
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, AUGUST 2023 1

PAD: Towards Principled Adversarial Malware
Detection Against Evasion Attacks

Deqiang Li, Shicheng Cui, Yun Li, Jia Xu, Fu Xiao and Shouhuai Xu

Abstract—Machine Learning (ML) techniques facilitate automating malicious software (malware for short) detection, but suffer from
evasion attacks. Many researchers counter such attacks in heuristic manners short of both theoretical guarantees and defense
effectiveness. We hence propose a new adversarial training framework, termed Principled Adversarial Malware Detection (PAD), which
encourages convergence guarantees for robust optimization methods. PAD lays on a learnable convex measurement that quantifies
distribution-wise discrete perturbations and protects the malware detector from adversaries, by which for smooth detectors, adversarial
training can be performed heuristically with theoretical treatments. To promote defense effectiveness, we propose a new mixture of
attacks to instantiate PAD for enhancing the deep neural network-based measurement and malware detector. Experimental results on
two Android malware datasets demonstrate: (i) the proposed method significantly outperforms the state-of-the-art defenses; (ii) it can
harden the ML-based malware detection against 27 evasion attacks with detection accuracies greater than 83.45%, while suffering an
accuracy decrease smaller than 2.16% in the absence of attacks; (iii) it matches or outperforms many anti-malware scanners in
VirusTotal service against realistic adversarial malware.

Index Terms—Malware Detection, Evasion Attack, Adversarial Example, Provable Defense, Deep Neural Network.

F

1 INTRODUCTION

INTERNET is widely used for connecting various modern
devices, which facilitates the communications of our daily

life, but spreads cyber attacks as well. For example, Kasper-
sky [1] reported detecting 33,412,568 malware samples in
the year of 2020, 64,559,357 in 2021, and 109,183,489 in
2022. The scale of this threat motivates the use of Machine
Learning (ML) techniques, including Deep Learning (DL),
to automate the detection. Promisingly, empirical evidence
demonstrates the advanced performance of ML-based mal-
ware detection (see, e.g., [2], [3], [4], [5], [6]).

Unfortunately, ML-based malware detectors are vulner-
able to adversarial examples. These examples, a type of mal-
ware variants, are generated by modifying non-functional
instructions in the existing executable programs (rather than
writing a new one from scratch) [7], [8], [9], [10], [11], [12].
Adversarial examples can equip with poisoning attack [13],
[14], evasion attack [12], [15], [16], or both [17], while we nar-
row down the scope and focus on the evasion attack solely,
which allows the attacker to mislead a model in the test
phase. To combat evasive attacks, pioneers propose several
approaches, such as input transformation [18], weight reg-
ularization [19], and classifier randomization [20], most of
which, however, have been broken by sophisticated attacks
(e.g., [10], [21], [22], [23]). Nevertheless, recent studies em-
pirically demonstrate that adversarial training can harden ML
models to certain extent [24], [25], which endows a model

• D. Li is with the School of Computer Science, Nanjing University of Posts
and Telecommunications, Nanjing, 210023, China

• S. Cui is with the School of Computer Engineering, Nanjing Institute of
Technology, Nanjing, 211167, China

• Y. Li, J. Xu, and F. Xiao are with the School of Computer Science, Nanjing
University of Posts and Telecommunications, Nanjing, 210023, China

• S. Xu is with the University of Colorado Colorado Springs, 1420 Austin
Bluffs Pkwy, Colorado Springs, Colorado, 80918 USA.
Email: sxu@uccs.edu

with robustness by learning from adversarial examples, akin
to “vaccines”.

Figure 1 illustrates the schema of adversarial training.
Owing to the efficiency issue of mapping representation per-
turbations back to the problem space, researchers conduct
adversarial training in the feature space [10], [15], [24], [25],
[26]. Therefore, the attained robustness should propagate
to the problem space, even though there are “side-effect”
features impeding the inverse-feature mapping [10]. In the
feature space, adversarial training typically involves inner
maximization (searching perturbations) and outer mini-
mization (optimizing model parameters). Both are handled
by heuristic methods short of theoretical guarantees [24],
[25], leading to the limitation of rigorously analyzing which
types of attacks the resultant model can thwart, particularly
in the context of discrete domains (e.g., malware detec-
tion). Wherein, the fundamental concern is the optimization
convergence: the inner maximization shall converge to a
stationary point, and the resultant perturbation approaches
the optimal one; the outer maximization has gradients of
loss w.r.t. parameters proceed toward zero regarding certain
metrics (e.g., `2 norm) in gradient-based optimization. In-
tuitively, as long as convergence requirements are met, the
defense model mitigates attacks incomparable to the one
used for adversarial training.

Existing methods handle the limitations above with mild
assumptions held [27], [28], [29]. For instance, Qi et al.
search text perturbations with theoretical guarantees on at-
tackability by assuming the non-negative model [28], which
further motivates new attacks counting on the submodular
optimization [30]. Indeed, the non-negative ML model leads
to binary monotonic classification (without outer minimiza-
tion used), which intrinsically circumvents any attack that
utilizes either feature addition or removal perturbations, but
not both [27], [31]. However, this type of classifier tends to

1545-5971/XX$XX.XX © 2023 IEEE

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3265665

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on April 09,2023 at 23:38:28 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, AUGUST 2023 2

∇𝜃ℐ

𝑦 ∈ 𝒴

∇𝜃ℐ

?
Optimal

Forward Back-propagate Non-applied

Manipulate

 In

n
e

r
m

a
x

 O

ut
e

r
m

in

𝐱+ 𝛿𝐱
𝛿𝐱 = 𝛿𝐱

∗
?

Convergent

𝑧′ ∈ 𝒵
𝐱′ ∈ 𝓧 𝒥 𝐱′, 1 Adv. apps

Constraint
estimating

Parameter
optimizing

 ∇𝜃ℐ
𝑡 2
2

𝑡=∞
 0

Feature
extraction

Feature set App set
𝑧 ∈ 𝒵

ML
model

Loss

𝐱 ∈ 𝓧 𝒥 𝐱,𝑦

Labels

𝜙
𝜙−1

∇𝐱ℐ Side-effect ?

Problem space Feature space

∇𝜃ℐ

Fig. 1: Schema of feature space adversarial training and its
limitations on whether (i) the attained robustness can back-
propagate to the problem space (upper left), (ii) the inner
maximization searches perturbations optimally (middle),
and (iii) the outer minimization optimizes model parame-
ters convergently (right).

sacrifice the detection accuracy notably [10]. In order to relax
the over-restrictive assumption, a recent study [29] resorts
to theories of weakly submodular optimization, which ne-
cessitates a concave and smooth model. However, modern
ML architectures (e.g., deep neural networks) may be not
built in concavity. Moreover, these proposed attacks are
not contextualized within malware detection or are used to
implement adversarial training. From a broader domain of
image processing, pioneers [32], [33], [34] propose utilizing
smooth ML models, because specific distance metrics (e.g.,
`2 norm) can be incorporated to shape loss landscape, lead-
ing to the local concavity w.r.t. the input, and thus easing the
inner maximization. Furthermore, the smoothness benefits
the convergence of outer minimization [32]. Because the
specific metrics are utilized for continuous input, they may
be unsuitable for the software samples inherent in discrete
space. Worst yet, semantic-preserved adversarial malware is
not necessarily measured by small perturbations [10], [24].

Our Contributions. In this paper, we decorate adversar-
ial training methods for malware detection, which tackles
three limitations as follows: (i) Robustness gap: we relax
the dependencies between “side-effect” features in training,
and demonstrate that the resultant feature-space model can
defend against practical attacks. (ii) Adversarial training
without convergence guaranteed: we learn convex measure-
ments from data for quantifying distribution-wise perturba-
tions, which regard examples falling outside the underlying
distribution as adversaries. In this way, the inner maximizer
has to bypass the malware detector and the adversary detec-
tor, leading to a constrained optimization problem, whose
Lagrangian relaxation, for the smooth malware detector,
can be concave. Consequently, the smoothness encourages
the convergence of gradient-based outer minimization [32].
(iii) Incapable of rigorously resisting a range of attacks: we
organize multiple types of gradient-based attack methods
to approximate the optimal attack, which is used to imple-
ment adversarial training benefiting from the optimization
convergence. Our contributions are summarized as follows:

• Adversarial training with formal treatment. We propose
a new adversarial training framework, dubbed Principled

Adversarial Malware Detection (PAD), which for smooth
models, encourages convergence guarantees for adversar-
ial training, resulting in provable robustness. PAD extends
the malware detector with a customized adversary detec-
tor, wherein the customization is the convex distribution-
wise measurement.

• Robustness improvement. We establish a PAD model by
combining a Deep Neural Network (DNN)-based mal-
ware detector and an input convex neural network based
adversary detector. Furthermore, we enhance the model
by adversarial training incorporating a new mixture of
attacks, dubbed Stepwise Mixture of Attacks, leading to
the defense PAD-SMA. Theoretical analysis shows the
robustness of PAD-SMA, including attackability of inner
maximization and convergence of outer minimization.

• Experimental validation. We compare PAD-SMA with
seven defenses in the literature via widely-used Drebin
[35] and Malscan [36] malware datasets while considering
a spectrum of attack methods, ranging from no attacks, 13
oblivious attacks, and 18 adaptive attacks. Experimental
results show that PAD-SMA significantly outperforms
other defenses against attacks with trading-off detection
accuracy on the test dataset slightly. Specifically, PAD-
SMA thwarts a broad range of attacks effectively, exhibit-
ing accuracy≥ 81.18% under 30 attacks on Drebin and ac-
curacy ≥ 83.45% under 27 attacks on Malscan, except for
the Mimicry attack guided by multiple (e.g., 30 on Drebin
or 10 on Malscan) benign software samples [9], [26]; it
outperforms some anti-malware scanners (e.g., Symantec,
Comodo), matches with some others (e.g., Microsoft), but
falls behind Avira and ESET-NOD32 in terms of defending
against adversarial malware examples (while noting the
attacker knows our features but not scanners).

To the best of our knowledge, this is the first principled
adversarial training framework for malware detection. We
feel the responsibility to make the codes publicly available
at https://github.com/deqangss/pad4amd.
Paper outline. Section 2 reviews some background knowl-
edge. Section 3 elaborates the framework of principled
adversarial malware detection, and an instantiated defense
method is described in Section 4. Section 5 analyzes the
proposed method in a theoretical manner. Section 6 presents
the experiments and results. Section 7 discusses related prior
studies. Section 8 concludes the paper.

2 BACKGROUND KNOWLEDGE

Notations. The main notations are summarized as follows:
• Input space: Let Z be the software space (i.e., problem

space), and z ∈ Z be an example.
• Malware detector: Let f : Z → Y map z ∈ Z to the label

space Y = {0, 1}, where “0” (“1”) stands for the benign
(malicious) example.

• Adversary detector: Let g : Z → R map z ∈ Z to a real-
value confidence score such that g(z) > τ indicates z is
adversarial and is non-adversarial otherwise, where τ is a
pre-determined threshold.

• Feature extraction: Let φ : Z → X be a hand-crafted
feature extraction function, where X ⊂ Rd is a discrete
space and d is the number of dimensions.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3265665

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on April 09,2023 at 23:38:28 UTC from IEEE Xplore. Restrictions apply.

https://github.com/deqangss/pad4amd

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, AUGUST 2023 3

• Learning model: We extend the malware detector f with a
secondary detector g for identifying adversarial examples.
Let f use an ML model ϕθ : X → Y with f(·) = ϕθ(φ(·))
and g use an ML model ψϑ with g(·) = ψϑ(φ(·)), where
θ, ϑ are learnable parameter sets.

• Loss function for model: F(θ,x, y) and G(ϑ,x) are the
loss functions for learning models ϕθ and ψϑ, respectively.

• Criterion for attack: Let J (x) justify an adversarial exam-
ple (only malware will be perturbed), which is based on
F or a combination of F and ψϑ according to the context.

• Training dataset: Let Dz denote the training dataset
that contains example-label pairs. Furthermore, we have
Dx = {(x, y) : x = φ(z), (z, y) ∈ Dz} in the feature
space, which is sampled from a unknown distribution P.

• Adversarial example: Adversarial malware example z′ =
z+δz misleads f and g simultaneously (if g exists), where
δz is a set of manipulations (e.g., string injection and
encryption). Correspondingly, let x′ = φ(z′) denote the
adversarial example in the feature space with δx = x′−x.

2.1 ML-based Malware & Adversary Detection

'0'
𝑧

𝜙

Yes

No

Label

Feature
extraction

Adversary
detector𝐱

𝐱
𝜑𝜃

𝜓𝜗

Malware
detector

Not
Sure

&

&

'0'
'1'

Fig. 2: Illustration of the workflow of integrated malware
detection and adversary detection.

We treat malware detection as binary classification. In
addition, an auxiliary ML model is utilized to detect adver-
sarial examples [21], [23], [37]. Fig.2 illustrates the workflow
when combining malware detection and adversary detec-
tion. Formally, given an example-label pair (z, y), malware
detector f = ϕθ ◦ φ and adversary detector g = ψϑ ◦ φ, the
prediction is

predict(z) =

f(z), if g(z) ≤ τ
1, if (g(z) > τ) ∧ (f(z) = 1)

not sure, if (g(z) > τ) ∧ (f(z) = 0).

(1)

Where g protects f against z if g(z) > τ but f(z) = 1.
The “not sure” option abstains f from classification, calling
for further analysis. A small portion of normal (i.e., unper-
turbed) examples will be flagged by g. Detectors ϕθ and ψϑ
are learned from training dataset Dx by minimizing:

min
θ,ϑ

E(z,y)∈Dx
[F(θ,x, y) + G(ϑ,x)] , (2)

where F is the loss for learning ϕθ (e.g., cross-entropy [38])
and G for learning ψϑ (which is specified according to the
downstream un-supervised task).

2.2 Evasion Attacks
The evasion attack is manifested in both the problem space
and the feature space [9], [10]. In the problem space, an
attacker perturbs a malware example z to z′ to evade both
f and g (if g exists). Consequently, we have x = φ(z) and
its counterpart x′ = φ(z′) in the feature space. Owing to the
non-differentiable nature of φ, previous studies suggest x′

obeys a “box” constraint u � x′ � u (i.e., x′ ∈ [u,u]) cor-
responding to file manipulations, where “�” is the element-
wise “no bigger than” relation between vectors [9], [17], [24].
The evasion attack in the feature space is

x′ = x+δx, (3)
s.t.,(ϕθ(x′) = 0) ∧ (ψϑ(x′) ≤ τ) ∧ (x′ ∈ X) ∧ (x′ ∈ [u,u]).

Considering that ψϑ may not exist, we followingly review
former attack methods as they are, then introduce the exist-
ing strategies to target both ϕθ and ψϑ, and finally bring in
the current inverse-mapping solutions (i.e., mapping feature
perturbations into the problem space, as φ−1 in Figure 1).

2.2.1 Evasion Attack Methods
Mimicry attack. A mimicry attacker [19], [26], [39] perturbs
a malware example to mimic a benign application as much
as possible. The attacker does not need to know the internal
knowledge of models, but can query them. In such case, the
attacker uses Nben (Nben ≥ 1) benign examples separately
to guide the manipulations, resulting in Nben perturbed
examples, of which the one can bypass the victim is picked.
Grosse attack. This attack [40] perturbs “sensitive” features
to evade detection, where the sensitivity is quantified by the
gradients of the DNN’s softmax output with respect to the
input. A larger gradient value means higher sensitivity. This
attack adds features absent in the original example.
FGSM attack. This attack is proposed in the context of
image classification [41] and then adapted to malware detec-
tion [18], [24]. It perturbs a feature vector x in the direction
of `∞ norm of gradients (i.e., sign operation) of the loss
function with respect to the input:

x′ = round
(

Proj[u,u] (x + ε · sign(∇x F(θ,x, 1)))
)
,

where ε > 0 is the step size, Proj[u,u] projects an input
into [u,u], and round is an element-wise operation which
returns an integer-value vector.
Bit Gradient Ascent (BGA) and Bit Coordinate Ascent
(BCA) attacks. Both attacks [24] iterate multiple times. In
each iteration, BGA increases the feature value from ‘0’ to ‘1’
(i.e., adding a feature) if the corresponding partial derivative
of the loss function with respect to the input is greater than
or equal to the gradient’s `2 norm divided by

√
d, where d is

the input dimension. By contrast, at each iteration, BCA flips
the value of the feature from ‘0’ to ‘1’ corresponding to the
max gradient of the loss function with respect to the input.
Technically, given a malware instance-label pair (x, y), the
attacker needs to solve

max
x′∈[u,u]

F(θ,x′, 1) s.t., x′ ∈ X .

Projected Gradient Descent (PGD) attack. It is proposed in
the image classification context [42] and adapted to malware
detection by accommodating the discrete input space [25].

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3265665

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on April 09,2023 at 23:38:28 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, AUGUST 2023 4

The attack permits both feature addition and removal with
retaining malicious functionalities, giving more freedom to
the attacker. It finds perturbations via an iterative process
with the initial perturbation as a zero vector:

δ(t+1)
x = Proj[u−x,u−x]

(
δ(t)
x + α∇δx F(θ,x + δ(t)

x , 1)
)

(4)

where t is the iteration, α > 0 is the step size, Proj[u−x,u−x]

projects perturbations into the predetermined space [u −
x,u − x], and ∇δx denote the derivative of loss function
F with respect to δ

(t)
x . Since the derivative values may be

too small to make the attack progress, researchers normalize
∇δx F in the direction of `1, `2, or `∞ norm [42], [43]:

ep = arg max
‖e‖p=1

〈∇δx F(θ,x + δ(t)
x , 1), e〉,

where ep is the direction of interest, 〈·, ·〉 denotes the inner
product, and p = 1, 2,∞. Adjusting p leads to the PGD-`1,
PGD-`2, and PGD-`∞ attack, respectively. After the loop,
an extra operation is conducted to discretize the real-valued
vector. For example, round(a) returns the vector closest to a
in terms of the `1 norm distance.
Mixture of Attacks (MA). This attack [9] organizes a mix-
ture of attack methods upon a set of manipulations as large
as possible. Two MA strategies are used: the “max” strategy
selects the adversarial example generated by several attacks
via maximizing a criterion (e.g., classifier’s loss function
F); the iterating “max” strategy puts the resulting example
from the last iteration as the new starting point, where the
initial point is x. Herein the iteration can promote the attack
effectiveness because of the non-concave ML model.

2.2.2 Oblivious vs. Adaptive Attacks
The attacks mentioned above do not consider the adversary
detector g, meaning that they degrade to oblivious attacks
when g is present and would be less effective. By contrast,
an adaptive attacker is conscious of the presence of g(·) =
ψϑ(φθ(·)), leading to an additional constraint ψϑ(x′) ≤ τ
for a given feature representation vector x:

max
x′∈[u,u]

F(θ,x′, 1) s.t., (ψϑ(x′) ≤ τ) ∧ (x′ ∈ X), (5)

where we substitute ϕ(x′) = 0 with maximizing F(θ,x′, 1)
owing to the aforementioned issue of non-differentiability.

However, ψϑ may not be affine (e.g., linear transforma-
tion), meaning that the effective projection strategies used
in PGD are not applicable anymore. In order to deal with
ψϑ(x′) ≤ τ , researchers suggest three approaches: (i) Use
gradient-based methods to cope with

max
x′∈[u,u]

[F(θ,x′, 1)− λψϑ(x′)], (6)

where λ ≥ 0 is a penalty factor for modulating the impor-
tance between the two items [23]. (ii) Maximize F(θ,x′, 1)
and −ψϑ(x′) alternatively as it is notorious for setting λ
properly [21]. (iii) Maximize F(θ,x′, 1) and −ψϑ(x′) in an
“orthogonal” manner [23], where “orthogonal” means elim-
inating the mutual interaction between F and ψ from the
geometrical perspective. For example, the attack perturbs x
in the direction orthogonal to the direction of the gradients
of −ψϑ, which is in the direction of the gradients of F , to
make it evade ϕθ but not react ψϑ. Likewise, the attack alters
the orthogonal direction to evade ψϑ but not ϕθ .

2.2.3 The Inverse Feature-Mapping Problem
There is a gap between the feature space and the prob-
lem or software space. Since feature extraction φ is non-
differentiable, gradient-based methods cannot produce end-
to-end adversarial examples. Moreover, φ−1 cannot be de-
rived analytically due to interdependent features (or “side-
effect” features) [10].

To fill the gap, Srndic and Laskov [26] propose directly
mapping the perturbation vector δx into the problem space,
leading to φ(φ̃−1(x′)) 6= x′, where φ̃−1 is approximate to
φ−1. Nevertheless, experiments demonstrate that the attacks
can evade anti-malware scanners. Li and Li [9] leverage
this strategy to produce adversarial Android examples.
Researchers also attempt to align δz with δx as much as
possible. For example, Pierazzi et al. [10] collect a set of
manipulations from gadgets of benign applications and im-
plement ones that mostly align with the gradients of the loss
function with respect to the input. Zhao et al. [11] propose
incorporating gradient-based methods with the Reinforce-
ment Learning (RL) strategy, of which the RL-based model
assists in obtaining manipulations in the problem space
under the guidance of gradient information. In addition,
black-box attack methods (without knowing the internals of
the detector) directly manipulate malware examples, which
avoids the inverse feature-mapping procedure [15].

In this paper, we use an approximate φ̃−1 (implemen-
tation details are in supplementary material) because it
relatively eases the attack tactics and besides, the side-effect
features cannot decline the attack effectiveness notably in
our refined Drebin feature space [35].

2.3 Adversarial Training
Adversarial training augments training dataset with adver-
sarial examples by solving a min-max optimization problem
[24], [40], [42], [44], [45], [46], as shown in Figure 1. The inner
maximization looks for adversarial examples, while the
outer minimization optimizes the model parameters upon
the updated training dataset. Formally, given the training
dataset Dx, we have

min
θ

E(x,y)∈Dx

[
F(θ,x, y) + β max

x′∈[u,u]
F(θ,x′, 1)

]
, (7)

s.t., (x′ = x + δx) ∧ (x′ ∈ X)

where β ≥ 0 is used to balance detection accuracy and
robustness, and only the malware representations take part
in the inner maximization.

However, Owing to the NP-hard nature of searching
discrete perturbations [32], the adversarial training methods
incorporate the (approximate) optimal attack without con-
vergence guaranteed [24], [25], triggering the questionable
robustness. For example, Al-Dujaili et al. [24] approximate
the inner maximization via four types of attack algorithms,
while showing that a hardened model cannot mitigate the
attacks absent in the training phase. Furthermore, a mixture
of attacks is used to instantiate the framework of adversarial
training [9]. Though the enhanced model can resist a range
of attacks, it is still vulnerable to a mixture of attacks
with iterative “max” strategy (more iterations are used, see
Section 2.2.1). Thereby, it remains a question of rigorously
uncovering the robustness of adversarial training.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3265665

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on April 09,2023 at 23:38:28 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, AUGUST 2023 5

3 THE PAD FRAMEWORK

PAD, reshaping adversarial training, aims to render the
inner maximization solvable analytically by establishing a
concave loss w.r.t. the input. The core part of the improve-
ment is a learnable convex distance metric, with which the
distribution-wise perturbations can be measured, leading to
a constraint attack problem, whose Lagrange relaxation is
concave at reasonable circumstances.

3.1 Threat model and Design Objective

Threat Model. Given a malware example z, malware detec-
tor f , and adversary detector g (if g exists), an attacker mod-
ifies z by searching for a set of non-functional instructions
δz upon knowledge of detectors. With following Kerckhoff’s
principle that defense should not count on “security by
obscurity” [10], we consider white-box attacks, meaning that
the attacker has full knowledge of f and g. For assessing
the robustness of defense models, we also utilize grey-box
attacks where the attacker knows f but not g (i.e., oblivious
attack [47]), or knows features used by f and g.
Design Objective. As aforementioned, PAD is rooted in
adversarial training. In contrast, we propose incorporating f
with an adversary detector g(·) = ψϑ(φ(·)), where ψϑ is the
convex measurement. To this end, given a malware instance-
label pair (x, y) for x = φ(z) and y = 1, we mislead both
φθ and ψϑ by perturbing x into x′, upon which we optimize
model parameters. Formally, PAD uses the objective:

min
θ,ϑ

E(x,y)∈Dx

[
F(θ,x, y) + G(ϑ,x)

+ β1 F(θ,x′, 1) + β2 G(ϑ,x′)
]
,

(8a)

where

x′ := max
x′∈[u,u]

[F(θ,x′, 1)− λψϑ(x′)] ,

s.t., (x + δx = x′) ∧ (x′ ∈ X)
(8b)

β1, β2 weight the robustness against x′, and λ ≥ 0 is a
penalty factor. We present three merits for this formulation:

(i) Manipulations in the feature space: Eq.(8b) tells us
we can search feature perturbations without inverse-
feature mapping applied and hence saving training
time. Though it may trigger concern about whether the
attained robustness can propagate to the problem space,
we later show it can (Section 3.2).

(ii) Box-constraint manipulation: Eq.(8b) has the attackers
search x′ in [u,u] without any norm-type constraints.
It means the defense aims to resist semantics-based
attacks rather than small perturbations.

(iii) Continuous perturbation may be enough: It is NP-
hard to search optimal discrete perturbations even for
attacking a linear model [32]. Eq.(8b) contains an auxil-
iary detector ψϑ, which can treat continuous perturba-
tions in the range of [u,u] as anomalies with relaxing
the discrete space X constraint in training.

Finally, the above formulation facilitates that we can use
the efficient gradient-based optimization methods to solve
both Eq.8a and Eq.8b. We next explain the intuition behind
this objective and moreover, a smooth F is necessary (e.g.,
relieving the pain of setting a proper λ, see Section 2.2.2).

3.2 Design Rationale
Bridge robustness gap. Adversarial training is performed
in the feature space while the adversarial malware is in the
problem space, which seems to leave a seam for attackers
on the alignment with feature extraction φ. Recall that we
represent the manipulations by [u,u] and discrete space X ,
where any instance x′ cannot be mapped back to Z due to
“side-effect” features [10]. The “side-effect” means the inter-
dependent relationship between features (e.g., modifying a
feature requires changing others such that the functionality
is preserved), reminiscent of the structural graph represen-
tation. From this view, we can leverage the directed graph to
denote the relation: node represents the modifiable feature
and edge represents the “side-effect” dependency. In this
way, an adjacent matrix can be used to represent the “side-
effect” features, which however shrinks the space of [u,u].

Postulating that, for a given malware representation
x, we obtain the optimal x̃∗,x∗ ∈ [u,u] with or with-
out the “side-effect” constraint. The criterion results meet
J (x̃∗) = F(θ, x̃∗, 1) − λψϑ(x̃∗) ≤ J (x∗), which in turn
demonstrates that if an adversarial training model can resist
x∗, so can x̃∗, and otherwise it contradicts the optimality.
Noting that x∗ is typically hard to calculate and the subop-
timal one x′ is got, potentially leading to the phenomenon
J (x′) ≤ J (φ(φ̃−1(x′))) where φ̃−1 ≈ φ−1.

Therefore, we relax the attack constraint of “side-effect”
and conduct the adversarial training in the feature space.
More importantly, the robustness can propagate to the prob-
lem space, though it would decline the detection accuracy
because more perturbations are considered.

Defending against distribution-wise perturbation. We
explain Eq.(8b) via distributionally robust optimization [32].
We establish a point-wise distance C(·,x) = max{0, ψϑ(·)−
τ} to measure how far a point, say x′, to the population.
A large portion of (e.g., 95%) training examples will have
ψϑ(x) ≤ τ . Other measures are suitable as long as they are
convex and continuous. Based on C , we have a Wasserstein
distance [48]:

W (P′,P) := inf
Γ

{∫
C(x′,x)dΓ(x′,x) : Γ ∈

∏
(P′,P)

}
where

∏
(P′,P) is the joint distribution of P′ and P with

marginal as P′ and P w.r.t. to the first and second argument,
respectively. That is, the Wasserstein distance gets the infi-
mum from a set of expectations. Because the points x,x′ are
on discrete space X , the integral form in the definition is
a linear summation. We aim to build a malware detector
f classify x′ correctly with x′ ∼ P′ and W (P′,P) ≤ 0.
Formally, the corresponding inner maximization is

max
P′:W (P′,P)≤0

Ex′∼P′ F(θ,x′, 1). (9)

It is non-trivial to tackle W (P′,P) directly owing to massive
vectors on X × X and typically, the dual problem is used:

Proposition 1. Given the continuous function F , and contin-
uous and convex distance C(·,x) = max{0, ψϑ(·) − τ} with
x ∼ P, the dual problem of Eq.(9) is

inf
λ

{
Ex∼P max

x′
(F(θ,x′, 1)− λψϑ(x′) + λτ) : λ ≥ 0

}
,

with x + δx = x′ ∈ X , x′ ∼ P′ and ψϑ(x′) ≥ τ .

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3265665

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on April 09,2023 at 23:38:28 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, AUGUST 2023 6

0.2 0.9 1.6

Lo
ss

(, x, sin(x) + noise)
x0

0.2 0.4 0.6 0.8
Lo

ss
x0

Feasible region

0.2 0.4 0.6 0.8

Lo
ss

(x), (e. g. , = 1
2 ||x x0||2)

x0

= 0.0
= 1.0
= 3.0

Fig. 3: An example of loss changes under perturbations with a reasonable assumption that F is smooth (feasible region in
the bottom-left figure), leading to F −λψϑ strongly convex (feasible region in the rightmost figure) at x0 when λ = 3.0.

Its empirical version is Eq.(8b) for fixed λ and τ , except for
the constraint [u,u] handled by clip operation. The propo-
sition tells us PAD defends against distributional perturba-
tions. The proof is available in the supplementary material.

Concave inner maximization. Given an instance-label pair
(x, y), let Taylor expansion approximate F −λψϑ:

F(θ,x+δx, y)− λψϑ(x + δx) ∼= F −λψϑ

+〈∇x(F −λψϑ), δx〉+
1

2
δ>x∇2

x(F −λψϑ)δx,

where F −λψϑ is a short denotation of F(θ,x, y)− λψϑ(x).
The insight is that if (i) the values of the entities in ∇x F
are finite (i.e., smoothness [32]) when x ∈ [u,u], and (ii)
∇xψϑ > 0 (i.e., strongly convex), then we can makeF −λψϑ
concave by tweaking λ; this eases the inner maximization.

Figure 3 illustrates the idea behind the design, by using
a smoothed DNN model to fit the noising sin function (top-
left figure). Owing to the smoothness of ϕθ and F (bottom-
left figure), we transform the loss function to be a concave
function by incorporating a convex ψϑ. The concavity is
achieved gradually by raising λ, along with the feasible
region changed, as shown in the right-hand figure.

In the course of adjusting λ [23], there are three possible
scenarios: (i) λ is large enough, leading to a concave inner
maximization. (ii) A proper λ may result in a linear model,
which would be rare because of the difference between
ϕθ and ψϑ. (iii) When λ is so small that the inner max-
imization is still a non-concave and nonlinear problem,
as former heuristic adversarial training. In summary, we
propose enhancing the robustness of f and g for reducing
the smoothness factor of f [49], [50], which intuitively
forces the attacker to increase λwhen generating adversarial
examples.

Since the interval x+δx ∈ [u,u] relaxes the constraint of
discrete input, we can address this issue by treating continu-
ous perturbations as anomalies, as stated earlier. Therefore,
instead of heuristically searching for discrete perturbations,
we directly use ψθ to detect continuous perturbations with-
out the discretization tricks used.

4 INSTANTIATING THE PAD FRAMEWORK

We instantiate PAD framework with the model establish-
ment and an adversarial training algorithm. Though PAD
may be applicable to any differentiable ML algorithms,

we consider deep neural network based malware detection
because its security has been intensively investigated [9],
[51], [52], [53].

4.1 Adjusting Malware Detector
PAD requires the composition of F and ϕθ to be smooth.
DNN consists of hierarchical layers, each of which typically
has a linear mapping followed by a non-linear activation
function. Most of these ingredients meet the smoothness
condition, except for some activation functions (e.g., Recti-
fied Linear Unit or ReLU [38]) owing to non-differentiability
at the point zero. To handle non-smooth activation func-
tions, researchers suggest using over-parameterized DNNs,
which yield semi-smooth loss landscapes [54]. Instead of
increasing learnable parameters, we replace ReLU with
smooth activation functions (e.g., Exponential Linear Unit
or ELU [55]). The strategy is simple in the sense that the
model architecture is changed slightly and a fine-tuning
trick suffices to recover the detection accuracy. Despite this,
our preliminary experiments show it slightly reduces the
detection accuracy.

Hidden layers Output
layer

Input layer

𝑧

𝜙 𝑧 𝝑𝐱
1 𝝑2 𝝑𝑙 𝝑3

Forward

Neuron

Parameter
Non-negative
Parameter𝝑𝑖

𝝑𝐱
𝑖 𝝑𝐱

2
𝝑𝐱
3

𝝑𝐱
⋯

𝝑𝐱
𝑙

Fig. 4: Architecture of an input convex neural network.

4.2 Adversary Detector
We propose a DNN-based g that is also learned from the
features extracted by φ. Figure 4 shows the architecture of
ψϑ, which is a l-layer Input Convex Neural Network (ICNN)
[56]. ICNN maps the input x recursively via non-negative
transformations, along with adding a normal transforma-
tion on x:

xi+1 = σ(ϑixi + ϑixx + bi),

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3265665

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on April 09,2023 at 23:38:28 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, AUGUST 2023 7

where ϑ = {ϑi,ϑix,bi : i = 1, . . . , l}, ϑi is non-negative, ϑix
has no such constraint, x1 = x, ϑ1 is identity matrix, and σ
is a smooth activation function (e.g., ELU or Sigmoid [55]).

We cast the adversary detection as a one-class classifica-
tion task [57]. In the training phase, we perturb examples in
Dx to obtain a set of new examples {x + δx : (x, y) ∈ Dx},
wherein δx is a vector of salt-and-pepper noises, meaning
that at least half of elements in x are randomly selected and
their values are set as their respective maximum. Formally,
given an example x1 ∈ {x : (x, y) ∈ Dx}∪{x+δx : (x, y) ∈
Dx}, the loss function G is

G(ϑ,x1) = pert log(ψϑ(x1)) + (1− pert) log(1− ψϑ(x1)),

where pert = 0 indicates x1 is from Dx, and the otherwise
pert = 1. In the test phase, we let the input pass through ψϑ
to perform the prediction as shown in Eq.(1).

4.3 Adversarial Training Algorithm
For the inner maximization (Eq.8b), we propose a mixture of
PGD-`1, PGD-`2 and PGD-`∞ attacks (see Section 2.2.1). The
attacks proceed iteratively via “normalized” gradients

ep = arg max
‖e‖p=1

〈∇δx(F(θ,x + δ(t)
x , 1)− λψϑ(x + δ(t)

x)), e〉,

(10)
and perturbations{

δ(t+1)
x,p = Proj[u−x,u−x]

(
δ(t)
x,p + αpep

)
: p ∈ {1, 2,∞}

}
,

(11)
in which the one is chosen by the scoring rule

δ(t+1)
x = arg max

δ
(t+1)
x,p

[
F(θ, round(x + δ(t+1)

x,p), 1)

− λψϑ(round(x + δ(t+1)
x,p))

] (12)

at the tth iteration. The round operation is used since our
initial experiments show that it leads to better robustness
against the attack itself. This attack selects the best attack in
a stepwise fashion and thus is termed Stepwise Mixture of
Attacks (SMA).

Notably, for the attacker, there are three differences: (i)
We treat the dependencies between features as graphical
edges. Since the summation of gradients can measure the
importance of a group in the graph [58], we accumulate the
gradients of the loss function with respect to the side-effect
features and use the resulting gradient to decide whether
to modify these features together. (ii) The round is used to
discretize perturbations when the loop is terminated [25].
(iii) Map the perturbations back into the problem space.

For the outer minimization (Eq.8a), we leverage a Stochas-
tic Gradient Descent (SGD) optimizer, which proceeds itera-
tively to find the model parameters. Basically, SGD samples
a batch of B (a positive integer) pairs {(xi, yi)}Bi=1 from Dx

and updates the parameters with

θ(j+1) = θ(j) − γ∇θ
1

B

B∑
i=1

F(θ(j),xi + δ(T)
xi , yi) and

ϑ(j+1) = ϑ(j) − γ∇ϑ
1

B

B∑
i=1

G(ϑ(j),xi + δ(T)
xi),

where j is the iteration, γ is the learning rate, and δ
(T)
xi is

obtained from Eq.(12) with T loops for perturbing xi. We
optimize the model parameters by Eq.(8a).

Algorithm 1: Adversarial training
Input: Training set Dz , epoch N , batch size B,

factors β1, β2 and λ, iteration T , and step size
αp for norm p ∈ {1, 2,∞}.

1 Get Dx = {(φ(z), y) : (z, y) ∈ Dz} for the given Dz ;
2 for j = 1 to N do
3 Sample a mini-batch {xi, yi}Bi=1 from Dx;

4 Apply salt-and-pepper noises to {xi}Bi=1;
5 for t = 0 to T − 1 do
6 for p ∈ {1, 2,∞} do
7 Calculate perturbation δ(t+1)

x,p by Eq.(10)
and Eq.(11) for x ∈ {xi}Bi=1 with yi = 1;

8 end
9 Select δ(t+1)

x by Eq.(12);
10 end

11 Calculate the adversarial training loss via Eq.(8a);

12 Backpropagate the errors for updating θ and ϑ;
13 end

Algorithm 1 summarizes a PAD-based adversarial train-
ing by incorporating the stepwise mixture of attacks. Given
the training set, we preprocess software examples and ob-
tain their feature representations (line 1). At each epoch, we
first perturb the feature representations via salt-and-pepper
noises (line 4) and then generate adversarial examples with
the mixture of attacks (lines 5-10). Using the union of the
original examples and their perturbed variants, we learn
malware detector f and adversary detector g (lines 11-13).

5 THEORETICAL ANALYSIS

We analyze effectiveness of the inner maximization and op-
timization convergence of the outer minimization. The joint
of both supports the robustness of the proposed method.
As aforementioned, we make an assumption in PAD which
requires smooth learning algorithms (Section 4.1).

Assumption 1 (Smoothness assumption [32]). The composi-
tion of F and ϕθ meets the smoothness condition:

‖∇x F(θ,x, y)−∇x F(θ,x′, y)‖2 ≤ Lfxx‖x− x′‖2,
‖∇x F(θ,x, y)−∇x F(θ′,x, y)‖2 ≤ Lfxθ‖θ − θ

′‖2,
‖∇θ F(θ,x, y)−∇θ F(θ,x′, y)‖2 ≤ Lfθx‖x− x′‖2,

and ψϑ meets the smoothness condition:

‖∇xψϑ(x)−∇xψϑ(x′)‖2 ≤ Lgxx‖x− x′‖2,
‖∇xψϑ(x)−∇xψϑ′(x)‖2 ≤ Lgxϑ‖ϑ− ϑ

′‖2,

where x′ ∈ [u,u] is changed from x = φ(z) for a given example
z and L∗∗∗ > 0 denotes the smoothness factor (∗ is the wildcard).

Recall that the ψϑ meets the strongly-convex condition:

‖∇xψϑ(x)−∇xψϑ(x′)‖2 ≥ Mg
xx‖x− x′‖2,

where Mg
xx > 0 is the convexity factor.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3265665

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on April 09,2023 at 23:38:28 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, AUGUST 2023 8

Proposition 2. Assume the smoothness assumption holds. The
loss of F −λψϑ is (λMg

xx−Lfxx)-strongly concave and (λLgxx +
Lfxx)-smoothness when Lfxx < λMg

xx. That is

−λL
g
xx + Lfxx

2
‖x′ − x‖22 ≤ L ≤ −

λMg
xx − Lfxx

2
‖x′ − x‖22,

where L = F(θ,x′, y)− λψϑ(x′)−F(θ,x, y) + λψϑ(x)−
〈∇x(F −λψϑ), δx〉 = J (x′)− J (x)− 〈∇xJ (x), δx〉.

Proof. By quadratic bounds derived from the smoothness,
we have −Lfxx

2 ‖x
′ − x‖22 ≤ F(θ,x′, y) − F(θ,x, y) −

〈∇x F ,x′ − x〉 ≤ Lfxx

2 ‖x
′ − x‖22. Since ψϑ is convex, we get

ψϑ(x′) − ψϑ(x) − 〈∇xψϑ,x
′ − x〉 ≥ Mgxx

2 ‖x
′ − x‖22. Since

ψϑ is smooth, we get ψϑ(x′) − ψϑ(x) − 〈∇xψϑ,x
′ − x〉 ≤

Lgxx

2 ‖x
′ − x‖22. Combining the above two-side inequalities

with the format of F −λψϑ leads to the proposition.

Theorem 1 below quantifies the gap between the approx-
imate adversarial example x′ = x + δ

(T)
x and the optimal

one, denoted by x∗ = x + δ∗x. The proof is lengthy and
deferred to the supplementary material.

Theorem 1. Suppose the smoothness assumption holds. If Lfxx <
λMg

xx, the perturbed example x′ = x + δ
(T)
x from Algorithm 1

satisfies:

J (x∗)− J (x′)

J (x∗)− J (x)
≤ exp(−T

d
· λM

g
xx − Lfxx

λLgxx + Lfxx
),

where d is the input dimension.

We now focus on the convergence of SGD when applied
to the outer minimization. Without loss of generality, the
following theorem is customized to the composition of ϕθ
and F , which can be extended to the composition of ψϑ and
G. Let H(θ) = E(x,y)∈Dx

F(θ,x∗(θ), y) denote the optimal
adversarial loss on the entire training dataset Dx.

Theorem 2. Suppose the smoothness assumption holds. Let ∆ =
H(θ(0))−minθH(θ). If we set the learning rate to γ(j) = γ =
min{1/L,

√
∆/(Lζ2N)}, the adversarial training satisfies

1

N

N∑
j=0

E
∥∥∥∇H(θ(j))

∥∥∥ ≤ ζ√8
∆L

N
+ 2ĉ, (13)

where N is the number of epochs, L =
Lfθx(λLgxθ+Lfxθ)

λMgxx−Lfxx
+ Lfθθ,

ĉ = (J (x∗)− J (x))
2Lfθx

λMgxx−Lfxx
exp(−Td ·

λMgxx−L
f
xx

λLgxx+Lfxx
), and ζ is

the variance of stochastic gradients.

The proof is also deferred to the supplementary material.
Theorem 2 says that the convergence rate of the adversarial
training is O(1/

√
N). Moreover, the approximation of the

inner maximization has a constant effect on the convergence
because of ĉ. More importantly, attacks achieving a lower at-
tack effectiveness than this approximation possibly enlarge
the effect and can be mitigated by this defense.

6 EXPERIMENTS

We conduct experiments to validate the soundness of the
proposed defense in the absence and presence of evasion
attacks, while answering 4 Research Questions (RQs):

• RQ1: Effectiveness of defenses in the absence of attacks:
How effective is PAD-SMA when there is no attack? This
is important because the defender does not know for
certain whether there is an attack or not.

• RQ2: Robustness against oblivious attacks: How robust
is PAD-SMA against oblivious attacks where “oblivious”
means the attacker is unaware of adversary detector g?

• RQ3: Robustness against adaptive attacks: How robust
is PAD-SMA against adaptive attacks?

• RQ4: Robustness against practical attacks: How robust
is PAD-SMA against attacks in the problem space?

Datasets. Our experiments utilize two Android malware
datasets: Drebin [35] and Malscan [36]; both are widely used
in the literature. The Drebin dataset initially contains 5,560
malicious apps and features extracted from 123,453 benign
apps, while noting that the apps were collected before the
year 2013. In order to obtain self-defined features, [9] re-
collects the benign apps from the Androzoo repository [59]
and re-scans the collections by VirusTotal service, resulting
in 42,333 benign examples. This leads to the Drebin dataset
used in this paper containing 5,560 malicious apps and
42,333 benign apps. Malscan [36] contains 11,583 malicious
apps and 11,613 benign apps, spanning from 2011 to 2018.
The software examples from both datasets are labeled using
the VirusTotal service [60] (which contains tens of malware
scanners), such that an app is flagged as malicious if at least
five malware scanners say the example is malicious, and as
benign if no malware-scanners flag it. We randomly split
a dataset into three disjoint sets: 60% for training, 20% for
validation, and 20% for testing.
Feature extraction and manipulation. We use two families
of features. (i) Manifest features, including: hardware state-
ments (e.g., camera and GPS module) because they may
incur security concerns; permissions because they may be
abused to steal user’s privacy; implicit Intents because they
are related to communications between app components
(e.g., services). These features can be perturbed by injecting
operations but may not be removed without undermining a
program’s functionality [9], [19]. (ii) Classes.dex features,
including: “restricted” and “dangerous” Application Pro-
gramming Interfaces (APIs), where “restricted” means in-
voking these APIs necessitates declaring the corresponding
permissions and “dangerous” APIs include Java reflection
usage (e.g., getClass, getMethod, getField), encryp-
tion usage (e.g., javax.crypto, Crypto.Cipher), the ex-
plicit intent indication (e.g., setDataAndType, setFlags,
addFlags), dynamic code loading (e.g., DexClassLoader,
System.loadLibrary), and low-level command execu-
tion (e.g., Runtime.getRuntime.exec). These APIs can
be injected along with dead codes [10]. It is worth men-
tioning that APIs with the public modifier can be hidden
by Java reflection [9], which involves reflection-related APIs
that are used by our detector, referred to as “side-effect”
features. These features may benefit the defense.

We exclude some features. For manifest features (e.g.,
package name, activities, services, provider, and receiver), they
can be injected or renamed [9], [61]. For Classes.dex fea-
tures, existing manipulations include string (e.g., IP address)
injection/encryption [9], [19], public or static API calls hid-
den by Java reflection [9], [61], Function Call Graph (FCG)
addition and rewiring [62], anti-data flow obfuscation [63],

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3265665

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on April 09,2023 at 23:38:28 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, AUGUST 2023 9

and control flow obfuscation (by using arithmetic branches)
[61]. For other types of features, app signatures can be re-
signed [61]; native libraries can be modified by Executable
and Linkable Format (ELF) section-wise addition, ELF sec-
tion appending, and instruction substitution [64].

We use Androguard, a reverse engineering toolkit [65],
to extract features. We apply a binary feature vector to
denote an app, where “1” means a feature is present and
“0” otherwise. The 10,000 top-frequency features are used.
Defenses we consider for comparison purposes. We con-
sider 8 representative defenses:

• DNN [40]: Deep Neural Network (DNN) based malware
detector with no effort at hardening it;

• AT-rFGSMk [24]: DNN-based malware detector hardened
by Adversarial Training with randomized round opera-
tion enabled FGSMk attack (AT-rFGSMk);

• AT-MaxMA [9]: DNN-based malware detector hardened
by Adversarial Training with the “Max” strategy enabled
Mixture of Attacks (AT-MaxMA);

• KDE [47]: Combining DNN model with a secondary de-
tector for quarantining adversarial examples. The detector
is a Kernel Density Estimator (KDE) built upon activations
from the penultimate layer of DNN on normal examples;

• DLA [37]: The secondary detector aims to capture differ-
ences in DNN activations from the normal and adversarial
examples. The adversarial examples are generated upon
DNN. The activations from all dense layers are utilized,
referred to as Dense Layer Analysis (DLA);

• DNN+ [21], [66]: The secondary detector plugs an extra
class into the DNN model for detecting adversarial exam-
ples that are generated from DNN (DNN+);

• ICNN: The secondary detector is the Input Convexity
Neural Network (ICNN), which does not change the DNN
but extends it from the feature space (Section 4.2);

• PAD-SMA: Principled Adversarial Detection is realized
by a DNN-based malware detector and an ICNN-based
adversary detector, both of which are hardened by ad-
versarial training incorporating the Stepwise Mixture of
Attacks (PAD-SMA, Algorithm 1).

These defenses either harden the malware detector or in-
troduce an adversary detector. DNN serves as the baseline.
AT-rFGSMk can achieve better robustness than adversarial
training methods with the BGA, BCA, or Grosse attack [24];
AT-MaxMA with three PGD attacks can thwart a broad
range of attacks but not iMaxMA, which is the iterative
version of MaxMA [9]; KDE, DLA, DNN+ and ICNN aim to
identify the adversarial examples by leveraging the under-
lying difference inherent in ML models between a pristine
example and its variant; PAD-SMA hardens the combination
of DNN and ICNN by adversarial training.
Metrics. We report classification results on the test set via
five standard metrics of False Negative Rate (FNR), False
Positive Rate (FPR), F1 score, Accuracy (Acc for short,
percentage of the test examples that are correctly classified)
and balanced Accuracy (bAcc) [67]. Since we introduce g, a
threshold τ is calculated on the validation set for rejecting
examples. Let “@#” denote the percentage of the examples
in the validation set being outliers (e.g., @5 means 5% of the
examples are rejected by g).

0 2000 4000 6000 8000 10000
800

600

400

200

0

200

Ei
ge

nv
al

ue

(a) Drebin

0 2000 4000 6000 8000 10000
Dimension

800

600

400

200

0

Ei
ge

nv
al

ue

PAD-SMA
DNN

(b) Malscan

Fig. 5: Sorted eigenvalues of Hessian matrix of F − λψϑ
w.r.t. input when λ = 1.

6.1 RQ1: Effectiveness of Defenses in the Absence of
Attacks
Experimental Setup. We learn the aforementioned 8 detec-
tors on the two datasets, respectively. In terms of model
architecture of the malware detector, the DNN detector
has 2 fully-connected hidden layers (each layer having
200 neurons) with the ELU activation. The other 7 models
also use this architecture. Besides, the adversary detector
of DLA has the same settings as in [37]; ICNN has 2
convex hidden layers with 200 neurons each. For adversarial
training, feature representations can be flipped from “0” to
“1” if injection operation is permitted and from “1” to “0”
if removal operation is permitted. Moreover, AT-rFGSMk

uses the PGD-`∞ attack, which additionally allows feature
removals. It has 50 iterations with step size 0.02. AT-MaxMA
uses three attacks, including PGD-`∞ iterates 50 times with
step size 0.02, PGD-`2 iterates 50 times with step size 0.5,
and PGD-`1 attack iterates 50 times, to conduct the training
with penalty factor β = 0.01 because a large β incurs a
low detection accuracy on the test sets. DLA and DNN+

are learned from the adversarial examples generated by the
MaxMA attack against the DNN model (i.e., adversarial
training with an oblivious attack). PAD-SMA has three PGD
attacks with the same step size as AT-MaxMA’s except for
g, which is learned from continuous perturbations. We set
the penalty factors β1 = 0.1 and β2 = 1.0 on the Drebin
dataset and β1 = 0.01 and β2 = 1.0 on the Malscan dataset.
In addition, we conduct a group of preliminary experiments
to choose λ from {10−3, 10−2, . . . , 103} and finally set λ = 1
on both datasets. All detectors are tuned by the Adam
optimizer with 50 epochs, mini-batch size 128, and learning
rate 0.001, except for 80 epochs on the Malscan Dataset.
Preliminary results. Figure 5 illustrates sorted eigenvalues
of Hessian matrix of the loss function F −ψϑ w.r.t. input. We

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3265665

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on April 09,2023 at 23:38:28 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, AUGUST 2023 10

TABLE 1: Effectiveness (%) of detectors without adversary
detection capability in the absence of attacks.

Defense Effectivenss (%)

FNR FPR Acc bAcc F1

D
re

bi
n

DNN [40] 3.64 0.45 99.18 97.96 96.45
AT-rFGSMk [24] 2.36 3.43 96.69 97.10 87.18
AT-MaxMA [9] 1.73 3.11 97.05 97.58 88.46
KDE [47] 3.64 0.45 99.18 97.96 96.45
DLA [37] 3.18 0.58 99.12 98.12 96.21
DNN+ [21], [66] 3.36 0.50 99.17 98.07 96.42
ICNN 3.64 0.45 99.18 97.96 96.45
PAD-SMA 2.45 2.36 97.63 97.59 90.43

M
al

sc
an

DNN [40] 1.87 2.73 97.70 97.70 97.73
AT-rFGSMk [24] 0.84 5.49 96.86 96.84 96.96
AT-MaxMA [9] 0.39 8.84 95.43 95.39 95.65
KDE [47] 1.87 2.73 97.70 97.70 97.73
DLA [37] 1.45 3.35 97.61 97.60 97.65
DNN+ [21], [66] 2.81 1.84 97.67 97.68 97.68
ICNN 1.87 2.73 97.70 97.70 97.73
PAD-SMA 0.42 8.58 95.54 95.50 95.75

randomly choose 100 instance-label pairs from test datasets
of Drebin and Malscan, respectively. Let instances separately
pass-through PAD-SMA or DNN (which has ψϑ = 0) for
calculating eigenvalues, and then average the eigenvalues
element-wisely corresponding to the input dimension. We
observe that most eigenvalues are near 0, PAD-SMA pro-
duces large negative eigenvalues, and DNN has relatively
small positive eigenvalues. This demonstrates that our PAD-
SMA method can yield a concave inner maximization, and
render the theoretical results applicable. Notably, PAD-SMA
still has positive eigenvalues on the Malcan dataset, whereas
certain robustness may be obtained as former adversarial
training methods, yet no formal guarantees.
Results. Table 1 reports the effectiveness of detectors on the
two test sets. We observe that DNN achieves the highest de-
tection accuracy (99.18% on Drebin and 97.70% on Malscan)
and F1 score (96.45% on Drebin and 97.73% on Malscan).
These accuracies are comparative to those reported in [35],
[36], [40]. We also observe that KDE and ICNN have the
same effectiveness as DNN because both are built upon
DNN while introducing a separative model to detect adver-
sarial examples. We further observe that when training with
adversarial examples (e.g., AT-rFGSMk, AT-MaxMA, DLA,
DNN+, and PAD-SMA), detectors’ FNR decreases while
FPR increases, leading to decreased F1 scores. This can be
attributed to the fact that only the perturbed malware is
used in the adversarial training and that the data imbalance
makes things worse.

Table 2 reports the accuracy and F1 score of detectors
with adversary detection capability g. In order to observe
the behavior of g, we abstain f from the prediction when
g(x) ≥ τ . We expect to see that the trend of accuracy or
F1 score will rise when removing as outliers more examples
with high confidence from g on the validation set. However,
this phenomenon is not always observed (e.g., DLA and
ICNN). This might be caused by the fact that DLA and
ICNN distinguish the pristine examples confidently in the
training phase, while the rejected examples on the validation
set are in the distribution and thus have little impact on
the detection accuracy of f . PAD-SMA gets the downtrend

TABLE 2: Accuracy (%) and F1 score (%) of detectors with
adversary detection capability in the absence of attacks.

Defense @1 (%) @5 (%) @10 (%)

Acc F1 Acc F1 Acc F1

D
re

bi
n

KDE 99.19 96.45 99.15 96.33 99.17 96.43
DLA 99.14 96.27 99.13 96.27 99.14 96.53
DNN+ 99.37 97.20 99.43 97.44 99.54 97.93
ICNN 99.21 96.58 99.21 96.58 99.14 96.58
PAD-SMA 97.79 90.82 97.99 88.61 98.14 79.54

M
al

sc
an

KDE 97.68 97.71 97.61 97.61 97.82 97.80
DLA 97.65 97.67 97.69 97.63 97.80 97.64
DNN+ 97.81 97.81 98.37 98.38 98.58 98.56
ICNN 97.68 97.73 97.64 97.74 97.70 97.83
PAD-SMA 95.66 95.89 95.72 95.83 95.59 95.47

of F1 score but not accuracy, particularly on the Drebin
dataset. Though this is counter-intuitive, we attribute it
to the adversarial training with adaptive attacks, which
implicitly pushes g to predict the pristine malware examples
with higher confidence than the benign ones. Thus, rejecting
more validation examples actually causes more malware
examples to be dropped, causing the remaining malware
samples to be more similar to the benign ones and f to
misclassify remaining malware, leading to lower F1 scores.

In summary, PAD-SMA decreases FNR but increases
FPR, leading to decreased accuracies (≤2.16%) and F1 scores
(≤6.02%), which aligns with the malware detectors learned
from adversarial training. The use of adversary detectors in
PAD-SMA does not make the situation better.
Answer to RQ1: There is no “free lunch” in the sense
that using detectors trained from adversarial examples may
suffer from a slightly lower accuracy when there are no
adversarial attacks.

6.2 RQ2: Robustness against Oblivious Attacks
Experimental Setup. We measure the robustness of KDE,
DLA, DNN+, ICNN, and PAD-SMA against oblivious at-
tacks via the Drebin and Malscan datasets. Since the other
detectors (i.e., DNN, AT-rFGSMk, and AT-MaxMA) do not
have g, we do not consider them in this subsection. We use
the detectors learned in the last group of experiments. The
threshold is computed by dropping 5% validation examples
with top confidence, which is suggested in [21], [37], [47],
while noting that the accuracy of PAD-SMA is slightly better
than that of AT-MaxMT at this setting.

We separately wage 11 oblivious attacks to perturb mal-
ware examples on the test set. For Grosse [40], BCA [24],
FGSM [24], BGA [24], PGD-`1 [25], PGD-`2 [25], and PGD-
`∞ [25], these attacks proceed iteratively till the 100th loop is
reached. Grosse, BCA, FGSM, and BGA are proposed to only
permit the feature addition operation (i.e., flipping some ‘0’s
to ‘1’s). FGSM has the step size 0.02 with random rounding.
Three PGD attacks permit both feature addition and feature
removal: PGD-`2 has a step size 0.5 and PGD-`∞ has a step
size of 0.02 (the settings are the same as adversarial train-
ing). For Mimicry [26], we leverage Nben benign examples
to guide the attack (dubbed Mimicry×Nben). We select the
one that can evade f to wage attacks and use a random
one otherwise. MaxMA [9] contains PGD-`1, PGD-`2, and

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3265665

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on April 09,2023 at 23:38:28 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, AUGUST 2023 11

1 5 20 40 60 80100
0

20
40
60
80

100
Ac

c
on

 D
re

bi
n

(%
)

Grosse

1 5 20 40 60 80100

BCA

1 5 20 40 60 80100

BGA

1 5 20 40 60 80100

rFGSM

1 5 20 40 60 80100

PGD- 1

1 5 20 40 60 80100

PGD- 2

1 5 20 40 60 80100

PGD-

1 5 20 40 60 80100
Iteration

0
20
40
60
80

100

Ac
c

on
 M

al
sc

an
 (%

)

1 5 20 40 60 80100
Iteration

1 5 20 40 60 80100
Iteration

1 5 20 40 60 80100
Iteration

1 5 20 40 60 80100
Iteration

1 5 20 40 60 80100
Iteration

1 5 20 40 60 80100
Iteration

KDE
DLA
DNN +

ICNN
PAD-SMA

Fig. 6: Accuracy (Acc) of detectors against oblivious attacks with iteration from 0 to 100.

PGD-`∞ attacks. The iterative MaxMA (dubbed iMaxMA)
runs MaxMA 5 times, with the start point updated. SMA
has 100 iterations with a step size 0.5 for PGD-`2 and 0.02
for PGD-`∞. The three MA attacks use the scoring rule of
Eq.(12) without g considered.
Results. Fig.6 depicts the accuracy curves of the detectors
on Drebin (top panel) and Malscan (bottom panel) datasets
under 7 oblivious attacks, along with the iterations ranging
from 0 to 100. We make three observations. First, all these
attacks cannot evade PAD-SMA (accuracy ≥ 90%), demon-
strating the robustness of the proposed model.

Second, the Grosse, BCA, and PGD-`1 attacks can evade
KDE, DLA, DNN+, and ICNN when 20 iterations are used,
while recalling that these three attacks stop manipulating
malware when the perturbed example can evade malware
detector f . It is known that DNN is sensitive to small
perturbations; KDE relies on the close distance between
activations to reject large manipulations; DLA and DNN+

are learned upon the oblivious MaxMA, which modifies
malware examples to a large extent; ICNN is also learned
from salt-and-pepper noises which randomly change one
half elements of a vector. Therefore, neither malware detec-
tor f nor adversary detector g of KDE, DLA, and ICNN
can impede small perturbations effectively. This explains
why KDE, DLA, and ICNN can mitigate BGA and PGD-`∞
attacks that use large perturbations.

Third, a dip exists in the accuracy curve of KDE, DLA,
or ICNN against rFGSM and PGD-`2 when the iteration
increases from 0 to 100. We find that both attacks can
obtain small perturbations: rFGSM uses the random round
(the rounding thresholds are randomly sampled from [0, 1])
[24] at iteration 1, and PGD-`2 produces certain discrete
perturbations at iteration 20 via round (the threshold is 0.5).

Table 3 reports the attack results of Mimicry, MaxMA,
iMaxMA, and SMA, which are not suitable for iterating
with a large number of loops. We make three observations.
First, PAD-SMA can effectively defend against these attacks,
except for Mimicry×30 (with an accuracy of 65.45% on
Malscan). Mimicry attempts to modify malware representa-
tions to resemble benign ones. As reported in Section 6.1,
adversarial training promotes ICNN (g of PAD-SMA) to

TABLE 3: Accuracy (%) of detectors under oblivious attacks
(i.e., attacker is unaware of adversary detector g).

Attack name Accuracy (%)

KDE DLA DNN+ ICNN PAD-SMA
D

re
bi

n

No Attack 96.28 96.80 97.02 96.62 97.64
Mimicry×1 56.64 55.82 58.18 54.91 94.18
Mimicry×10 20.91 20.91 23.55 21.00 84.18
Mimicry×30 10.64 10.64 12.82 10.00 81.27
MaxMA 96.46 96.82 29.64 96.64 97.64
iMaxMA 96.46 96.82 29.64 96.64 97.64
SMA 32.09 27.82 31.18 32.36 94.27

M
al

sc
an

No Attack 98.02 98.41 97.86 98.11 99.65
Mimicry×1 49.74 53.65 47.81 49.32 83.68
Mimicry×10 18.13 18.68 21.68 17.06 69.13
Mimicry×30 8.65 6.94 14.23 7.00 65.45
MaxMA 98.13 98.55 84.23 98.16 99.65
iMaxMA 98.13 98.55 84.23 98.16 99.65
SMA 6.00 26.68 19.03 7.32 96.68

implicitly distinguish malicious examples from benign ones.
Both aspects decrease PAD-SMA’s capability of mitigating
the oblivious Mimicry attack effectively. Second, all detec-
tors can resist MaxMA and iMaxMA, except for DNN+.
Both attacks maximize the classification loss of DNN+,
leading DNN+ to misclassify perturbed examples as benign
(rather than the newly introduced label). Third, all detectors
are vulnerable to the SMA attack (with maximum accuracy
of 32.36% on Drebin and 26.68% on Malscan), except for
PAD-SMA. This is because SMA stops perturbing malware
when a successful adversarial example against f is obtained
though the degree of perturbations is small, which cannot be
effectively identified by g of KDE, DLA, DNN+, and ICNN.

Answer to RQ2: PAD-SMA is significantly more robust
than KDE, DLA, DNN+, and ICNN against oblivious at-
tacks. Still, PAD-SMA cannot effectively resist the Mimicry
attacks that are guided by multiple benign samples.

6.3 RQ3: Robustness against Adaptive Attacks
Experimental Setup. We measure the robustness of the de-
tectors against adaptive attacks on the Drebin and Malscan

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3265665

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on April 09,2023 at 23:38:28 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, AUGUST 2023 12

TABLE 4: Accuracy (%) of detectors under adaptive attacks, where “Orth” stands for “orthogonal”, “−” means an attack is
not applicable.

Attack name Accuracy (%)

DNN AT-rFGSM AT-MaxMA KDE DLA DNN+ ICNN PAD-SMA

Drebin

Groose 0.000 48.00 87.64 0.000 0.000 0.000 0.636 90.91
BCA 0.000 47.73 87.64 6.182 0.000 4.727 3.000 93.00
BGA 0.000 95.55 96.64 97.00 2.455 0.000 33.36 97.64
rFGSM 0.000 97.46 98.18 97.00 96.82 70.91 96.64 97.64
PGD-`1 0.000 44.46 80.91 0.182 0.000 0.000 0.091 89.72
PGD-`2 3.455 89.73 96.27 87.36 0.000 8.727 0.091 97.18
PGD-`∞ 0.000 96.55 98.09 97.00 96.82 63.73 96.64 97.46
Mimicry×1 54.91 88.91 90.27 56.64 55.82 58.18 54.91 94.18
Mimicry×10 21.00 71.82 74.27 25.73 20.36 19.18 21.00 81.18
Mimicry×30 10.00 66.45 70.64 16.09 10.09 7.909 10.00 74.27
MaxMA 0.000 44.36 80.64 0.182 0.000 0.000 0.091 89.09
iMaxMA 0.000 43.36 69.64 0.000 0.000 0.000 0.000 88.73
SMA 0.000 57.82 84.09 16.36 0.000 8.636 0.000 94.46
Orth PGD-`1 − − − 1.091 0.000 0.000 0.000 97.64
Orth PGD-`2 − − − 17.46 2.455 13.55 3.909 97.64
Orth PGD-`∞ − − − 96.82 31.73 55.18 96.46 97.64
Orth MaxMa − − − 1.091 0.000 0.000 0.000 97.64
Orth iMaxMa − − − 0.182 0.000 0.000 0.000 97.64

Malscan

Groose 0.000 9.129 77.26 0.000 0.000 0.000 0.871 85.26
BCA 0.000 8.968 77.03 1.194 0.000 0.097 8.129 89.32
BGA 0.000 10.97 95.68 98.13 0.194 30.19 37.45 99.45
rFGSM 0.000 99.16 99.55 98.13 98.55 83.42 98.16 99.65
PGD-`1 0.000 6.000 71.68 0.000 0.000 0.000 1.226 84.87
PGD-`2 34.13 63.94 81.55 38.32 2.097 2.806 2.548 95.90
PGD-`∞ 0.000 99.16 99.52 98.13 98.55 41.07 98.10 99.45
Mimicry×1 49.32 75.39 82.48 49.74 53.65 47.81 49.32 83.68
Mimicry×10 17.06 49.13 60.71 17.52 18.23 11.65 17.06 59.94
Mimicry×30 7.000 39.94 52.48 7.645 6.483 2.452 7.000 53.68
MaxMA 0.000 5.742 61.77 0.645 0.000 0.000 0.935 85.26
iMaxMA 0.000 1.645 47.07 0.097 0.000 0.000 0.935 83.45
SMA 0.000 28.77 78.36 0.323 8.258 1.000 0.903 97.48
Orth PGD-`1 − − − 2.000 0.000 0.032 0.000 99.65
Orth PGD-`2 − − − 38.32 2.097 2.806 2.548 99.65
Orth PGD-`∞ − − − 98.13 87.97 34.23 98.16 99.65
Orth MaxMa − − − 1.806 0.000 0.032 0.000 99.65
Orth iMaxMa − − − 0.484 0.000 0.032 0.000 99.65

datasets. We use the 8 detectors in the first group of ex-
periments. The threshold τ is set as the one in the second
group of experiments unless explicitly stated otherwise. The
attacker knows f and g (if applicable) to manipulate mal-
ware examples on the test sets. We change the 11 oblivious
attacks to adaptive attacks by using the loss function given
in Eq.(6), which contains both F and ψϑ. When perturbing
an example, a linear search is conducted to look for a λ
from the set of {10−5, . . . , 105}. In addition, the Mimicry
attack can query both f and g and get feedback then. On the
other hand, since DNN, AT-rFGSM, and AT-MaxMA contain
no adversary detector, the oblivious attacks trivially meet
the adaptive requirement. The other 5 attacks are adapted
from orthogonal (Orth for short) PGD [23], including Orth
PGD-`1, PGD-`2, PGD-`∞, MaxMA, and iMaxMA. We use
the scoring rule of Eq.(12) to select the orthogonal manner.
The hyper-parameters of attacks are set as same as the
second group of experiments, except for PGD-`1 using 500
iterations, PGD-`2 using 200 iterations with a step size 0.05,
and PGD-`∞ using 500 iterations with a step size 0.002.

Results. Table 4 summarizes the experimental results. We
make three observations. First, DNN is vulnerable to all
attacks, especially totally ineffective against 9 attacks (with
0% accuracy). The Mimicry attack achieves the lowest ef-

fectiveness in evading DNN because it modifies examples
without using the internal information of victim detectors.
AT-rFGSM can harden the robustness of DNN to some
extent, but is still sensitive to BCA, PGD-`1, MaxMa, and
iMaxMA attacks (with an accuracy ≤ 47.73% on both
datasets). With an adversary detector, KDE, DLA, DNN+,
and ICNN can resist a few attacks (e.g., rFGSM and PGD-
`∞), but the effectiveness is limited. AT-MaxMA impedes a
range of attacks except for iMaxMA (with a 69.94% accuracy
on Drebin and 47.07% on Malscan) and Mimicry×30 (with a
70.64% accuracy on Drebin and 52.48% on Malscan), which
are consistent with previous results [9].

Second, PAD-SMA, significantly outperforming other
defenses (e.g., AT-MaxMA), achieves robustness against 16
attacks on the Drebin dataset and 13 attacks on the Malscan
dataset (with accuracy ≥ 85%). For example, PAD-SMA can
mitigate MaxMA and iMaxMA, while AT-MaxMA can resist
MaxMA but not iMaxMA (accuracy dropping by 11% on
Drebin and 14.7% on Malscan). The reason is that PAD-
SMA is optimized with convergence guaranteed, causing
more iterations cannot promote attack effectiveness, which
echoes our theoretical results. Moreover, PAD-SMA gains
high detection accuracy (≥ 97.64%) against orthogonal
attacks because the same scoring rule is used and PAD-SMA

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3265665

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on April 09,2023 at 23:38:28 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, AUGUST 2023 13

renders loss function concave.
Third, Mimicry×30 can evade all defenses (with accu-

racy ≤ 74.27% on Drebin and ≤ 53.68% on Malscan). We
additionally conduct two experiments on Drebin: (i) when
we retrain PAD-SMA with penalty factor β1 increased from
β1 = 0.1 to β1 = 1.0, the detection accuracy increases to
85.27% against Mimicry×30 with the detection accuracy on
the test dataset decreasing notably (F1 score decreasing to
78.06%); (ii) when we train PAD-SMA on Mimicry×30 with
additional 10 epochs, the robustness increases to 83.64%
against Mimicry×30 but also decreases the detection ac-
curacy on the test set. These hint our method, as other
adversarial malware training methods, suffers from a trade-
off between robustness and accuracy.

Answer to RQ3: PAD-SMA, outperforming other defenses,
can significantly harden malware detectors against a wide
range of adaptive attacks but not Mimicry×30.

6.4 RQ4: Robustness against Practical Attacks
Experimental Setup. We implement a system to produce
adversarial malware for all attacks considered. We handle
the inverse feature mapping problem (Section 4.3) as in [9],
which maps perturbations in the feature space to the prob-
lem space. Our manipulation proceeds as follows: (i) obtain
feature perturbations; (ii) disassemble an app using Apktool
[68]; (iii) perform manipulation and assemble perturbed files
using Apktool. We add manifest features and do not remove
them so as not to manipulate an app’s functionality. We
permit all APIs that can be added and the APIs with public
modifier but no class inheritance can be hidden by the re-
flection technique (see supplementary materials for details).
In addition, the functionality estimation is conducted by
Android Monkey, which is an efficient fuzz testing tool that
can randomly generate app activities to execute on Android
devices, along with logs. If an app and its modified version
have the same activities, we treat them as having the same
functionality. However, we manually re-analyze the non-
functional ones to cope with the randomness of Monkey.
We wage Mimcry×30, iMaxMA, and SMA attacks because
they achieve a high evasion capability in the feature space.

TABLE 5: The number of apps with functionalities preserved
from 100 randomly selected examples.

Dataset Functionality Apps (#)

No attack Mimicry×30 iMaxMA SMA

Drebin Installable 89 89 89 89
Monkey 80 68 66 65

Andro-
zoo

Installable 86 84 86 83
Monkey 76 58 65 64

Results. We respectively modify 1,098, 1,098, and 1,098 apps
by waging the Mimcry×30, iMaxMA, and SMA attacks to
the Drebin test set (leading to 1,100 malicious apps in total),
and 2,790, 2,791, and 2,790 apps to the Malscan test set
(leading to 3100 malicious apps in total). Most failed cases
are packed apps against ApkTool. Table 5 reports the num-
ber of modified apps that retain the malicious functionality.
Given 100 randomly chosen apps, 89 apps on Drebin and 86

0
20
40
60
80

100

Ac
c

(%
) o

n
Dr

eb
in

PAD-SMA

Kaspersky
Avira

McAfee
Micro

soft

ESET-NOD32

Symantec
Comodo

0
20
40
60
80

100

Ac
c

(%
) o

n
M

al
sc

an

No attack
Mimicry×30
iMaxMA
SMA

Fig. 7: Effectiveness of PAD-SMA and malware scanners
against practical attacks.

apps on Malscan can be deployed on an Android emulator
(running Android API version 8.0 and ARM library sup-
ported). Monkey testing says that the ratio of functionality
preservation is at least 73.03% (65 out of 89) on the Drebin
dataset and 69.05% (58 out of 84) on the Malscan dataset.
Through manual inspection, we find that the injection of
null constructor cannot pass the verification mechanism of
the Android Runtime. Moreover, Java reflection sometimes
breaks an app’s functionality when the app verifies whether
an API name is changed and then chooses to throw an error.

Fig.7 depicts the detection accuracy of detectors against
Mimicry×30, iMaxMA, and SMA attacks. We observe that
PAD-SMA cannot surpass Avira and ESET-NOD32 on both
the Drebin and Malscan datasets. Note that these attacks
know the feature space of PAD-SMA but not anti-malware
scanners. Nevertheless, PAD-SMA achieves comparable ro-
bustness to the three attacks by comparing with Microsoft,
and outperforms McAfee, Symantec, and Comodo. In ad-
dition, Kaspersky is seemingly adaptive to these attacks
because it obtains a slightly better accuracy on the modified
apps than the unperturbed ones (≤15.59%) on the Malscan
dataset.
Answer to RQ4: PAD-SMA is comparable to anti-malware
scanners in the presence of practical attacks. It effectively
mitigate iMaxMA and SMA attacks, but has limited success
against Mimicry×30, akin to the cases of circumventing
feature space attacks.

7 RELATED WORK

We divide related studies into two contexts: Adversarial
Malware Detection (AMD) vs. Adversarial ML (AML).
Defenses Against Adversarial Examples in AMD. We
review related literature on (i) robust feature extraction, (ii)
learning model enhancement, and (iii) adversarial malware
detection. For the first aspect, Drebin features, including
manifest instructions (e.g., required permissions) and syntax
instructions (e.g., sensitive APIs), are usually applied to
resist adversarial examples [10], [14], [35], [40]. Furthermore,
Demontis et al. [19] demonstrate the robustness of Drebin
features using several evasion attacks. However, a following

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3265665

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on April 09,2023 at 23:38:28 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, AUGUST 2023 14

study questions this observation using a mixture of attacks
[9]. Moreover, to cope with obfuscation attacks, researchers
suggest leveraging system API calls [5], and further en-
rich the representation by incorporating multiple modalities
such as structural information (e.g., call graph), API usage
(e.g., method argument types, API dependencies), and dy-
namic behaviors (e.g., network activity, memory dump) [4],
[6], [69]. In the paper, we mainly focus on improving the
robustness of the learning model, though the feature robust-
ness is also important. Therefore, we refine Drebin features
by screening out the ones that can be easily manipulated.

For the second aspect, the defense mechanisms aim to
enhance a malware detector itself to classify adversarial
examples accurately. Several approaches exist such as clas-
sifier randomization, ensemble learning, input transforma-
tion, and adversarial training, which are summarized by a
recent survey [20]. We focus on adversarial training, which
augments the training dataset with adversarial examples
[24], [40], [44], [45]. In order to promote the robustness,
the min-max adversarial training [42] in the ML context
is adapted into the malware detection, endowing detectors
with perceiving the optimal attack in a sense to resist non-
optimal ones [24], [25]. In practice, the attackers are free
enough to generate multiple types of adversarial examples,
straightly leading to the instantiation of adversarial training
incorporating a mixture of attacks [9]. In addition, com-
bining adversarial training and ensemble learning further
promotes the model robustness as long as the base model
is robust enough [9]; a recent study also demonstrates that
diversified features also promote the robustness of ensemble
model [69]. This paper aims to establish principled min-max
adversarial training methods with rigorously identifying the
model’s robustness. Moreover, a new mixture of attacks is
used to instantiate our framework.

For the third aspect, the defenses quarantine the adver-
sarial examples for further analysis. There are two categories
of studies on recognizing adversarial examples. The first
category studies detectors based on traditional ML models
such as ensemble learning based (e.g., [70]). Inspired by the
observation that grey-box attacks cannot thwart all basic
building-block classifiers, Smutz et al. [70] propose identi-
fying evasion attacks via prediction confidences. However,
it is not clear how to adapt these ideas to deep learning
models because they leverage properties that may not exist
in DL models (e.g., neural networks are poorly, rather than
well, calibrated [71]). The second class of studies leverages
the invariant in malware features or in malware detectors
to recognize adversarial examples. For example, Grosse et
al. [66] demonstrate the difference between examples and
their perturbed versions using the statistic test. Li et al. [72]
and Li et al. [73] respectively propose detecting adversar-
ial malware examples via stacked denoising autoencoders.
However, these defense models seemingly cannot deal with
the adaptive attacks effectively, based on recent reports [23],
[66], [72]. Moreover, some defense models are not validated
under the adaptive attacks [73]. When compared with these
prior studies, our solution leverages a convex DNN model
to recognize the evasion attacks, which not only works to
detect adversarial examples, but also promotes principled
defenses [32], leading to a formal treatment on robustness.
Though our model has malware and adversary detectors, it

is distinguishable from ensemble learning in the sense that
different losses are utilized.
Adversarial training in AML. We review related literature
on adversarial training. Adversarial training approach aug-
ments the training set with adversarial examples [41], [49].
Multiple heuristic strategies have been proposed to generate
adversarial example, one of which is of particular interest
to cast the adversarial training as the min-max optimiza-
tion problem [42]. It minimizes the loss for learning ML
models upon the most powerful attack (i.e., considering the
worst-case scenario). However, owing to the non-linearity of
DNNs, it is NP-hard to solve the inner maximization exactly
[42]. Nevertheless, following this spirit, there are mainly
two lines of studies to improve the min-max adversarial
training: a line aims to select or produce the optimal adver-
sarial examples (e.g., via advanced criterion or new learning
strategies [34], [46], [74], [75]); another line aims to ana-
lyze statistical properties of resulting models theoretically
(e.g.,via specific NN architectures or convexity assumptions
[32], [76]). However, because adversarial training is domain-
specific, it is non-trivially to straightly exploit these ad-
vancements for enhancing ML-based malware detectors.

8 CONCLUSION

We devised a provable defense framework against adver-
sarial examples for malware detection. Instead of hardening
the malware detector solely, an indicator is used to alert ad-
versarial examples. We instantiate the framework via adver-
sarial training with a new mixture of attacks, along with a
theoretical analysis on the resulting robustness. Experiments
via two Android datasets demonstrate the soundness of the
framework against a set of attacks, including 3 practical
ones. Future research needs to design other principled or
verifiable methods. Learning or devising robust features,
particularly the dynamical analysis, may be key to de-
feating adversarial examples. Other open problems include
unifying practical adversarial malware attacks, designing
application-agnostic manipulations, and formally verifying
functionality preservation and model robustness.

REFERENCES

[1] V. CHEBYSHEV. (2020, March) Mobile malware evolution 2020
@ONLINE. [Online]. Available: https://securelist.com/

[2] E. Raff, J. Barker, J. Sylvester, and et al., “Malware detection by
eating a whole exe,” arXiv preprint arXiv:1710.09435, 2017.

[3] Y. Ye, T. Li, D. A. Adjeroh, and S. S. Iyengar, “A survey on malware
detection using data mining techniques,” ACM Comput. Surv.,
vol. 50, no. 3, pp. 41:1–41:40, 2017.

[4] X. Zhang, Y. Zhang, M. Zhong, and et al., “Enhancing state-of-
the-art classifiers with api semantics to detect evolved android
malware,” in Proceedings of the 2020 CCS. New York, NY, USA:
Association for Computing Machinery, 2020, p. 757–770.

[5] S. Hou, Y. Ye, Y. Song, and M. Abdulhayoglu, “Hindroid: An
intelligent android malware detection system based on structured
heterogeneous information network,” in Proceedings of the 23rd
KDD. Halifax, NS, Canada: ACM, 2017, pp. 1507–1515.

[6] L. Onwuzurike, E. Mariconti, P. Andriotis, and et al., “Mamadroid:
Detecting android malware by building markov chains of behav-
ioral models,” ACM TOPS, vol. 22, no. 2, pp. 1–34, 2019.

[7] X. Chen, C. Li, and et al., “Android HIV: A study of repackaging
malware for evading machine-learning detection,” IEEE T-IFS,
vol. 15, pp. 987–1001, 2020.

[8] L. Chen, S. Hou, and Y. Ye, “Securedroid: Enhancing security
of machine learning-based detection against adversarial android
malware attacks,” in ACSAC. USA: ACM, 2017, pp. 362–372.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3265665

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on April 09,2023 at 23:38:28 UTC from IEEE Xplore. Restrictions apply.

https://securelist.com/

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, AUGUST 2023 15

[9] D. Li and Q. Li, “Adversarial deep ensemble: Evasion attacks and
defenses for malware detection,” IEEE T-IFS, vol. 15, 2020.

[10] F. Pierazzi, F. Pendlebury, and et al., “Intriguing properties of
adversarial ML attacks in the problem space,” in IEEE S&P, San
Francisco, CA, USA, May 18-21, 2020. IEEE, 2020, pp. 1332–1349.

[11] K. Zhao, H. Zhou, and et al., “Structural attack against graph
based android malware detection,” in CCS, Virtual Event, Republic
of Korea, November 15 - 19, 2021. ACM, 2021, pp. 3218–3235.

[12] W. Song, X. Li, S. Afroz, and et al., “MAB-Malware: A reinforce-
ment learning framework for blackbox generation of adversarial
malware,” in ASIA CCS, Japan. ACM, 2022, pp. 990–1003.

[13] S. Chen, M. Xue, L. Fan, and et al., “Automated poisoning at-
tacks and defenses in malware detection systems: An adversarial
machine learning approach,” Comput. Secur., vol. 73, pp. 326–344,
2018.

[14] O. Suciu, R. Marginean, Y. Kaya, and et al., “When does ma-
chine learning FAIL? generalized transferability for evasion and
poisoning attacks,” in USENIX Security Symposium. USENIX
Association, 2018, pp. 1299–1316.

[15] L. Demetrio, B. Biggio, G. Lagorio, and et al., “Functionality-
preserving black-box optimization of adversarial windows mal-
ware,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 3469–3478, 2021.

[16] L. Demetrio, S. E. Coull, B. Biggio, and et al., “Adversarial exem-
ples: A survey and experimental evaluation of practical attacks on
machine learning for windows malware detection,” ACM Trans.
Priv. Secur., vol. 24, no. 4, pp. 27:1–27:31, 2021.

[17] A. Demontis, M. Melis, M. Pintor, and et al., “Why do adversarial
attacks transfer? explaining transferability of evasion and poison-
ing attacks,” in 28th USENIX Security Symposium. Santa Clara,
CA, USA: USENIX Association, 2019, pp. 321–338.

[18] L. Chen, S. Hou, Y. Ye, and S. Xu, “Droideye: Fortifying security
of learning-based classifier against adversarial android malware
attacks,” in FOSINT-SI’2018, 2018, pp. 253–262.

[19] A. Demontis, M. Melis, B. Biggio, and et al., “Yes, machine learning
can be more secure! a case study on android malware detection,”
IEEE TDSC, vol. 16, no. 4, pp. 711–724, 2019.

[20] D. Li, Q. Li, Y. F. Ye, and S. Xu, “Arms race in adversarial malware
detection: A survey,” ACM Comput. Surv., vol. 55, no. 1, 2021.

[21] N. Carlini and D. Wagner, “Adversarial examples are not easily
detected: Bypassing ten detection methods,” in Proceedings of the
10th ACM Workshop on Artificial Intelligence and Security. Dallas,
TX, USA: ACM, 2017, pp. 3–14.

[22] A. Athalye, N. Carlini, and D. A. Wagner, “Obfuscated gradients
give a false sense of security: Circumventing defenses to adversar-
ial examples,” CoRR, vol. abs/1802.00420, 2018.

[23] O. Bryniarski, N. Hingun, and et al., “Evading adversarial ex-
ample detection defenses with orthogonal projected gradient de-
scent,” in 10th ICLR. OpenReview.net, 2022.

[24] A. Al-Dujaili, A. Huang, E. Hemberg, and U.-M. O’Reilly, “Ad-
versarial deep learning for robust detection of binary encoded
malware,” in 2018 IEEE Security and Privacy Workshops (SPW). San
Francisco, USA: IEEE Computer Society, 2018, pp. 76–82.

[25] D. Li, Q. Li, Y. Ye, and S. Xu, “A framework for enhancing deep
neural networks against adversarial malware,” IEEE Trans. Netw.
Sci. Eng., vol. 8, no. 1, pp. 736–750, 2021.

[26] P. L. Nedim Rndic, “Practical evasion of a learning-based classifier:
A case study,” in Security and Privacy (SP), 2014 IEEE Symposium
on. IEEE, 2014, pp. 197–211.

[27] I. Incer, M. Theodorides, S. Afroz, and et al., “Adversarially robust
malware detection using monotonic classification,” in Proceedings
of the ACM IWSPA@CODASPY. AZ, USA: ACM, 2018, pp. 54–63.

[28] Q. Lei, L. Wu, P. Chen, and et al., “Discrete adversarial attacks
and submodular optimization with applications to text classifica-
tion,” in Proceedings of MLSys 2019, CA, USA, 2019, A. Talwalkar,
V. Smith, and M. Zaharia, Eds. mlsys.org, 2019.

[29] H. Bao, Y. Han, Y. Zhou, and et al., “Towards understanding the
robustness against evasion attack on categorical data,” in The Tenth
ICLR, Virtual Event. OpenReview.net, 2022.

[30] Y. Wang, Y. Han, H. Bao, and et al., “Attackability characterization
of adversarial evasion attack on discrete data,” in The 26th ACM
SIGKDD, Virtual Event, USA, 2020. ACM, 2020, pp. 1415–1425.

[31] Y. Chen, S. Wang, D. She, and S. Jana, “On training robust
PDF malware classifiers,” in 29th USENIX Security Symposium.
USENIX Association, 2020, pp. 2343–2360.

[32] A. Sinha, H. Namkoong, and J. C. Duchi, “Certifying some distri-
butional robustness with principled adversarial training,” in 6th
ICLR, Vancouver, Canada, Apr 30 - May 3. OpenReview.net, 2018.

[33] Y. Wang, X. Ma, J. Bailey, and et al., “On the convergence and
robustness of adversarial training,” in Proceedings of the 36th ICML,
vol. 97. PMLR, 09–15 Jun 2019, pp. 6586–6595.

[34] X. Jia, Y. Zhang, B. Wu, and et al., “LAS-AT: adversarial training
with learnable attack strategy,” in IEEE/CVF Conference on CVPR,
LA, USA, 2022. IEEE, 2022, pp. 13 388–13 398.

[35] D. Arp, M. Spreitzenbarth, and et al., “Drebin: Effective and
explainable detection of android malware in your pocket.” in
NDSS, vol. 14. San Diego, California, USA: The Internet Society,
2014, pp. 23–26.

[36] Y. Wu, X. Li, D. Zou, and et al., “Malscan: Fast market-wide mobile
malware scanning by social-network centrality analysis,” in 34th
IEEE/ACM International Conference on ASE, San Diego, CA, USA,
November 11-15. IEEE, 2019, pp. 139–150.

[37] P. Sperl, C. Kao, P. Chen, X. Lei, and K. Böttinger, “DLA: dense-
layer-analysis for adversarial example detection,” in IEEE Eu-
roS&P, Genoa, Italy, September 7-11. IEEE, 2020, pp. 198–215.

[38] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol.
521, no. 7553, p. 436, 2015.

[39] I. C. B. Biggio and D. M. et al., “Evasion attacks against machine
learning at test time,” in Machine Learning and Knowledge Discovery
in Databases: European Conference. Springer, 2013, pp. 387–402.

[40] K. Grosse, N. Papernot, P. Manoharan, and et al., “Adversarial
examples for malware detection,” in ESORICS. Oslo, Norway:
Springer, 2017, pp. 62–79.

[41] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and har-
nessing adversarial examples,” in 3rd ICLR. San Diego, CA, USA:
OpenReview.net, 2015.

[42] A. Madry, A. Makelov, L. Schmidt, and et al., “Towards deep
learning models resistant to adversarial attacks,” in 6th ICLR, BC,
Canada. OpenReview.net, 2018.

[43] D. Li, Q. Li, Y. Ye, and S. Xu, “Enhancing deep neural net-
works against adversarial malware examples,” arXiv preprint
arXiv:2004.07919, 2020.

[44] L. Xu, Z. Zhan, S. Xu, and K. Ye, “An evasion and counter-
evasion study in malicious websites detection,” in CNS, 2014 IEEE
Conference on. IEEE, 2014, pp. 265–273.

[45] L. Chen, Y. Ye, and T. Bourlai, “Adversarial machine learning
in malware detection: Arms race between evasion attack and
defense,” in EISIC’2017, 2017, pp. 99–106.

[46] F. Tramèr, A. Kurakin, N. Papernot, and et al., “Ensemble adver-
sarial training: Attacks and defenses,” in 6th ICLR, BC, Canada.
OpenReview.net, 2018.

[47] T. Pang, C. Du, Y. Dong, and et al., “Towards robust detection
of adversarial examples,” in Advances in NeurIPS, 2018, pp. 4579–
4589.

[48] C. Villani, Topics in optimal transportation. American Mathematical
Soc., 2021, vol. 58.

[49] C. Szegedy, W. Zaremba, I. Sutskever, and et al., “Intriguing
properties of neural networks,” in 2nd ICLR, Banff, AB, Canada,
April 14-16, 2014.

[50] S. Moosavi-Dezfooli, A. Fawzi, J. Uesato, and et al., “Robustness
via curvature regularization, and vice versa,” in IEEE Conference
on CVPR, CA, USA. IEEE, 2019, pp. 9078–9086.

[51] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks
and defenses for deep learning,” IEEE Trans. Neural Networks
Learn. Syst., vol. 30, no. 9, pp. 2805–2824, 2019.

[52] Y. Liu, C. Tantithamthavorn, L. Li, and Y. Liu, “Deep learning for
android malware defenses: A systematic literature review,” ACM
Comput. Surv., 2022.

[53] B. Kolosnjaji, A. Demontis, B. Biggio, and et al., “Adversarial
malware binaries: Evading deep learning for malware detection
in executables,” in 2018 26th EUSIPCO, Sep. 2018, pp. 533–537.

[54] Z. Allen-Zhu, Y. Li, and Z. Song, “A convergence theory for
deep learning via over-parameterization,” in Proceedings of the 36th
ICML, vol. 97. Long Beach, USA: PMLR, 2019, pp. 242–252.

[55] D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (elus),” in 4th
ICLR. San Juan, Puerto Rico: OpenReview.net, 2016.

[56] B. Amos, L. Xu, and J. Z. Kolter, “Input convex neural networks,”
in Proceedings of the 34th ICML, Sydney, NSW, Australia, 6-11 Au-
gust, vol. 70. PMLR, 2017, pp. 146–155.

[57] P. Oza and V. M. Patel, “One-class convolutional neural network,”
IEEE Signal Process. Lett., vol. 26, no. 2, pp. 277–281, 2019.

[58] H. Wu, C. Wang, Y. Tyshetskiy, and et al., “Adversarial examples
for graph data: Deep insights into attack and defense,” in Proceed-
ings of the 28th IJCAI. Macao, China: ijcai.org, 2019, pp. 4816–4823.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3265665

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on April 09,2023 at 23:38:28 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, AUGUST 2023 16

[59] K. Allix, T. F. Bissyandé, J. Klein, and et al., “Androzoo: Collecting
millions of android apps for the research community,” in Proceed-
ings of International Conference on MSR. NY, USA: ACM, 2016, pp.
468–471.

[60] H. Sistemas. (2021, May) Virustotal. [Online]. Available:
https://www.virustotal.com

[61] F. Pellegatta. (2021, May) Aamo: Another android malware
obfuscator. [Online]. Available: https://github.com/necst/aamo

[62] S. Aonzo, G. C. Georgiu, L. Verderame, and A. Merlo, “Obfuscapk:
An open-source black-box obfuscation tool for android apps,”
SoftwareX, vol. 11, p. 100403, 2020.

[63] J. Jung, C. Jeon, M. Wolotsky, I. Yun, and T. Kim, “AVPASS: Leak-
ing and Bypassing Antivirus Detection Model Automatically,” in
Black Hat USA Briefings (Black Hat USA), Las Vegas, NV, Jul. 2017.

[64] Quarkslab. (2021, May) Lief: library for instrumenting executable
files. [Online]. Available: https://ibotpeaches.github.io/Apktool

[65] A. Desnos. (2020, February) Androguard @ONLINE. [Online].
Available: https://github.com/androguard/androguard

[66] K. Grosse, P. Manoharan, N. Papernot, and et al., “On
the (statistical) detection of adversarial examples,” CoRR, vol.
abs/1702.06280, 2017.

[67] K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buhmann,
“The balanced accuracy and its posterior distribution,” in 2010
20th International Conference on Pattern Recognition. Istanbul,
Turkey: IEEE Computer Society, 2010, pp. 3121–3124.

[68] C. Tumbleson. (2018, May) Apktool. [Online]. Available:
https://ibotpeaches.github.io/Apktool

[69] M. Ficco, “Malware analysis by combining multiple detectors and
observation windows,” IEEE Trans. Computers, vol. 71, no. 6, pp.
1276–1290, 2022.

[70] C. Smutz and A. Stavrou, “When a tree falls: Using diversity in
ensemble classifiers to identify evasion in malware detectors.” in
NDSS, 2016.

[71] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of
modern neural networks,” in Proceedings of the 34th ICML, vol. 70.
Sydney, Australia: PMLR, 2017, pp. 1321–1330.

[72] D. Li, R. Baral, T. Li, and et al., “Hashtran-dnn: A framework for
enhancing robustness of deep neural networks against adversarial
malware samples,” arXiv preprint arXiv:1809.06498, 2018.

[73] H. Li, S. Zhou, W. Yuan, and et al., “Robust android malware
detection against adversarial example attacks,” in WWW ’21: The
Web Conference 2021. Virtual Event: ACM, 2021, pp. 3603–3612.

[74] Y. Wang, D. Zou, J. Yi, and et al., “Improving adversarial robust-
ness requires revisiting misclassified examples,” in 8th ICLR, Addis
Ababa, Ethiopia, April 26-30. OpenReview.net, 2020.

[75] T. Bai, J. Luo, J. Zhao, and et al., “Recent advances in adversarial
training for adversarial robustness,” in Proceedings of the IJCAI,
Virtual Event, 19-27 August. ijcai.org, 2021, pp. 4312–4321.

[76] Y. Xing, Q. Song, and G. Cheng, “On the generalization properties
of adversarial training,” in The 24th AISTATS, Virtual Event, vol.
130. PMLR, 2021, pp. 505–513.

[77] A. Paszke, S. Gross, F. Massa, and et al., “Pytorch: An imperative
style, high-performance deep learning library,” in NeurIPS. BC,
Canada: Curran Associates, Inc., 2019, pp. 8024–8035.

[78] F. Ceschin, M. Botacin, G. Lüders, and et al., “No need to teach
new tricks to old malware: Winning an evasion challenge with
xor-based adversarial samples,” in Reversing and Offensive-Oriented
Trends Symposium. NY, USA: ACM, 2021, p. 13–22.

Deqiang Li received the M.E. degree in software
engineering and the Ph.D. degree in computer
science and technology from Nanjing University
of Science and Technology, Jiangsu, China. He
is currently a lecturer with Nanjing University
of Posts and Telecommunications. His research
interests include adversarial malware detection,
adversarial machine learning, and applied data
mining techniques in malware detection.

Shicheng Cui received the B.E. degree in soft-
ware engineering and the Ph.D. degree in com-
puter science and technology from Nanjing Uni-
versity of Science and Technology, Jiangsu,
China. His research interests include graph min-
ing, network representation learning and deep
learning techniques in data science.

Yun Li received the Ph.D. degree in Computer
Science from Chongqing University, Chongqing,
China, and the postdoctoral fellow in Department
of Computer Science and Engineering, Shang-
hai Jiao Tong University, China. He is currently
a professor in the School of Computer Science,
Nanjing University of Posts and Telecommuni-
cations, China. His research mainly focuses on
machine learning, data mining and parallel com-
puting.

Jia Xu (M’15–SM’21) received the M.S. degree
in School of Information and Engineering from
Yangzhou University, Jiangsu, China, in 2006
and the PhD. Degree in School of Computer Sci-
ence and Engineering from Nanjing University
of Science and Technology, Jiangsu, China, in
2010. He is currently a professor in the School of
Computer Science at Nanjing University of Posts
and Telecommunications. His main research in-
terests include crowdsourcing, edge computing
and wireless sensor networks.

Xiao Fu (M’12) received the Ph.D. degree in
computer science and technology from the Nan-
jing University of Science and Technology, Nan-
jing, China, in 2007. He is currently a Professor
in the Jiangsu Key Laboratory of Big Data Secu-
rity and Intelligent Processing at Nanjing Univer-
sity of Posts and Telecommunications. His main
research interests are wireless sensor networks
and mobile computing. He is a member of the
IEEE Computer Society and the Association for
Computing Machinery.

Shouhuai Xu (M’14–SM’20) is the Gallogly
Chair Professor in the Department of Com-
puter Science, University of Colorado Colorado
Springs (UCCS). Prior to joining UCCS, he has
been with University of Texas at San Antonio.
He pioneered the Cybersecurity Dynamics ap-
proach as foundation for the emerging science of
cybersecurity, with three pillars: first-principle cy-
bersecurity modeling and analysis (the x-axis);
cybersecurity data analytics (the y-axis, to which
the present paper belongs); and cybersecurity

metrics (the z-axis). He co-initiated the International Conference on
Science of Cyber Security and is serving as its Steering Committee
Chair. He received his PhD in Computer Science from Fudan University.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3265665

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on April 09,2023 at 23:38:28 UTC from IEEE Xplore. Restrictions apply.

https://www.virustotal.com
https://github.com/necst/aamo
https://ibotpeaches.github.io/Apktool
https://github.com/androguard/androguard
https://ibotpeaches.github.io/Apktool

	Introduction
	Background Knowledge
	ML-based Malware & Adversary Detection
	Evasion Attacks
	Evasion Attack Methods
	Oblivious vs. Adaptive Attacks
	The Inverse Feature-Mapping Problem

	Adversarial Training

	The PAD Framework
	Threat model and Design Objective
	Design Rationale

	Instantiating the PAD Framework
	Adjusting Malware Detector
	Adversary Detector
	Adversarial Training Algorithm

	Theoretical Analysis
	Experiments
	RQ1: Effectiveness of Defenses in the Absence of Attacks
	RQ2: Robustness against Oblivious Attacks
	RQ3: Robustness against Adaptive Attacks
	RQ4: Robustness against Practical Attacks

	Related Work
	Conclusion
	References
	Biographies
	Deqiang Li
	Shicheng Cui
	Yun Li
	Jia Xu
	Xiao Fu
	Shouhuai Xu

