ j , the sets of neighboring EVCs and neighboring idle
MCSs are denoted by En(ϕ j ) and Mn(ϕ j ), respectively.
En(ϕ j ) =

{
vi ∈ E | dis(ϕ j , vi ) ≤ Rc

}
and Mn(ϕ j ) ={

ϕ j ′ ∈ M| dis(ϕ j , ϕ j ′) ≤ Rc
}
, where dis(ϕ j , vi ) denotes the

Euclidean distance between ϕ j , and vi .
In essence, an idle MCS should move to the areas with

larger charging demand, i.e., in the areas there are more EVCs
requiring more electricity (larger charging requirement) and
fewer idle MCSs with less residual electricity (smaller charg-
ing supply). As shown in Fig. 3, an idle MCS is assimilated to
a positive proton, and the mass of the idle MCS is measured
by its residual electricity. Likewise, an EVC is assimilated to
a negative electron, and the mass of the EVC is measured
by its required electricity. Thus, an idle MCS is repulsed by
neighboring idle MCSs and attracted by neighboring EVCs.

A neighboring EVC vi (vi ∈ En(ϕ j )) produces the attraction
force to ϕ j :

−→
F a(ϕ j , vi )

(t)
=

{
c · D(oi , di )− e(vi )

(0)}
· e(ϕ j )

(t)

D(p(ϕ j )(t), p(vi )(t))3
·
−−→ϕ jvi ,

(5)
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where −−→ϕ jvi denotes a direction vector. Likewise, a neighboring
idle MCS ϕ j

′ (ϕ j
′
∈ Mn(ϕ j )) produces the repulsion force

to ϕ j :

−→
F r (ϕ j

′, ϕ j )
(t)

=
e(ϕ j

′)(t) · e(ϕ j )
(t)

D(p(ϕ j ′)(t), p(ϕ j )(t))3
·
−−−→
ϕ j

′ϕ j , (6)

which indicates that the repulsion effect becomes larger when
the idle MCSs (with more residual electricity) become closer.
By this mechanism, the idle MCSs with more residual elec-
tricity will not be located very close, and the charging capacity
of idle MCSs can be balanced among areas.

Then, the resultant force of ϕ j is obtained by:

−→
F (ϕ j )

(t)
=

∑
vi ∈En(ϕ j )

−→
F a(ϕ j , vi )

(t)
+

∑
ϕ j ′∈Mn(ϕ j )

−→
F r (ϕ j

′, ϕ j )
(t).

(7)

Note that the charging demand force is obtained without
the information of the destinations and future routes of EVCs,
and thus the privacy of EVCs can be protected.

To shorten the charging delay of EVCs and enhance the pro-
portion of charged EVCs, the problem objective of placements
of idle MCSs is formally provided as follows:

min
∑Ne

i=1 Delay(vi )

Ne

,

max
Nc

Ne

,

(8)

where Ne and Nc denote the number of EVCs and the
number of charged EVCs, respectively. The objective of the
minimization of the charging delay of EVCs enables MCSs to
charge EVCs as quickly as possible, implying that more EVCs
can be quickly charged (the proportion of charged EVCs is
increased). In essence, these two objectives can shorten the
extra travels of EVCs and promote the charging efficiency
of MCSs.

In the next section, we will propose a Placement Strategy for
Idle Mobile Charging Stations (PS-IMCS) to make placement
decisions for idle MCSs. In PS-IMCS, the concept of charging
demand force is introduced, and each idle MCS can measure
the potential charging demand in the neighboring area through
obtaining the resultant force (charging demand force) which
is composed of attraction force and repulsion force. Specially,
based on the potential charging demand, an MDP model is
designed to make placement decisions for idle MCSs. By PS-
IMCS, more EVCs can be promptly charged by MCSs.

IV. MARKOV DECISION PROCESS FOR
PLACEMENTS OF IDLE MCSS

The statuses of EVs and MCSs are varied over time:
An EV turns into an EVC when it detects a low battery state,
and an EVC reverts back to an EV when it has been charged.
An idle MCS can be assigned to charge an EVC, and an MCS
in the charging status turns into an idle MCS after charging
the EVC.

As aforementioned above, the destinations and future routes
of EVCs are not provided to MCSs due to the privacy
protection, and thus idle MCSs are difficult to track and charge

EVCs according to the future travel routes of EVCs, which
indicates that the potential charging demand around each idle
MCS is unpredictable. The potential charging demand in the
current time slot should be evaluated by exploiting that in the
last time slot (rather than during the more previous time slots).
Therefore, an MDP is introduced to formulate the problem
of placements of idle MCSs, and help to make placement
decisions for them.

A. Markov Decision Process

An MDP model for formulating the problem of place-
ments of idle MCSs is represented by a quintuple < S,A,
T ,P,R >. For an idle MCS ϕ j , the quintuple is explained
as follows:

(i) S denotes the set of states of idle MCSs, where a state
indicates the potential charging demand around an idle MCS,
which also implies that how far away is the optimal placement
from the current position of the idle MCS. For example, in the
t-th time slot, the state of an idle MCS ϕ j is written as:

st =

[∣∣∣−→F (ϕ j )
(t)

∣∣∣] , (9)

where |·| denotes the vector value, and [·] denotes an integral
operation. Thus, the value of states is discrete, and the number
of states is finite because the maximum resultant force is
limited.

(i i) A denotes the set of actions of idle MCSs, where an
action denotes a possible placement of an idle MCS. Each
placement is selected from the location set of charging parks.
The set of actions of an idle MCS is expressed by (17) in
Section IV-B.

(i i i) T = {1, · · · , t, · · · , T } is a finite set of time slots,
because the maximum battery capacity of MCSs is limited.

(iv) P = {P(st+1|st , at )}1≤t≤T −1 denotes a transition
probability matrix, and the element P(st+1|st , at ) is expressed
as:

P(st+1|st , at ) =

∣∣∣−→F (ϕ j )
(t+1)

∣∣∣∑
a∈A(ϕ j )(t)

∣∣∣−→F (ϕ j (a))(t+1)
∣∣∣ , (10)

where
−→
F (ϕ j (a))(t+1) denotes the resultant force of ϕ j in the

(t + 1)-th time slot (after ϕ j adopts the action at in the t-th
time slot). (10) transits the potential charging demand into the
placement probability of idle MCSs, i.e., (10) measures the
probability of the variation of potential charging demand by
adopting an action at .

(v) R = {r1, · · · , rt , · · · , rT } denotes the set of immediate
rewards, where the immediate reward of ϕ j in the (t + 1)-th
time slot is calculated by:

rt+1 =

∣∣∣−→F (ϕ j )
(t+1)

∣∣∣ −

∣∣∣−→F (ϕ j )
(t)

∣∣∣ . (11)

The cumulative reward after the t-th time slot is given by:

G t =

T −1∑
k=0

ςk
· rt+k+1, (12)

where ς is a discount coefficient.
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A value function V (st , at ) is defined to denote the expected
value of G t , i.e., V (st , at ) = E[G t |st = s, at = a]. Then,
a Bellman equation can be extrapolated:

V (st , at ) = rat
st

+ ς ·

∑
st+1

{P(st+1|st , at ) · V (st+1, at+1)} .

(13)

In (13), rat
st denotes the immediate reward by adopting the

action at under the state st (in the t-th time slot). rat
st also

represents the expected value of rt+1, and is expressed as
rat

st = E(rt+1|st , at ).
Therefore, the optimal action a∗

t can be obtained by:

a∗
t = arg max

a∈A(ϕ j )(t)
V (st , a). (14)

There must be an optimal solution in (14), which is proved
by Lemma 1.

Lemma 1: There exists an optimal solution in our proposed
MDP model.

Proof: (X,L-infinity) denotes a metric space, and X
denotes the set of real numbers (X ∈ R). The output of value
functions belongs to X. L-infinity is defined by:

∥X∥∞ = max
i∈[0,|X|]

|Xi | .

The Bellman operator B is defined by:

BV (st , at )

= max
at ∈A(ϕ j )(t)

rat
st

+ς ·

∑
st+1

[
P(st+1|st , at )·v(st+1, at+1)

] .
By the Banach fixed point theorem [31], if we can obtain

the following two conditions: (i) (X,L-infinity) is a complete
metric space, and (i i) the Bellman operator B is a contractor
in the finite space (R,L-infinity). Then, we can conclude that
there exists an optimal solution in the MDP model.

(i) (X,L-infinity) is a complete metric space. The distance
between the two value functions is equal to the highest
element-wise absolute difference between the two value func-
tions. The rewards are finite in the MDP model, and then the
value functions will always stay in the real space, therefore
this finite space will always be complete.

(i i) The Bellman operator B is a contractor in the finite
space (R,L-infinity). For any two value functions V1 and V2,
we have that:

∥BV1(st , at )− BV2(st , at )∥

=

∥∥∥∥∥∥max
at

rat
st

+ς ·

∑
st+1

[
P(st+1|st , at )· vV1(st+1, at+1)

]
∥∥∥∥∥∥

−

∥∥∥∥∥∥max
at

rat
st

+ς ·

∑
st+1

[
P(st+1|st , at ) · V2(st+1, at+1)

]
∥∥∥∥∥∥

≤ ς ·

∥∥∥∥∥∥max
at

∑
st+1

[
P(st+1|st , at )·

(
V1(st+1, at+1)

−V2(st+1, at+1)

)]
∥∥∥∥∥∥

≤ ς · ∥V1(st+1, at+1)− V2(st+1, at+1)∥

Fig. 5. Division of the circular range around an idle MCS.

· max
at

∑
at ,st+1

P(st+1|st , at )

< ς · ∥V1(st+1, at+1)− V2(st+1, at+1)∥ ,

where there is 0 < ς < 1, and then the Bellman operator B
is a contractor in the finite space (R, L-infinity).

Thus, by the Banach fixed point theorem, we conclude that
there exists an optimal solution in the MDP model. □

B. Actions of Idle MCSs

Note that the potential actions of an idle MCS ϕ j could
be time-varying, and a gradient force model is introduced to
calculate the set of actions A(ϕ j )

(t).
The maximum travel distance of ϕ j during a time slot is

ms(ϕ j ) · ts , and the circular range with the radius ms(ϕ j ) · ts
is equally divided into χ virtual layers with the radius Rm =
ms (ϕ j )·ts

χ
, as illustrated in Fig. 5, where ϕ j is taken as the cen-

ter, and the circular areas with the radii Rm, 2Rm, · · · ,ms(ϕ j )·

ts are denoted by φ1, φ2, · · · , φχ , respectively.
In Fig. 5, a contour line in red is generated by the

positions (on the real roads) with the same travel distance
(Rm, 2Rm, · · · ,ms(ϕ j ) · ts) to ϕ j .

Then, the maximum resultant force of ϕ j is obtained by:

−→
F ∗(ϕ j )

(t)

= max
1≤k≤χ

 ∑
vi ∈φk

−→
F a(ϕ j , vi )

(t)
+

∑
ϕ j ′∈φk

−→
F r (ϕ j

′, ϕ j )
(t)

 .
(15)

Furthermore, the optimal virtual placement p∗
v can be found

by:

p∗
v =

−→
F ∗(ϕ j )

(t)∣∣∣−→F ∗(ϕ j )(t)
∣∣∣ ·

{
ms(ϕ j ) · ts ·

k + 0.5
χ

}
, (16)
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Fig. 6. Bi-LSTM model for predicting the amount of required electricity of
EVCs on a road segment.

which indicates that the optimal virtual placement is selected
from the layer where the maximum resultant force

−→
F ∗(ϕ j )

(t)

is obtained.
The set of actions of ϕ j is expressed as:

A(ϕ j )
(t)

=
{
a| a ∈ P, dis(p∗

v , a) ≤ 2Rm
}
. (17)

where dis(p∗
v , a) denotes the Euclidean distance between p∗

v

and a.

C. States Transitions of Idle MCSs

The resultant force of an idle MCS is related to the real-time
positions of neighboring EVCs. With regard to each road
segment, the amount of required electricity of EVCs on the
road segment (in the previous κ time slots) is fed into a
Bi-LSTM model [32], because Bi-LSTM has an excellent
generalization ability, and it performs well in the prediction
of time series, such as the amount of required electricity of
EVCs which is continuously varied. Thus, the future amount
of required electricity of EVCs on the road segment can be
predicted, as shown in Fig. 6.

By the predicted amount of required electricity of EVCs
on road segments, the resultant attraction force on each road
segment is introduced to simplify the problem analysis, i.e.,
the attraction force of the EVCs on the same road segment
is synthetically calculated, based on the assumption that the
EVCs on the same road segment have the same distance to the
idle MCS. For example, the attraction force of an idle MCS ϕ j
in the (t + 1)-th time slot is written as:

∑
l∈L

{
E(l)(t+1)

· e(ϕ j )
(t)

D(p(ϕ j )(t), p̈(l))3
·
−−−→
ϕ j p̈(l)

}
,

s.t. D(p(ϕ j )
(t), p̈(l)) ≤ ms(ϕ j ) · ts, (18)

where E(l)(t+1) denotes the predicted amount of required
electricity of EVCs on the road segment l in the (t +1)-th time
slot, and p̈(l) denotes the midpoint of the road segment l.

Then, the resultant force and the transition probability
matrix can be obtained by (7) and (10), respectively.

Fig. 7. Message exchanges in PS-IMCS.

V. PLACEMENT STRATEGY FOR IDLE
MOBILE CHARGING STATIONS

To shorten the charging delay of EVCs and enhance the
proportion of charged EVCs, idle MCSs should actively track
the EVCs with large charging demand and move into the
areas with small charging supply. Then, the proper placement
decisions can be made for idle MCSs by our proposed MDP
model. The main stages of PS-IMCS are described as follows:

Stage A. EVCs Make Charging Requests to Idle MCSs.
In each time slot (suppose the t-th time slot), if an EVC
vi makes a charging request by broadcasting a request_msg
message within the communication range Rc (Fig. 7).

The request_msg of vi includes the current position and
the required electricity, and is expressed as (p(vi )

(t),1e(vi )),
where 1e(vi ) is calculated by:

1e(vi ) = c · D(oi , di )− e(vi )
(0). (19)

Stage B. Idle MCSs Approve the Charging Requests of
EVCs. After an idle MCS ϕ j receives the request_msg
from vi , (p(vi )

(t),1e(vi )) is encapsuled into an upload_msg
message (Fig. 7) and then is uploaded to the cloud server for
predicting the amount of required electricity of EVCs. If ϕ j
accepts the charging request of vi , an approve_msg message
(Fig. 7) is sent back to vi .

Specifically, in Stage B, the following cases are discussed:

• Case 1: An EVC makes a charging request to an idle
MCS. The idle MCS approves the charging request of
the EVC.

• Case 2: Multiple EVCs make charging requests to the
same idle MCS (some EVCs compete for the MCS).
The idle MCS approves the charging request of the
EVC with the largest required electricity by the received
request_msg messages.

• Case 3: An EVC makes a charging request to mul-
tiple idle MCSs. These idle MCSs could send several
approve_msg messages to the EVC, and the EVC sends
an ack_msg message to the idle MCS with the shortest
charging delay.

Note that the cloud server adopts a centralized learning for
the prediction of the amount of required electricity on each
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road segment, because a distributed learning method on MCSs
or EVCs will result in the heavy communication overhead (the
massive information collection of historical amount of required
electricity, and the massive information release of predicted
amount of required electricity).

Stage B.1. MCSs charge EVCs. When vi receives the
approve_msg from ϕ j . The charging position p̂ is determined
by minimizing the charging delay of vi :

p̂ = arg min
p̃∈P

{
Delay(vi )| c · D(p(vi )

(t), p̃) ≤ e(vi )
(t)

}
,

(20)

where c · D(p(vi )
(t), p̃) ≤ e(vi )

(t) implies that the residual
electricity of vi can support the travel to the position p̃.

Then, an ack_msg message including the charging posi-
tion p̂ is sent to ϕ j , as shown in Fig. 7. After that, vi and ϕ j
move towards the charging position p̂ for the charging.

Stage B.2. EVCs Continue their Travels. After being
charged, the EVC vi turns into an EV, and continues the travel
to the destination di .

Stage C . Idle MCSs Decide on the Placements. Every time
slot, the cloud server releases the predicted amount of required
electricity of EVCs on each road segment to idle MCSs, and
thus the attraction force of each idle MCS can be calculated,
as introduced in Section IV-C.

Each idle MCS exchanges a notice_msg message with
neighboring idle MCSs (the notice_msg message includes
the current position and the residual electricity), and then the
repulsion force (charging demand force) of the idle MCS can
be calculated.

If an idle MCS ϕ j does not receive any charging requests
from EVCs in the t-th time slot, ϕ j decides on the optimal
placement in the (t + 1)-th time slot p(ϕ j )

(t+1) by (14), and
then ϕ j moves towards p(ϕ j )

(t+1).
An example of sequential diagram concerning the message

exchanges in PS-IMCS is illustrated in Fig. 8, where two
idle MCSs ϕ j and ϕ j ′ receive the charging requests from an
EVC vi . ϕ j is assigned to charge vi , and ϕ j ′ moves towards
a decided placement.

VI. THEORETICAL ANALYSIS OF PS-IMCS

A. Complexity

TABLE I shows the communication complexity and com-
putational complexity of our proposed PS-IMCS.

With regard to the communication complexity: (i) In
Stage A, each EVC broadcasts a request_msg message, and
the number of request_msg messages is at most O(M · N ).
(i i) In Stage B, the amounts of required electricity of neigh-
boring EVCs are uploaded by idle MCSs to the cloud server,
and the number of upload_msg messages reaches O(M).
Likewise, approve_msg messages could be sent back to
EVCs, and the number of approve_msg messages is O(M)
in the worst case where each idle MCS accepts the charging
request of an EVC. In Stage B.1, the charging positions deter-
mined by EVCs are sent to idle MCSs before the charging,
and the number of ack_msg messages containing the charging
positions is at most O(M). (i i i) In Stage C , the information
exchanges should be carried out between the neighboring idle

Fig. 8. Sequential diagram of PS-IMCS.

TABLE I
COMPLEXITY OF PS-IMCS

MCSs, and the number of exchanged notice_msg messages
is up to O(M2).

With regard to the computational complexity: (i) Each EVC
could calculate the required electricity in Stage A, and the
computational complexity is O(N ). (i i) Each EVC could
determine the charging position (Stage B.1), and the computa-
tional complexity of Stage B.1 is at most O(Np ·N ), where Np
denotes the number of available positions which are arranged
for MCSs charging EVCs. (i i i) In Stage C , to make the
placement decisions for idle MCSs, the cloud server predicts
the amounts of required electricity on road segments, and the
computational complexity of training the Bi-LSTM model is
approximatively written as O(Kc · Kin + K 2

c + Kc · Kout ),
where Kc · Kin denotes the number of weights from input
layer to hidden layer, K 2

c denotes the number of weights in
hidden layer, and Kc ·Kout denotes the number of weights from
hidden layer to output layer [33]. Each idle MCS calculates
the attraction force and repulsion force, which results in O(M)
computations.

Typically M ≪ N , the communication complexity of
PS-IMCS is of O(M · N ), and the computational complexity
of PS-IMCS is of O(Np · N ).

B. Convergence and Convergence Rate of MDP Model in
PS-IMCS

Proposition 1 and Proposition 2 prove the convergence
and the convergence rate of our proposed MDP model,
respectively.
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Proposition 1: The MDP model can converge in the Cesàro
sense.

Proof: Suppose P is a stochastic matrix, and ∥P∥ is defined
as ∥P∥ = supi

∑
j pi j .

For an MDP with finite state space and finite action space,
there is limt→∞

1
t ·

∑t
τ=0 ∥P(τ )−P∥ = 0 [34], [35]. P(τ,τ+n)

denotes a n-step transition matrix, i.e., P(τ,τ+n)
= P(τ ) ·

P(τ+1)
· · ·P(τ+n). Then, we have the following inequality:

∥P(τ,τ+2)
− P2

∥ ≤ ∥P(τ+1)
· P(τ+2)

− P(τ+1)
· P∥

+ ∥P(τ+1)
· P − P2

∥ ≤ ∥P(τ+2)
− P∥

+ ∥P(τ+1)
− P∥, (21)

which implies that: limt→∞
1
t ·

∑t
τ=0 ∥P(τ,τ+2)

− P2
∥ = 0.

For any two positive integers k and k′, we can obtain
that: limt→∞

1
t ·

∑t
τ=0 ∥P(τ,τ+k)

− Pk
∥ = 0 and limt→∞

1
t ·∑t

τ=0 ∥P(τ+k′,τ+k′
+k)

− Pk
∥ = 0 by an inductive method,

indicating that the MDP model can converge in the Cesàro
sense. □

Thus, after a finite number of iterations, the optimal solution
can be obtained, i.e., the optimal placements of idle MCSs can
be obtained.

Proposition 2: The convergence rate of the MDP model is
approximated to a geometric rate.

Proof: Suppose Q is a constant matrix formed by the
rows of left eigenvector of P (denoted by π ). Since the left
eigenvector satisfies that πP = λP and

∑
i πi = 1. Then,

we can obtain the following inequality similar to [35]:

sup
m≥0

∥
1
t

t∑
τ=1

P(m,m+τ)
−Q ∥≤

2(Jd + r)
t

+ sup
m≥0

d
W+d−1∑
v=1

1
t

t∑
τ=1

∥ Pm+τ+v − P ∥

+
L − J

t
∥

d∑
τ=1

PW+τ−1
− dQ ∥, (22)

where L , W , and J satisfy that: t = Ld + r (0 ≤ r ≤ d) and
W ≤ Jd ≤ Ld.

We have that ∥
∑d
τ=1 PW+τ−1

− dQ ∥≤ CβW (C > 0 and
1 > β > 0) [34].

Let W =
−α ln t+1

lnβ (α > 0) and J = W + 1, there is:

∥

d∑
τ=1

PW+τ−1
− dQ ∥≤ CβW

= Ct−α, (23)

which yields that: supm≥0
1
t
∑t
τ=1 ∥Pm+τ − P∥ ≤ Gt−α ,

where G a constant, and then we obtain (24):

sup
m≥0

d
W+d−1∑
v=1

1
t

t∑
τ=1

∥ Pm+τ+v − P ∥

≤ d
W+d−1∑
v=1

Gt−α ≤ Gd(W + d − 1)t−α. (24)

Thus, ∀ε > 0, ∃D(ε) satisfies (25):

∥
1
t

t∑
τ=1

P(m,m+τ)
−Q ∥

≤ tε−1
+ Ctε−α

+ Gd(W + d − 1)tε−α =
D(ε)

tmin(α,1)−ε , (25)

which indicates that the convergence rate follows a geometric
sequence, and the error between two successive iterations is
reduced by a fixed proportion. Hence, the convergence rate is
geometric with respect to the number of iterations. □

VII. PERFORMANCE EVALUATIONS

In this section, the simulation results are provided to eval-
uate the performance of our proposed PS-IMCS, along with
some comparisons with other strategy models (R-COST [6],
RLA [22], stationary strategy (SS), and random walk
strategy (RWS)).

The simulations are conducted on a real-world taxi dataset
originally provided by Didi Corporation [36] which has been
modified by us according to the mobile charging scenarios.2

This dataset contains the GPS trajectories of more than 10,000
taxis during the period from Oct. 1, 2018 to Oct. 31, 2018 in
Chengdu city, China. Each GPS trajectory is represented by
a sequence of taxi ID, latitudes, longitudes, and timestamps.
Note that the passengers of taxis and the drivers of EVs have
the similar travel intentions in their daily lives. Thus, this
dataset is adopted for our simulations, and we use these taxi
trajectories to simulate the movements of EVs.

The initial battery electricity of each EV obeys a normal
distribution N (µ, δ2) [37], where the value of µ denotes the
average residual battery electricity of EVs, and the value
of δ denotes the deviation of residual battery electricity
among EVs.

We develop a simulator using Python language, and the
simulation results are averaged over 500 runs. The main
parameter settings are shown in TABLE II. Note that the
parameter values given in TABLE II are taken as the default
values, i.e., the default values of parameters are adopted in
the following simulations when the parameter values are not
explicitly explained.

Firstly, an example is illustrated in Fig. 9 with five MCSs,
where the placements of idle MCSs decided by PS-IMCS
are marked. Fig. 9 shows that the movements of idle MCSs
are guided by the charging demand force, until these
MCSs receive and approve the charging requests from EVCs.

A. Proportion of Charged EVCs

The proportion of charged EVCs can reflect the charging
experience of EVCs. Fig. 10(a) illustrates the impacts of M
and N on the proportion of charged EVCs. The proportion of
charged EVCs is decreased with the increase of N , because
more EVCs could compete for the charging services of MCSs,
and thus more EVCs cannot be charged by MCSs. On the
contrary, the proportion of charged EVCs is increased with
the increase of M , and the reason is that EVCs are easier to
be charged by MCSs when MCSs are deployed more densely.

Furthermore, the proportion of charged EVCs under dif-
ferent µ and δ is observed in Fig. 10(b). µ indicates the

2https://github.com/lsspac/manually-synthesizing-trajectories
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TABLE II
SIMULATION PARAMETERS

Fig. 9. An example of placements of idle MCSs.

average residual battery electricity of EVs, and the proportion
of charged EVCs with a larger µ is larger than that with a
smaller µ, due to the fact that a larger µ implies that more
EVs have enough battery electricity to complete their travels
without charging demand, and thereby EVCs can be charged
by MCSs more easily. The proportion of charged EVCs is
dropped when δ is increased, and this is because with a larger δ
more EVCs have the residual battery electricity which is under
the low battery state.

Fig. 10(c) illustrates the impact of D̃ on the proportion of
charged EVCs. D̃ denotes the maximum time allowing an
EVC to be charged by MCSs after it makes a charging request.
Thus, the proportion of charged EVCs is gradually increased

Fig. 10. Proportion of charged EVCs.

with the increase of D̃, because EVCs are allowed to wait for
the arrivals of MCSs during a longer period.

B. Average Charging Delay of EVCs

As shown in Fig. 11(a), the curve with a larger M is much
lower than that with a smaller M , which is attributed to the
fact that EVCs can be charged more conveniently when more
MCSs are deployed, and thus the average charging delay of
EVCs is largely shortened. The average charging delay of
EVCs is prolonged with the increase of N , and this is because
some EVCs could wait longer for the MCSs which should first
charge other EVCs.

In Fig. 11(b), the curve with a larger µ is lower than that
with a smaller one. The reason is that an EVC with less
residual battery electricity typically requires more electricity,
thus yielding longer charging time (the third part in (3)). Note
that the charging time does not affect the action-decisions of
idle MCSs. However, if the charging speed is too slow, the
travels of EVCs will be delayed for a longer period due to
longer charging time.
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Fig. 11. Average charging delay of EVCs.

Likewise, a smaller δ implies that more EVs have the
residual battery electricity exceeding the low battery state,
which shortens the average charging delay of EVCs. With a
larger D̃, the average charging delay of EVCs is prolonged
(Fig. 11(c)).

C. Impact of Maximum Battery Capacity of Each MCS

The maximum battery capacity of each MCS is set to
90 kwh (TABLE II), i.e., the residual electricity of each MCS
is equal to 90 kwh after it is recharged by the power grid.
We provide Fig. 12 to observe the impact of the maximum
battery capacity of each MCS. In Fig. 12, we find that the
proportion of charged EVCs is increased with the increase
of emax , because the service time of MCSs is prolonged when
each MCS has a larger battery capacity (a larger emax ), and
thus more EVCs can be charged. When the maximum battery
capacity is large enough (emax > 30 kwh), the proportion of
charged EVCs remains almost unchanged.

Besides, the average charging delay of EVCs is independent
of emax , and the reason is that only the charging delay
of successfully charged EVCs is counted into the average
charging delay of EVCs, and hence the average charging delay
of EVCs is mainly related to the deployment density of MCSs
(i.e. the number of MCSs) rather than the maximum battery
capacity.

Fig. 12. Impact of maximum battery capacity of each MCS.

Fig. 13. Simulation results on a synthetic dataset.

D. Proportion of Charged EVCs and Average Charging
Delay of EVCs on a Synthetic Dataset

We manually synthesize a small dataset which consists
of 20,000 trajectories, and each trajectory is composed of
a series of longitudes, latitudes, and timestamps. The initial
positions of the trajectories are uniformly distributed in the
longitude interval [104.031,104.129] and the latitude interval
[30.631,30.729]. The location of each EV is sampled every
minute to form these trajectories. The simulation results in
terms of proportion of charged EVCs and average charging
delay of EVCs conducted on this dataset are given in Fig. 13.
Similar to the results in Fig. 10(a) and Fig. 11(a), the propor-
tion of charged EVCs is decreased with the increase of N and
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Fig. 14. Average charging expense of EVCs.

increased with the increase of M . The average charging delay
of EVCs is increased with the increase of N and decreased
with the increase of M .

E. Average Charging Expense of EVCs

The charging expense of an EVC is calculated as [21].
Fig. 14 illustrates the impacts of M , N , µ, δ, ϖ , and γ on
the average charging expense of EVCs. Two observations are
obtained: (i) The number of MCSs does not have an obvious
impact on the average charging expense of EVCs, because the
average charging expense of EVCs is calculated as the average
of the charging expenses of EVCs which have been charged by
MCSs, rather than those EVCs which cannot be charged during
the maximum waiting delay D̃; (i i) The average charging
expense of EVCs is slowly increased with the increase of N ,
due to the intensified competitions among EVCs for MCSs.

In Fig. 14(b), the average charging expense of EVCs is
reduced with the increase of µ or the decrease of δ, which is
attributed to the fact that a larger µ or a smaller δ indicates
that less electricity is required by EVCs.

When γ is set smaller, EVCs make charging requests earlier,
and they could be charged by MCSs with shorter extra travels
(Fig. 14(c)), thus reducing their charging expenses. Fig. 14(c)
also indicates that the average charging expense of EVCs is

Fig. 15. Average charging profit of MCSs.

Fig. 16. Average charging cost of MCSs.

Fig. 17. Decision delay.

almost independent of ϖ , i.e., the charging speed does not
affect the charging expenses of EVCs.
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Fig. 18. Comparisons among different strategy models.

F. Average Charging Profit of MCSs and Average Charging
Cost of MCSs

The average charging profit of MCSs [38] reflects the
charging efficiency of MCSs. Essentially, the charging profit
of an MCS can be raised by prolonging the charging duration,
i.e., an MCS earns a larger profit by spending more time on
charging EVCs rather than travelling on the roads.

In Fig. 15(a), we observe that the curves of average charging
profit of MCSs first ascend rapidly with the increase of N ,
and then these curves grow slowly when N is large enough
(N ≥ 720), due to the fact that the number of EVCs which can
be served by MCSs remains constant when there are a large
number of EVCs (the charging capacity of MCSs is related to
the number of MCSs), although MCSs can earn more charging
profits by charging more EVCs. The average charging profit
of MCSs is larger with a smaller M (when N is small), and
the reason is that the average charging profit of MCSs can be
increased by making each MCS undertake the charging tasks
as more as possible. The above phenomena indicate that the
number of MCSs should be carefully arranged according to
the number of EVs, and thus a proper tradeoff between the
charging profits of MCSs and the deployment cost of MCSs
can be achieved.

Likewise, the decrease of µ (EVCs require more electricity)
leads to the increase of the average charging profit of MCSs,
as shown in Fig. 15(b).

In Fig. 15(c), if MCSs can charge EVCs more quickly
(a larger ϖ ), and then MCSs can charge more EVCs and earn
more charging profits. A larger γ implies that EVCs make the
charging requests when they have less residual electricity, and
MCSs should transfer more electricity to EVCs.

The average charging cost of MCSs is calculated as the
average of the cost for travelling on roads of all MCSs.
As shown in Fig. 16, the average charging cost of MCSs is
increased with the increase of N , the reason is that when M
is fixed (the number of MCSs is fixed) there are more EVCs
when there are more EVs distributed in the road network, and
idle MCSs could charge more EVCs (the average charging
profit of MCSs is increased) with larger cost, although idle
MCSs could be closer to EVCs when there are more EVs
distributed in the road network.

G. Comparisons Among Different Strategy Models

Firstly, we compare PS-IMCS with the centralized method
(a centralized version of PS-IMCS) in terms of the decision
delay. In the centralized method, the cloud server obtains the

information of all EVCs and MCSs (the current positions and
required electricity of all EVCs, the current positions and
residual electricity of all idle MCSs), and makes the placement
decisions for idle MCSs. The decision delay is comprised of
three parts: the delay for predicting the amount of required
electricity of EVCs on road segments, the communication
delay, and the delay for carrying out the MDP model.

The simulation results of the decision delay are provided in
Fig. 17, which indicates that the decision delay of PS-IMCS is
significantly shorter than that of the centralized method, and
the decision delay of PS-IMCS is prolonged very slightly with
the increase of the number of EVs.

To further analyze the merits of PS-IMCS, we compare
PS-IMCS with R-COST, RLA, SS, RWS, and centralized
method. These strategy models are compared in terms of the
proportion of charged EVCs, average charging delay of EVCs,
average charging expense of EVCs, and average charging
profit of MCSs. The simulation results are given in Fig. 18,
which suggests that PS-IMCS can achieve superior results and
outperform other strategy models.

The reason for these phenomena is that PS-IMCS can
make appropriate placement decisions for idle MCSs by the
adopted attraction-repulsion model which depicts the inter-
action between charging demand and charging supply over
time, and idle MCSs can track the EVCs with large charging
demand and move into the areas with few idle MCSs. Thus,
idle MCSs can charge EVCs more agilely once EVCs make
charging requests.

Specially, RWS yields the smallest proportion of charged
EVCs, the longest average charging delay of EVCs, and the
smallest average charging profit of MCSs, which suggests
that the random walks of idle MCSs worsen the charging
efficiency of MCSs significantly. In Fig. 18(a), the curves of
different strategy models are close to each other and have some
fluctuations with the increase of N .

The average charging delay of EVCs obtained by R-COST
is shorter than that of PS-IMCS when N ≤ 300, because
R-COST adopts a centralized method to obtain better place-
ments for idle MCSs. However, with the further increase
of N , the potential charging demand and charging supply are
much difficult to be predicted, and accordingly the placements
of idle MCSs are difficult to be properly decided, although
a centralized method is adopted. Moreover, a centralized
method is not available in real charging scenarios due to the
extremely high communication complexity and computational
complexity.
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Note that the performance of PS-IMCS is better than that
of the centralized method. This is because the placement
decisions of idle MCSs are decided based on the charging
demand force, and in the centralized method the charging
demand force around each idle MCS is affected by all EVCs
and other idle MCSs. Actually, the idle MCSs far away from
EVCs cannot provide the charging services, and the calculation
of charging demand force in the centralized method cannot
reflect the charging demand and charging supply around each
idle MCS properly.

VIII. CONCLUSION

We have studied the problem of placements of idle MCSs,
and the Placement Strategy for Idle Mobile Charging Stations
(PS-IMCS) has been introduced. In PS-IMCS, each idle MCS
can measure the potential charging demand in the neighboring
area through obtaining the resultant force (charging demand
force) composed of attraction force (neighboring EVCs) and
repulsion force (neighboring idle MCSs). Moreover, an MDP
model is designed to make placement decisions for each
idle MCS, and the MDP model can converge to an equi-
librium quickly. Therefore, PS-IMCS reduces the charging
delay of EVCs and enhances the proportion of charged EVCs
effectively.

The length of each time slot should be properly set. If the
length of each time slot is too long, the potential charging
demand of EVCs cannot be timely measured, and the place-
ments of idle MCSs will be less efficient; If the length of each
time slot is too short, both the communication complexity and
computational complexity of PS-IMCS will be increased due
to more frequent communications and computations, and the
action decision of each idle MCS could not be completed
during a time slot. In PS-IMCS the charging services of
MCSs are provided based on the FCFS principle (First Come
First Service). However, the performance of PS-IMCS can be
further improved, if some EVCs making charging requests
later are allowed to be charged earlier (e.g., these EVCs are
nearer to idle MCSs, or the maximum waiting delay of these
EVCs is about to expire). This work mainly focuses on the
placements of idle MCSs, and FCSs are not considered in the
model and the proposed strategy. FCSs can be considered as
special MCSs which are stationary, i.e., the moving speed of
FCSs is equal to zero. Thereby, PS-IMCS can be evolved into
a strategy suitable for the IoEV with both FCSs and MCSs.
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[28] A. Baykasoălu and C. Baykasoălu, “Weighted superposition attraction-
repulsion (WSAR) algorithm for truss optimization with multiple
frequency constraints,” Structures, vol. 30, pp. 253–264, Apr. 2021.

[29] L. A. Márquez-Vega, M. Aguilera-Ruiz, and L. M. Torres-Treviño,
“Multi-objective optimization of a quadrotor flock performing target
zone search,” Swarm Evol. Comput., vol. 60, Feb. 2021, Art. no. 100733.

[30] M. Wu, S. Pan, and X. Zhu, “Attraction and repulsion: Unsupervised
domain adaptive graph contrastive learning network,” IEEE Trans.
Emerg. Topics Comput. Intell., vol. 6, no. 5, pp. 1079–1091, Oct. 2022,
doi: 10.1109/TETCI.2022.3156044.

[31] V. Kumar, “Mathematical analysis of reinforcement learning—Bellman
optimality equation,” Towards Data Sci., pp. 1–13, Feb. 2020.

[32] H. Xue, D. Q. Huynh, and M. Reynolds, “PoPPL: Pedestrian trajectory
prediction by LSTM with automatic route class clustering,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 32, no. 1, pp. 77–90, Jan. 2021.

[33] P. J. Freire et al., “Performance versus complexity study of neural
network equalizers in coherent optical systems,” J. Lightw. Technol.,
vol. 39, no. 19, pp. 77–90, Oct. 2021.

[34] B. Bowerman, H. T. David, and D. Isaacson, “The convergence of Cesaro
averages for certain nonstationary Markov chains,” Stochastic Processes
Appl., vol. 5, no. 3, pp. 221–230, 1977.

[35] W. Yang, “Convergence in the Cesàro sense and strong law of large
numbers for nonhomogeneous Markov chains,” Linear Algebra Appl.,
vol. 354, nos. 1–3, pp. 275–288, Oct. 2002.

[36] Didi Corporation. (2020). GAIA Open Dataset. [Online]. Available:
https://outreach.didichuxing.com/app-vue/dataList

[37] R. R. Richardson, M. A. Osborne, and D. A. Howey, “Gaussian process
regression for forecasting battery state of health,” J. Power Sources,
vol. 357, pp. 209–219, Jul. 2017.

[38] L. Liu, H. Zhang, J. Xu, and P. Wang, “Providing active charging
services: An assignment strategy with profit-maximizing heat maps
for idle mobile charging stations,” IEEE Trans. Mobile Comput., early
access, Feb. 22, 2023, doi: 10.1109/TMC.2023.3247441.

Linfeng Liu (Member, IEEE) received the B.S.
and Ph.D. degrees in computer science from South-
east University, Nanjing, China, in 2003 and 2008,
respectively. He is currently a Professor with
the School of Computer Science and Technol-
ogy, Nanjing University of Posts and Telecom-
munications, China. He has published more than
120 peer-reviewed papers in some technical jour-
nals or conference proceedings, such as IEEE
TRANSACTIONS ON MOBILE COMPUTING, IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED

SYSTEMS, IEEE TRANSACTIONS ON INFORMATION FORENSICS AND
SECURITY, IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION
SYSTEMS, IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, IEEE
TRANSACTIONS ON SERVICES COMPUTING, ACM TAAS, ACM TOIT, Com-
puter Networks, and JPDC (Elsevier). His main research interests include
vehicular ad hoc networks, wireless sensor networks, and multi-hop mobile
wireless networks. He has served as a TPC Member for GLOBECOM,
ICONIP, VTC, and WCSP.

Su Liu received the B.S. degree in applied physics
from the Nanjing University of Information Science
and Technology in 2021. He is currently pursuing
the master’s degree with the Nanjing University of
Posts and Telecommunications. His current research
interests include the Internet of Electric Vehicles and
vehicular ad hoc networks.

Jiagao Wu (Member, IEEE) received the Ph.D.
degree in computer science from Southeast Uni-
versity, Nanjing, China, in 2006. He is currently
an Associate Professor with the School of Com-
puter Science and Technology, Nanjing University of
Posts and Telecommunications. His current research
interests include mobile social networks and oppor-
tunistic networks.

Jia Xu (Senior Member, IEEE) received the Ph.D.
degree from the School of Computer Science and
Engineering, Nanjing University of Science and
Technology, Jiangsu, China, in 2010. He is currently
a Professor with the Jiangsu Key Laboratory of Big
Data Security and Intelligent Processing, Nanjing
University of Posts and Telecommunications. His
main research interests include crowdsourcing, edge
computing, and wireless sensor networks. He has
served as a TPC Member for GLOBECOM, ICC,
MASS, ICNC, and EDGE. He has served as the

PC Co-Chair for SciSec 2019, an Organizing Chair for ISKE 2017, and the
Publicity Co-Chair for SciSec 2021.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on November 12,2023 at 02:23:05 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TETCI.2022.3156044
http://dx.doi.org/10.1109/TMC.2023.3247441

