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Crowdsourcing has become an efficient paradigm to utilize human intelligence to perform tasks which are
challenging for machines. Many incentive mechanisms for crowdsourcing systems have been proposed.
However, most of existing incentive mechanisms assume that there are sufficient participants to perform
crowdsourcing tasks. In large-scale crowdsourcing scenarios, this assumption may be not applicable. To
address this issue, we diffuse the crowdsourcing tasks in social network to increase the number of participants.
To make the task diffusion more applicable to crowdsourcing system, we enhance the classic Independent
Cascade model so that the influence is strongly connected with both the types and topics of tasks. Based
on the tailored task diffusion model, we formulate the Budget Feasible Task Diffusion (BFTD) problem for
maximizing the value function of platform with constrained budget. We design a parameter estimation
algorithm based on Expectation Maximization algorithm to estimate the parameters in proposed task diffusion
model. Benefitting from the submodular property of the objective function, we apply the budget feasible
incentive mechanism, which satisfies desirable properties of computational efficiency, individual rationality,
budget feasible, truthfulness and guaranteed approximation, to stimulate the task diffusers. The simulation
results based on two real-world datasets show that our incentive mechanism can improve the number of
active users and the task completion rate by 9.8% and 11% averagely.
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1 INTRODUCTION
Nowadays, mobile devices like smart phones have become popular and common in everyday life.
Through the embedded sensors of mobile devices, people are with the ability to sense data of the
surrounding environment, such as air pollution, noise level and share them through social networks.
Mobile crowdsourcing has the advantages of low cost, low knowledge requirements, high flexibility,
etc., and has been widely used in many fields such as environment (e.g. Safecast [40]), translation
(e.g. Proz [37]), disaster response [44], and online marketplace (e.g. Freelancer [15]) in recent years.

Incentive mechanism is essential to mobile crowdsourcing since the smartphone users spend
their time and consume battery, memory, computing power and data usage of device to generate,
store and transmit the sensing data. Moreover, there are potential privacy threats to smartphone
users by sharing their data with location tags, interests or identities. The issues of privacy leakage
for mobile crowdsourcing systems [48] promote the research on incentive mechanism design for
mobile crowdsourcing systems. Many existing research designs incentive mechanisms to attract
the participants, stimulating users through monetary payment [54, 55, 57]. Besides, incentive mech-
anisms help the platform to select high-quality users, which improves the quality of crowdsourcing
service [39, 56].
However, a crucial issue of mobile crowdsourcing is insufficient participants. Our statistics

data showed that there are 21.1 uncompleted requests that were publicized more than 2 weeks in
Amazon Mechanical Turk [1] on average from 2021-5-19 to 2021-5-30, while each request may
include several HITs (Human Intelligence Tasks). Among these requests, 79.3% requests were
publicized more than one month. Another observation from Freelancer [15] from 2021-5-19 to
2021-5-30 showed that there are 51.9 uncompleted projects that were publicized more than 2 weeks
on average. Among them, 60.1% projects were publicized more than one month. The above surveys
reveal the insufficient participant problem of current crowdsourcing systems.
To address this issue, we diffuse crowdsourcing tasks in the social network through registered

users of crowdsourcing platform so that more users can be aware of and participate in the crowd-
sourcing. Different from many existing incentive mechanisms, which select winners to perform
tasks, our incentive mechanism aims at selecting diffusers from the registered users to diffuse tasks
to others in social network.
For the implementation of task diffusion for crowdsourcing, the diffusion model is needed to

describe how the selected diffusers propagate their influence to other social users. Kempe et al. [22]
proposed the two most popular influence diffusion models: Independent Cascade (IC) model and
Linear Threshold (LT ) model. A lot of studies have been made for influence maximization based on
different diffusion models [10, 11], which provide the base of our work.
Further, we need to evaluate the influence of registered users. Most of existing influence calcu-

lation methods, such as degree centrality [6], k-shell decomposition [24], betweenness centrality
[4], closeness centrality [26], evaluate influence of nodes from the point of network topology, and
neglect the properties of specific items to be diffused. In mobile crowdsourcing, the registered users
may diffuse multiple types of tasks simultaneously. The type of task represents what job needs to
be done, e.g., translation, image recognition, speech acquisition, reading collection, fiction writing.
The registered users probably have different influence on different types of tasks. For example, a
novelist usually has higher influence for diffusing tasks of writing than diffusing tasks with other
types. Thus, the classic methods of influence calculation are not applicable for crowdsourcing
systems. Further, the influence of registered users is also related to the topics of tasks. The topics of
tasks stand for the concrete content of tasks. For example, the topics of novel include horror fiction,
love story, detective story, historical fiction, science fiction, etc. Usually, the users often have higher
influence on topics in which they have reputation or are popular. For example, a science fiction
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writer has higher influence on science fiction writing than writing on other topics. Therefore, the
influence of a registered user should depend on not only the types of tasks it diffuses but also the
topics of the tasks.
Taking all these issues into account, it is necessary to design a crowdsourcing task diffusion

system to select the diffusers from the registered users of platform based on the influence on other
social uses, and the appropriate incentive is desired to stimulate the task diffusers.
In this paper, we consider that the crowdsourcing tasks are launched by the platform, which is

operated by some online community. So far, many online communities have developed crowdsourc-
ing systems themselves, such as Stepes [42] operated by Facebook, Google Image Labeler [16] and
Translate Community [43] operated by Google+, QQ-Crowd [38] operated by QQ, Crowdtesting
[12] and Baidu Baike [2] operated by Baidu. We model the crowdsourcing task diffusion system as
a reverse auction. In our system, each registered user of the platform decides on the task set it is
willing to diffuse and submits its bid. Then the platform estimates the topics of crowdsourcing tasks
and the influence of registered users. The platform selects winners and determines the payment.
The winners diffuse the tasks to other users in the social network. Afterwards, the influenced
social users perform the crowdsourcing tasks. Finally, each winner obtains the payment, which
is determined by the platform. The objective of our incentive mechanism is designing truthful
incentive mechanisms to maximize the value from the winners’ task diffusion under the budget
constraint. The whole process is illustrated by Fig. 1.

PlatformRegistered Users

3)winner selection

2)bid

Social Users

Fig. 1. Illustration of task diffusion in mobile crowdsourcing

The problem of designing truthful incentive mechanisms for crowdsourcing task diffusion is
very challenging. First, the traditional influence diffusion model [22] should be enhanced so that
the influence can be strongly connected with both the types and topics of tasks. Second, we need
an efficient method to estimate the topics of multiple crowdsourcing tasks and the influence of
registered users. Moreover, the registered user may take a strategic behavior by submitting dishonest
bid price to maximize its utility.

The main contribution of this paper are as follows:

• To the best of our knowledge, this is the first work to design the truthful incentive mechanism
for topic-aware task diffusion in crowdsourcing systems.
• We present the crowdsourcing task diffusion system and Topic-aware Independent Cascade
(TIC) model, and formulate the Budget Feasible Task Diffusion (BFTD) problem to maximize
the total value from task diffusion under the budget constraint.
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• We present a Parameter Estimation Algorithm (PEA) to estimate the topics of crowdsourcing
tasks and the influence of registered users for the task diffusionmodel based on the Expectation
Maximization (EM) algorithm [13].
• We design an incentive mechanism, which satisfies desirable properties of computational
efficiency, individual rationality, truthfulness and guaranteed approximation, to solve the
BFTD problem. The simulation results based on two real-world datasets show that our
incentive mechanism can improve the number of active users and the task completion rate
by 9.8% and 11% averagely.

The rest of the paper is organized as follows. We review the state-of-art research in Section
2. Section 3 formulates the crowdsourcing model, diffusion model and problems, and lists some
desirable properties. Section 4 presents the detailed design of parameter estimation algorithm for
the diffusion model. Section 5 presents the detailed design of our incentive mechanism. Performance
evaluation is presented in Section 6. We conclude this paper in Section 7.

2 RELATEDWORK
2.1 Influence Diffusion and Influence Maximization
Diffusion in social network has been extensively studied in different fields as the basic for maximiz-
ing the influence. The pioneer work [22] proposed the classic IC diffusion model and LT diffusion
model, and used a greedy algorithm to solve the problem of influence maximization. The concept
of influence is specified as the expected number of active nodes at the end and has been used
extensively. However, how to determine the influence probabilities in these two models is not
mentioned.
Many improved diffusion models have been proposed thus far. Li et al. [28]studied diffusion

dynamics and considered the different types of relationship between nodes in social network,
including friendly and hostile ones, to maximize influence. Lu et al. [30] focused on the com-
plementarity of different items and proposed the Comparative Independent Cascade model for
influence maximization. [30] paid attention to the similarity between items, but did not give a
specific classification. Doo et al. [14] designed a Probabilistic Social Influence model based on both
IC model and LT model and studied how to use incentives to boost the diffusion. In [9], Chen et al.
extended IC and LT models to incorporate time delay aspect.

Some work aims at estimating the influence of diffusion. The studies [4, 6, 24, 26, 35] estimate the
influence only based on the metrics from the point of network topology, such as degree centrality [6],
k-shell decomposition [24], betweenness centrality [4], closeness centrality [26], and generalized
degree centrality [35]. These studies estimate the influence only based on the network topology.
Therefore, the estimated influence cannot fit data well. Different from the above work, EM takes
into account not only the network topology but also the historic data. Moreover, the time sequence
of diffusion is also considered.
Saito et al. [41] first studied how to learn the influence probabilities in IC model, and applied

EM algorithm to learn the parameters from history data. The strength of EM algorithm is that
the results can fit data well. Goyal et al. [18] proposed the new models by considering the impact
of time based on two classic models and defined the new metric termed influence score. In [18],
the influence probabilities are calculated through history data and Jaccard Index. However, the
method proposed in [18] requires the assumption of submodularity of joint influence probability,
which is not always true. Kutzkov et al. [25] designed the randomized approximation algorithms
to calculate influence based on data-stream and stable network topology in landmark and sliding
window models. However, the influence calculated in [25] is self-defined and cannot be applied to
our TIC model, which is tailored from the classic IC model.
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Table 1. Comparison of Diffusion Influence Estimation Algorithms

Algorithms [6] [24] [4] [26] [35] [18] [25] EM [41] PEA
using only
topology

Yes Yes Yes Yes Yes No No No No

using topology Yes Yes Yes Yes Yes Yes Yes Yes Yes

using histori-
cal data

No No No No No Yes Yes Yes Yes

using time se-
quence

No No No No No Yes Yes Yes Yes

diffusion
model

None None None None None General
Threshold
Model

None IC IC

hypothesis None None None None None submodularity None None None
properties of
items

No No No No No No No No Yes

Most importantly, all of the research mentioned above ignored the characteristics of items to be
diffused, for example, the types and topics of tasks in our crowdsourcing context. In this paper, the
classic IC model is tailored by extending the dimensionality of influence to task types and topics
such that the diffusion model is more suitable for the crowdsourcing systems. We summarize the
diffusion influence estimation algorithms in Table. 1.

2.2 Incentive Mechanisms for Social Crowdsourcing
Some recent research of crowdsourcing incentive mechanism design focused on the social network
environment, in other words, the influence of participants towards the crowdsourcing system. Nie
et al. [34] gave an overview on socially aware crowdsensing and designed an incentive mechanism
based on Bayesian Stackelberg game. Zhao et al. [57] proposed a social-aware incentive mechanism
based on social network effect and deep reinforcement learning for vehicular crowdsensing. Wang
et al. [46] proposed a biased contest-based crowdsourcing system on social network to balance the
sybil attack and heterogeneous effect of participants. Jiang et al. [21] designed incentive mechanisms
based on time-sensitive and sybil-proof for a social network-based mobile crowdsensing system.
Xiao et al. [50] focused on the task assignment problem in predictable mobile social networks and
designed two algorithms to solve the problem. [8] investigated the structure of mobile sensing
schemes and introduced crowdsourcing methods from the perspective of social network.
Some research focused on exploring the relationship between users in the social network. The

influence of participants can be estimated based on their effects on social neighbors. Wang et al.
[45] considered the worker recruitment in mobile crowdsensing system based on the influence
propagation and designed two algorithms which have different efficiency to select winners. Xu
et al. [52] proposed the online incentive mechanism for task diffusion through social network to
solve the insufficient participation problem in crowdsourcing. Wang et al. [47] proposed a similar
idea of task propagation via social network to stimulate task propagation and completion. Xu et al.
[51] diffused the crowdsourcing tasks via the social network using the classic IC diffusion model
and LT diffusion model and proposed influence estimation methods based on the topology and
history knowledge. Xu et al. [53] designed truthful incentive mechanisms to minimize the social
cost such that each of the cooperative tasks can be completed by a group of compatible users, where
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the compatibility is modeled through the real-life relationships from social networks. Wang et al.
[49] proposed a personalized task-oriented worker recruitment mechanism, where the tasks are
allocated based on workers’ preferences. Specifically, they modeled the initial preference of the
new worker by averaging his social friends’ preferences.

However, none of the above work design the topic-aware task diffusion model and corresponding
the incentive mechanism for task diffusers in social network for crowdsourcing systems.

2.3 Topic Estimation for Crowdsourcing
Some studies have considered the topics of crowdsourcing tasks. Wang et al. [45] studied the
problems of crowdsourcing worker recruitment and influence maximization in the social network,
where the probability of worker accepting a crowdsourcing task depends on the topical interest
and incentive attraction. Huang et al. [20] addressed the truth discovery problem considering topic
relevance and truthfulness of claims as well as the topic awareness and reliability of sources. Ma et al.
[31] estimated true value of observed variables in crowdsourced data by incorporating topic-specific
expertise. However, the studies mentioned above don’t estimate the topics of crowdsourcing tasks.
Topic estimation has been widely studied in other fields. Topic model is a type of statistical

model for discovering the topics that occur in a collection of documents. An early topic model was
described by Papadimitriou et al. in 1998 [36]. Another one, called Probabilistic Latent Semantic
Analysis (PLSA), was created by Thomas in 1999 [19]. David et al. generalized PLSA and proposed
Latent Dirichlet allocation (LDA) [3], which is the most common topic model currently in use. LDA
introduces sparse Dirichlet prior distributions over document-topic and topic-word distributions,
encoding the intuition that documents cover a small number of topics and that topics often use
a small number of words. Other topic models are generally extensions on LDA, such as Pachinko
Allocation [27], which improves LDA by modeling correlations between topics in addition to the
word correlations which constitute topics. Hierarchical Latent Tree Analysis (HLTA) [29] is an
alternative to LDA, which models word co-occurrence using a tree of latent variables and the states
of the latent variables, which correspond to soft clusters of documents, are interpreted as topics.

However, the topics of crowdsourcing tasks usually cover vast domains of daily life. It requires
a high semantic analysis ability in vast domains for the crowdsourcing platform to use the topic
model. A low-cost method is employing EM algorithm to estimate the topics of tasks and the
influence of registered users based on the historical data simultaneously.

3 SYSTEMMODEL
In this section, we model the crowdsourcing task diffusion system as a reverse auction. Then we
present the Topic-aware Independent Cascade model and formulate the Budget Feasible Task Diffusion
(BFTD) problem. Finally, we propose some desirable properties.

3.1 Crowdsourcing Task Diffusion System
We consider a crowdsourcing task diffusion system consisting of a platform and a set of registered
users𝑈 = {1, 2, . . . , 𝑛}, who are interested in diffusing crowdsourcing tasks. The platform publicizes
a set 𝑇 = {𝑡1, 𝑡2, · · · , 𝑡𝑚} of𝑚 tasks, which need to be diffused in social network with the budget 𝐵.
The budget 𝐵 is the maximum value the platform plans to pay the selected registered users after
they finish their diffusion work. The social graph𝐺 = (𝑉 , 𝐸) includes all users in the social network.
Each registered user 𝑖 ∈ 𝑈 has its own social neighbors in social network. There can be at most𝑚
edges between any two nodes 𝑣,𝑤 ∈ 𝑉 . For each edge (𝑣,𝑤) ∈ 𝐸, there is a weight indicating the
influence of 𝑣 on𝑤 for any task 𝑡 𝑗 ∈ 𝑇 .

Usually, a crowdsourcing task is associated with multiple topics. For example, the mobile crowd-
sourcing task of collecting air pollution readings probably has the associated topics of climate,
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environment and chemistry. These topics have different probabilities to reflect the content of
crowdsourcing task (e.g., 50% for environment, 35% for climate and 15% for chemistry). Therefore,
we use a probability distribution to represent the topics of a crowdsourcing task. We denote the
topic of any task 𝑡 𝑗 as 𝑧 𝑗 , which follows a probability distribution over all topics, which is unknown
to the platform, i.e.,

∑
𝑘∈𝑍

𝑃
(
𝑧 𝑗 = 𝑘

)
= 1, where 𝑍 is the topic set.

Each registered user 𝑖 submits a bid \𝑖 = (𝑇𝑖 , 𝑏𝑖 ), where 𝑇𝑖 ⊆ 𝑇 is the task set registered user 𝑖
willing to diffuse, and 𝑏𝑖 is the bid price of 𝑖 . Let 𝑐𝑖 be the true cost of 𝑖 , and 𝑐𝑖 is private and only
known to 𝑖 .

Given the bid profile 𝜽 = (\1, \2, · · · , \𝑛), the platform selects a winner set 𝑆 ⊆ 𝑈 and determines
the payment 𝛿𝑖 for each registered user 𝑖 ∈ 𝑈 . The winners will be paid if they finish their diffusion
work. Let 𝜹 = (𝛿1, 𝛿2, · · · , 𝛿𝑛) be the payment profile.

We define the utility of registered user 𝑖 as the difference between the payment and its real cost:

𝑢𝑖 =

{
𝛿𝑖 − 𝑐𝑖 , 𝑖 𝑓 𝑖 ∈ 𝑆

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(1)

Specifically, the utility of the losers would be zero because they are paid nothing and there is no
cost for task diffusion.
Since we consider the registered users are selfish and rational individuals, each registered user

can behave strategically by submitting a dishonest bid price to maximize its utility.
We denote 𝑓 (𝑆) (will be characterized in section 3.2) as the value function of platform over the

winner set 𝑆 . The objective of our incentive mechanism is to maximize 𝑓 (𝑆) under the budget 𝐵. We
refer this problem as the Budget Feasible Task Diffusion (BFTD) problem, which can be formulated
as follows:

𝑀𝑎𝑥 𝑓 (𝑆) (2)

𝑠 .𝑡 .
∑

𝑖∈𝑆
𝛿𝑖 ≤ 𝐵 (2-1)

3.2 Topic-aware Independent Cascade Model
Independent Cascade (IC) model is a classic model of influence diffusion, which has been widely
studied. In IC model, a number of nodes become active at first time period. At any time period
𝜏 ∈ N+ , each active node 𝑣 attempts to activate its neighbor node𝑤 with probability 𝑝𝑣,𝑤 ∈ (0, 1).
If the attempt succeeds,𝑤 becomes active at time period 𝜏 + 1. If the attempt fails, 𝑣 cannot activate
𝑤 forever. We design our topic-aware task diffusion model based on IC model rather than the other
classic LT model because it is hard to set the influence thresholds in LT model from the context
of crowdsourcing. Furthermore, the IC model is closer to the realistic influence diffusion as the
influence from one neighbor is independent of others’ influence.
However, in crowdsourcing system, the influence between users is greatly connected with

both the types and topics of tasks to be diffused. The classic IC model is not applicable. In our
crowdsourcing task diffusion system, the active nodes at first time period are the winners of reverse
auction, and each active user 𝑣 attempts to activate its social neighbor 𝑤 on task 𝑡 𝑗 ∈ 𝑇𝑣 with
probability 𝑝𝑣,𝑤 ( 𝑗) ∈ (0, 1). The influence of nodes at time period 𝜏 > 0 is the performance for
diffusing tasks to social neighbors. The diffusion work can be viewed as the attempt to activate
social users.

Furthermore, we present Topic-aware Independent Cascade Model (TIC) for our task diffusion. We
consider that the registered users can always perform the tasks. Thus, we only diffuse the tasks to
the unregistered users, i.e., users in 𝑉 /𝑈 . The diffusion method of TIC is similar to that of IC, but
the influence probability is related to the topics of tasks. For each pair (𝑣,𝑤) ∈ 𝐸, and topic 𝑘 ∈ 𝑍 ,
there is a probability 𝑝𝑘𝑣,𝑤 , which indicates the influence of user 𝑣 on its neighbor𝑤 about topic 𝑘 .
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Given a task 𝑡 𝑗 and its topic distribution 𝛾𝑘𝑗 = 𝑃
{
𝑧 𝑗 = 𝑘

}
,
∑
𝑘∈𝑍

𝛾𝑘𝑗 = 1, and (𝑣,𝑤) ∈ 𝐸, the

probability of 𝑣 to activate𝑤 successfully on task 𝑡 𝑗 can be calculated as:

𝑝𝑣,𝑤 ( 𝑗) =
∑
𝑘∈𝑍

𝛾𝑘𝑗 𝑝
𝑘
𝑣,𝑤 (3)

For any user𝑤 , the activation probability of𝑤 on task 𝑡 𝑗 is:

𝑝𝑤 ( 𝑗) = 1 −
∏

𝑣∈𝑁𝑤

(
1 − 𝑝𝑣,𝑤 ( 𝑗)

)
(4)

where 𝑁𝑤 is the neighbor set of𝑤 .
Given the winner set 𝑆 , we denote the expected number of activated users on task 𝑡 𝑗 by 𝐴 𝑗 (𝑆).

We can run Monte-Carlo simulations [33] of the IC model based on equations (3) and (4) for
sufficiently many times (typically 1000) to obtain an accurate estimate of𝐴 𝑗 (𝑆). Then we specialize
the definition of 𝑓 (𝑆) as the sum of expected number of activated users on all tasks through the
task diffusion:

𝑓 (𝑆) =
∑
𝑡 𝑗 ∈𝑇

𝐴 𝑗 (𝑆) (5)

3.3 Desirable Properties
Our objective is to design an incentive mechanism satisfying the following desirable properties.
• Computational efficiency: An incentive mechanismM is computationally efficient if the
winner set 𝑆 and the payment profile 𝜹 can be computed in polynomial time.
• Individual Rationality: Each registered user will have a non-negative utility when bidding
its true cost, i.e. for ∀𝑖 ∈ 𝑈 , 𝑢𝑖 ≥ 0.
• Budget Feasibility: An incentive mechanism is budget feasible if the total payment to the
winners is not more than the budget, i.e.

∑
𝑖∈𝑆 𝑝𝑖 ≤ 𝐵.

• Truthfulness: An incentive mechanism is truthful if no registered user can improve its
utility by submitting a false cost, no matter what others submit.
• Approximation: The objective of the mechanism is to maximize the value function of
platform. We say that a mechanism is 𝛼-approximate if the mechanism outputs a winner set
𝑆 such that 𝑓 (𝑂𝑃𝑇 ) ≤ 𝛼 𝑓 (𝑆), where 𝑂𝑃𝑇 is the optimal solution of BFTD problem.

The importance of the first three properties is obvious, because they together assure the feasi-
bility of the incentive mechanism. The last two properties are indispensable for guaranteeing the
compatibility and high performance. Being truthful, the incentive mechanisms can eliminate the
fear of market manipulation and the overhead of strategizing over others for the registered users.

We list the frequently used notations in Table. 2.

4 TOPIC AND INFLUENCE ESTIMATION
In this section, we present a Parameter Estimation Algorithm (PEA) for our TIC model based on EM
algorithm to estimate the topics of tasks and the influence of registered users.

In TIC, given the social graph𝐺 = (𝑉 , 𝐸), topic set 𝑍 and history data X, we need to estimate the
parameters _ including the influence 𝑝𝑘𝑣,𝑤 for each (𝑣, 𝑤) ∈ 𝐸, 𝑘 ∈ 𝑍 , and the topic distribution
𝛾𝑘𝑗 for each 𝑡 𝑗 ∈ 𝑇 , 𝑘 ∈ 𝑍 . We divide the history data X into 𝑚 diffusion sets as 𝑥1, 𝑥2, · · · , 𝑥𝑚 ,
where 𝑥 𝑗 =

{
𝑥 𝑗 (𝜏)

��𝜏 ∈ N+}. 𝑥 𝑗 (𝜏) is the set of users who became active on task 𝑡 𝑗 at time period 𝜏 .
Obviously, 𝑥 𝑗 shows the diffusion set of task 𝑡 𝑗 in the social graph.
EM algorithm is an iterative method to find the maximum likelihood estimation of parameters

in statistical models, where the model depends on unobserved latent variables. In our model, we
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Table 2. Frequently Used Notations

Symbol Description

𝑈 , 𝑖, 𝑛 registered user set, registered user 𝑖 , number of registered users
𝐺 = (𝑉 , 𝐸) social graph
𝑇, 𝑇𝑖 , 𝑡 𝑗 , 𝑚 task set, task set of 𝑖 , task 𝑡 𝑗 , number of tasks
𝑍, 𝑘, 𝑧 𝑗 topic set, topic 𝑘 , topic of task 𝑡 𝑗
\𝑖 , 𝜽 bid of user 𝑖 , bid profile

𝑏𝑖 , 𝑐𝑖 , 𝑢𝑖 bid price of 𝑖 , true cost of 𝑖 , utility of 𝑖
𝐵 budget

𝛿𝑖 , 𝜹 payment to 𝑖 , payment profile
𝑆, 𝑓 (𝑆) winner set, value function of platform
𝜏, 𝜏𝑤

𝑗
time period, time period that𝑤 became active on task 𝑡 𝑗

𝑝𝑣,𝑤 ( 𝑗) probability of 𝑣 activating neighbor𝑤 on task 𝑡 𝑗
𝑝𝑘𝑣,𝑤 influence of 𝑣 on𝑤 about topic 𝑘
𝛾𝑘𝑗 topic distribution of task 𝑡 𝑗
𝑁𝑤 neighbor set of registered user𝑤

𝑝𝑤 ( 𝑗) the activation probability of𝑤 on task 𝑡 𝑗
𝐴 𝑗 (𝑆) expected number of activated users on task 𝑡 𝑗
_, _̂𝑎 parameters in TIC, value of parameters _ after 𝑎 iterations
X history data

𝑄 𝑗

(
𝑘 ; _̂𝑎

)
posterior probability distribution of 𝑧 𝑗

𝑙

(
_; _̂𝑎

)
likelihood function

𝑁𝑤
𝑗

𝑤 ’s neighbors who had potential influence to𝑤 on task 𝑡 𝑗
𝑁𝑤

𝑗
𝑤 ’s neighbors who failed to influence𝑤 on task 𝑡 𝑗

𝜋𝑘 prior probability that any task’s topic is 𝑘
𝑅
𝑗

𝑘
(𝑤, 𝑣 ; _) probability that 𝑣 activate the neighbor𝑤 successfully on task 𝑡 𝑗 with topic 𝑘
𝑓𝑖 (𝑆) marginal value of 𝑖 over 𝑆

Φ delay threshold
Y convergence threshold

need to estimate parameters _ based on the history data 𝑥1, 𝑥2, · · · , 𝑥𝑚 , while the topics of tasks
are hidden variables.
Given the history data 𝑥1, 𝑥2, · · · , 𝑥𝑚 , assuming that the diffusion set 𝑥 𝑗 is independent of the

other diffusion sets, the likelihood of the history data, which is the joint probability of 𝑥 𝑗 , can be
expressed as:

𝐿 (_,X) = 𝐿 (𝑥1, 𝑥2, · · · , 𝑥𝑚 ; _) =
𝑚∏
𝑗=1

𝑃
(
𝑥 𝑗 ; _

)
(6)

where 𝑃
(
𝑥 𝑗 ; _

)
is the probability of the sample 𝑥 𝑗 when the parameters are _.

The log-likelihood is:

𝑙 (_,X) = log𝐿 (_,X) =
𝑚∑
𝑗=1

log 𝑃
(
𝑥 𝑗 ; _

)
(7)
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To find the maximum likelihood estimation of parameters _, EM algorithm iteratively runs the
following two steps until convergence.

E-step: Calculate the posterior probability distribution of 𝑧 𝑗 , which is topic of task 𝑡 𝑗 :

𝑄 𝑗

(
𝑘 ; _̂𝑎

)
= 𝑃

(
𝑧 𝑗 = 𝑘 |𝑥 𝑗 , _̂𝑎

)
, 𝑘 ∈ 𝑍 (8)

where _̂𝑎 is the value of parameters _ after 𝑎 iterations.
Then calculate the likelihood function:

𝑙

(
_; _̂𝑎

)
=

𝑚∑
𝑗=1

∑
𝑘∈𝑍

𝑄 𝑗

(
𝑘 ; _̂𝑎

)
log 𝑃

(
𝑥 𝑗 , 𝑘 ; _

)
(9)

M-step: Find the new estimation _̂𝑎+1 that maximizes the likelihood function:

_̂𝑎+1 = argmax
_

𝑙

(
_; _̂𝑎

)
(10)

We extend the EM algorithm to estimate _ in TIC model by iterating the following two steps
until convergence: a) Estimate the topic distribution of tasks via maximum likelihood estimation
based on the newly calculated value of influence on each edge on the social graph; b) Estimate the
value of influence on each edge based on new calculated topic distribution of tasks.

To find the likelihood of diffusion set 𝑥 𝑗 , we process the history data to differentiate the true
diffusion path from the other potential paths. We denote the time period when𝑤 became active
on task 𝑡 𝑗 as 𝜏𝑤𝑗 . If 𝑤 was not active on 𝑡 𝑗 , we define 𝜏𝑤𝑗 = ∞. To find out the path that 𝑤 was
influenced, we divide𝑤 ’s neighbors who were active on task 𝑡 𝑗 (active neighbors for short in the
following) into two sets. We denote the set of𝑤 ’s neighbors who had potential influence to𝑤 on
task 𝑡 𝑗 as 𝑁𝑤

𝑗
.

𝑁𝑤
𝑗 =

{
∅, 𝜏𝑤

𝑗
= ∞{

𝑣 | (𝑣,𝑤) ∈ 𝐸, 0 ≤ 𝜏𝑤
𝑗
− 𝜏𝑣𝑗 ≤ Φ

}
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(11)

where Φ is a delay threshold.
We denote the set of𝑤 ’s neighbors who failed to influence𝑤 on task 𝑡 𝑗 as 𝑁𝑤

𝑗
.

𝑁𝑤
𝑗
=

{
∅, 𝜏𝑤

𝑗
= ∞{

𝑣 | (𝑣,𝑤) ∈ 𝐸, 𝜏𝑤
𝑗
− 𝜏𝑣𝑗 > Φ

}
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(12)

Note that each active node has only one chance to active its neighbors in TIC model.
However, some active neighbors of𝑤 are not included in 𝑁𝑤

𝑗
∪ 𝑁𝑤

𝑗
. These neighbors became

active later than 𝑤 , which means that they cannot influence 𝑤 definitely. In other words, any
neighbor 𝑣 ∉ 𝑁𝑤

𝑗
∪𝑁𝑤

𝑗
may be influenced by𝑤 , thus𝑤 must be included in the set of 𝑁 𝑣

𝑗 ∪𝑁 𝑣
𝑗
. Fig.

2. gives a toy example of neighbor division in a small social network with 7 nodes, where 𝐴 and 𝐵
became active at time period 1. 𝐶 and 𝐷 became active at time period 2. 𝐸 became active at time
period 3. 𝐹 and 𝐺 became active at time period 4. Thus, we have 𝑥 𝑗 (1) = {𝐴, 𝐵}, 𝑥 𝑗 (2) = {𝐶, 𝐷},
𝑥 𝑗 (3) = {𝐸}, 𝑥 𝑗 (4) = {𝐹,𝐺}. We set Φ = 1 in this example. According to (11) and (12), we have
𝑁𝐴

𝑗 = {𝐵} , 𝑁 𝐵
𝑗 = {𝐴}, 𝑁𝐴

𝑗
= 𝑁 𝐵

𝑗
= ∅, 𝑁𝐶

𝑗 = {𝐴, 𝐵,𝐶}, 𝑁𝐶
𝑗
= ∅, 𝑁𝐷

𝑗 = {𝐵,𝐶}, 𝑁𝐷
𝑗
= ∅, 𝑁 𝐸

𝑗 = {𝐷},
𝑁 𝐸

𝑗
= {𝐴}, 𝑁 𝐹

𝑗 = {𝐸,𝐺}, 𝑁 𝐹
𝑗
= {𝐶}, 𝑁𝐺

𝑗 = {𝐸, 𝐹 }, 𝑁𝐺
𝑗
= {𝐷}.
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A

B

C

E

D

F

G

Time period:
1 2 3 4

Fig. 2. An example of neighbor division in a small network, where the directed edges represent the task
diffusion flows.

Intuitively, the likelihood of diffusion set 𝑥 𝑗 given topic 𝑘 can be calculated as:

(
𝑥 𝑗 |𝑘 ; _

)
=

∏
𝑤,𝜏𝑤

𝑗
>1

©«1 −
∏
𝑣∈𝑁𝑤

𝑗

(
1 − 𝑝𝑘𝑣,𝑤

)ª®¬
©«
∏
𝑣∈𝑁𝑤

𝑗

(
1 − 𝑝𝑘𝑣,𝑤

)ª®®¬∏
𝑤,𝜏𝑤

𝑗
=0

©«
∏
𝑣∈𝑁𝑤

𝑗

(
1 − 𝑝𝑘𝑣,𝑤

)ª®¬
©«
∏
𝑣∈𝑁𝑤

𝑗

(
1 − 𝑝𝑘𝑣,𝑤

)ª®®¬ (13)

The joint distribution of diffusion set 𝑥 𝑗 and topic 𝑘 can be calculated through conditional
probability:

𝑃
(
𝑥 𝑗 , 𝑘 ; _

)
= 𝑃

(
𝑥 𝑗 |𝑘 ; _

)
𝑃 (𝑘 |_) (14)

We define 𝜋𝑘 = 𝑃 (𝑘 |_) as the prior probability that an arbitrary task’s topic is 𝑘 . The posterior
probability distribution can be calculated as:

𝑄 𝑗

(
𝑘 ; _̂𝑎

)
= 𝑃

(
𝑘 |𝑥 𝑗 , _̂𝑎

)
=

𝑃

(
𝑥 𝑗 |𝑘 ; _̂𝑎

)
𝜋𝑘∑

𝑘∈𝑍 𝑃

(
𝑥 𝑗 |𝑘 ; _̂𝑎

)
𝜋𝑘

, 𝑘 ∈ 𝑍 (15)

Then we have the likelihood function:

𝑙

(
_; _̂𝑎

)
=

𝑚∑
𝑗=1

∑
𝑘∈𝑍

𝑄 𝑗

(
𝑘 ; _̂𝑎

)
log 𝑃

(
𝑥 𝑗 , 𝑘 ; _

)
(16)

However, under this circumstance, it is impossible to maximize 𝑙
(
_; _̂𝑎

)
since 𝑙

(
_; _̂𝑎

)
is mono-

tone over each 𝑝𝑘𝑣,𝑤 , and cannot be refined further. Fortunately, the likelihood of diffusion set 𝑥 𝑗 is
an assumption we made before. We can redesign the likelihood function to make the maximization
possible with a little loss of accuracy. We redesign the expression of likelihood of diffusion set 𝑥 𝑗
about topic 𝑘 as:

𝑃
(
𝑥 𝑗 |𝑘 ; _

)
=
∏
𝑤

©«
∏
𝑣∈𝑁𝑤

𝑗

𝑝𝑘𝑣,𝑤
𝑅
𝑗

𝑘

(
𝑣,𝑤;_̂𝑎

) (
1 − 𝑝𝑘𝑣,𝑤

)1−𝑅 𝑗

𝑘

(
𝑣,𝑤;_̂𝑎

)ª®¬
©«
∏
𝑣∈𝑁𝑤

𝑗

(
1 − 𝑝𝑘𝑣,𝑤

)ª®®¬ (17)
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where

𝑅
𝑗

𝑘
(𝑣,𝑤 ; _) =


0, 𝑖 𝑓 𝑣 ∉ 𝑁𝑤

𝑗
𝑝𝑘𝑣,𝑤

1−∏𝑣∈𝑁𝑤
𝑗
(1−𝑝𝑘𝑣,𝑤) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(18)

is the probability that 𝑣 activate the neighbor𝑤 on task 𝑡 𝑗 and topic 𝑘 successfully.
Then the likelihood function is:

𝑙

(
_; _̂𝑎

)
=

𝑚∑
𝑗=1

∑
𝑘∈𝑍

𝑄 𝑗

(
𝑘 ; _̂𝑎

)
log 𝑃

(
𝑥 𝑗 , 𝑘 ; _

)
=

𝑚∑
𝑗=1

∑
𝑘∈𝑍

𝑄 𝑗

(
𝑘 ; _̂𝑎

)
log𝜋𝑘

∏
𝑤

©«
∏
𝑣∈𝑁𝑤

𝑗

𝑝𝑘𝑣,𝑤
𝑅
𝑗

𝑘

(
𝑣,𝑤;_̂𝑎

) (
1 − 𝑝𝑘𝑣,𝑤

)1−𝑅 𝑗

𝑘

(
𝑣,𝑤;_̂𝑎

)ª®¬
©«
∏
𝑣∈𝑁𝑤

𝑗

(
1 − 𝑝𝑘𝑣,𝑤

)ª®®¬
(19)

By this way, we can maximize the likelihood function easily via derivation, while the estimated
parameters won’t be affected significantly.

The method of learning parameters in TIC is shown in Algorithm 1, which follows the following
four steps:
(1) Initialization: randomly generate 𝜋𝑘 for all 𝑘 ∈ 𝑍 satisfying

∑
𝑘∈𝑍

𝜋𝑘 = 1 and 𝑝𝑘𝑣,𝑤 for all

(𝑣,𝑤) ∈ 𝐸 (Line 1).
(2) Calculation of 𝑄 𝑗

(
𝑘 ; _̂𝑎

)
for ∀𝑘 ∈ 𝑍 , ∀𝑡 𝑗 ∈ 𝑇 and estimation of 𝜋𝑘 for ∀𝑘 ∈ 𝑍 (Lines 3-8).

(3) Calculation of 𝑅 𝑗

𝑘

(
𝑣,𝑤 ; _̂𝑎

)
for ∀𝑘 ∈ 𝑍 , ∀𝑡 𝑗 ∈ 𝑇, ∀ (𝑣,𝑤) ∈ 𝐸 and estimation of 𝑝𝑘𝑣,𝑤 for

∀𝑘 ∈ 𝑍 , ∀ (𝑣,𝑤) ∈ 𝐸 (Lines 9-19).
(4) Convergence: The algorithm iterate step (2) and step (3) until the difference between the

likelihood functions calculated using _̂𝑎+1 and _̂𝑎 is within a convergence threshold Y, i.e., 𝑙 (_; _̂𝑎+1)−
𝑙 (_; _̂𝑎) < Y (Line 2). Then we have the estimated 𝑝𝑘𝑣,𝑤 and the value of 𝛾𝑘𝑗 given by𝑄 𝑗

(
𝑘 ; _̂𝑎

)
(Lines

21-23).

5 INCENTIVE MECHANISM DESIGN
In this section, we present a Budget Feasible Mechanism (BFM) to solve the BFTD problem. We first
explore some important properties of value function 𝑓 (𝑆).

Definition 1. (Nonnegative, monotone and submodular function): Given a finite ground set Ω, a
real-valued set function defined as 2Ω → R, 𝐹 is called nonnegative, monotone and submodular if and
only if it satisfies following conditions, respectively:

𝐹 (∅) = 0 and 𝐹 (𝐶) ≥ 0 for all C⊆ Ω;
𝐹 (𝐶) ≤ 𝐹 (𝐷) for all 𝐶 ⊆ 𝐷 ⊆ Ω;
𝐹 (𝐶 ∪ {𝑒}) − 𝐹 (𝐶) ≥ 𝐹 (𝐷 ∪ {𝑒}) − 𝐹 (𝐷) for all 𝐶 ⊆ 𝐷 ⊆ Ω and any 𝑒 ∈ Ω\𝐷 .
Theorem 1. The value function 𝑓 (𝑆) is nonnegative, monotone and submodular.
Proof: Since 𝑝𝑣,𝑤 ( 𝑗) ∈ (0, 1) for all (𝑣,𝑤) ∈ 𝐸, the nonnegativity of 𝑓 (𝑆) is also obvious. The

monotonicity of 𝑓 (𝑆) is also obvious as adding a new user into 𝑆 cannot decrease the value of
𝑓 (𝑆).
Since a non-negative linear combination of submodular functions is also submodular, we only

need to show 𝐴 𝑗 (𝑆) is submodular based on (5).
Consider a point of IC process when user attempts to activate its neighbor 𝑤 on task 𝑡 𝑗 . The

success probability 𝑝𝑣,𝑤 ( 𝑗) can be viewed as the random event determined by flipping a coin of
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Algorithm 1 : Parameter Estimation Algorithm (PEA)
Require: social graph 𝐺 = (𝑉 , 𝐸), history data 𝑿 , task set 𝑇 , topic set 𝑍
1: Init (𝜋𝑘 , 𝑝𝑘𝑣,𝑤);
2: while not convergence do

//Estimation of 𝜋𝑘
3: for all 𝑘 ∈ 𝑍 do
4: for all 𝑡 𝑗 ∈ 𝑇 do

5: 𝑄 𝑗

(
𝑘 ; _̂𝑎

)
←

𝑃

(
𝑥 𝑗 |𝑘 ;_̂𝑎

)
𝜋𝑘∑

�̄�∈𝑍 𝑃

(
𝑥 𝑗 |𝑘 ;_̂𝑎

)
𝜋�̄�

;

6: end for
7: 𝜋𝑘 ← 1

𝑚

∑
𝑡 𝑗 ∈𝑇

𝑄 𝑗

(
𝑘 ; _̂𝑎

)
;

8: end for
//Estimation of 𝑝𝑘𝑣,𝑤

9: for all 𝑘 ∈ 𝑍 do
10: for all (𝑣,𝑤) ∈ 𝐸 do
11: for all 𝑡 𝑗 ∈ 𝑇 do

12: 𝑅
𝑗

𝑘

(
𝑣,𝑤 ; _̂𝑎

)
← 𝑝𝑘𝑣,𝑤

1−∏𝑣∈𝑁𝑤
𝑗
(1−𝑝𝑘𝑣,𝑤) ;

13: end for
14: if 𝑣 ∉ 𝑁𝑤

𝑗
, ∀𝑡 𝑗 ∈ 𝑇 then 𝑝𝑘𝑣,𝑤 = 0;

15: else

16: 𝑝𝑘𝑣,𝑤 ←
∑

𝑗,𝑣∈𝑁𝑤
𝑗
𝑄 𝑗

(
𝑘 ;_̂𝑎

)
𝑅
𝑗

𝑘

(
𝑣,𝑤;_̂𝑎

)
∑

𝑗,𝑣∈𝑁𝑤
𝑗
∪𝑁𝑤

𝑗

𝑄 𝑗

(
𝑘 ;_̂𝑎

) ;

17: end if
18: end for
19: end for
20: end while
21: for all 𝑘 ∈ 𝑍 and 𝑡 𝑗 ∈ 𝑇 do
22: 𝛾𝑘𝑗 ← 𝑄 𝑗

(
𝑘 ; _̂𝑎

)
;

23: end for
24: return 𝑝𝑘𝑣,𝑤 , 𝛾𝑘𝑗 , for ∀𝑣,𝑤 ∈ 𝑉 , ∀𝑘 ∈ 𝑍, ∀𝑡 𝑗 ∈ 𝑇

bias 𝑝𝑣,𝑤 ( 𝑗) independently. It is obvious that the outcome of IC process will not change if the coin
is flipped at the beginning of the whole IC process.
Let 𝑌𝑗 denote the one sample point in the whole sample space in which each sample point is a

possible set of outcomes for all coin flips of task 𝑡 𝑗 on all edges of social graph 𝐺 . Let 𝐴
(
𝑆,𝑌𝑗

)
be

the total number of users activated by the task diffusion when the winner set is 𝑆 , and the set of
outcomes of all coin flips on edges is 𝑌𝑗 . Let 𝐻

(
𝑣, 𝑌𝑗

)
be the set of users that is reachable from 𝑣 via

at least one path consisting entirely of positive outcome edges under 𝑌𝑗 . We have:

𝐴
(
𝑆,𝑌𝑗

)
=
��∪𝑣∈𝑆𝐻 (

𝑣, 𝑌𝑗

) �� (20)

Let any 𝐶 ⊆ 𝐷 ⊆ 𝑈 and 𝑒 ∈ 𝑈 \𝐷 , we have:
𝐴
(
𝐶 ∪ {𝑒} , 𝑌𝑗

)
−𝐴

(
𝐶,𝑌𝑗

)
=
��𝐻 (

𝑒, 𝑌𝑗

)
\
(
∪𝑣∈𝐶𝐻

(
𝑣, 𝑌𝑗

) ) ��
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Algorithm 2 : Budget Feasible Mechanism (BFM)
Require: task set𝑇 , bid profile 𝜽 , budget 𝐵, the probability 𝑝𝑣,𝑤 ( 𝑗) for∀𝑣 ∈ 𝑈 , ∀𝑤 ∈ 𝑉 /𝑈 , ∀𝑡 𝑗 ∈ 𝑇
1: 𝑆 ← ∅; 𝜹 ← 0; 𝑆∗ ← {𝑖 |𝑏𝑖 ≤ 𝐵};
2: with probability 2/5:
3: 𝑖∗ ← arg max𝑖∈𝑆∗ 𝑓 ({𝑖});
4: 𝑆 ← {𝑖∗}; 𝛿𝑖∗ ← 𝐵;
5: with probability 3/5:

//winner selection
6: 𝑖 ← arg max𝑒∈𝑆∗

𝑓𝑒 (𝑆)
𝑏𝑒

;
7: while 𝑏𝑖 ≤ 𝐵 ·𝑓𝑖 (𝑆)

2𝑓 (𝑆∪{𝑖 }) do
8: 𝑆 ← 𝑆 ∪ {𝑖};
9: 𝑖 ← arg max𝑒∈𝑆∗\𝑆

𝑓𝑒 (𝑆)
𝑏𝑒

;
10: end while

//payment determination
11: for all 𝑖 ∈ 𝑆 do
12: 𝑆∗′← 𝑆∗\ {𝑖} ; 𝑆 ′← ∅;
13: 𝑖 ′← arg max𝑒∈𝑆∗′

𝑓𝑒 (𝑆′)
𝑏𝑒

;
14: while 𝑏𝑖′ ≤ 𝐵 ·𝑓𝑖′ (𝑆′)

2·𝑓 (𝑆′∪{𝑖′ }) do

15: 𝑖 ′← arg max𝑒∈𝑆∗′\𝑆′
𝑓𝑒 (𝑆′)
𝑏𝑒

;

16: 𝛿𝑖 ← max
{
𝛿𝑖 ,min

{
𝐵 ·𝑓𝑖 (𝑆′)

2𝑓 (𝑆′∪{𝑖 }) ,
𝑓𝑖 (𝑆′) · 𝑏𝑖′
𝑓𝑖′ (𝑆′)

}}
;

17: 𝑆 ′← 𝑆 ′ ∪ {𝑖 ′};
18: end while
19: end for
20: return winner set 𝑆 , payment profile 𝜹

≥
��𝐻 (

𝑒, 𝑌𝑗

)
\
(
∪𝑣∈𝐷𝐻

(
𝑣, 𝑌𝑗

) ) ��
= 𝐴

(
𝐷 ∪ {𝑒} , 𝑌𝑗

)
−𝐴

(
𝐷,𝑌𝑗

)
Thus, we can conclude 𝐴

(
𝑆,𝑌𝑗

)
is submodular. Moreover, we have:

𝐴 𝑗 (𝑆) =
∑

𝑌𝑗

𝑃𝑟𝑜𝑏
(
𝑌𝑗

)
𝐴
(
𝑆,𝑌𝑗

)
(21)

Therefore,𝐴 𝑗 (𝑆) is submodular since a non-negative linear combination of submodular functions
is also submodular. ■

Considering the submodularity of 𝑓 (𝑆), our BFTD problem falls into the study on Budget Feasible
Submodular Maximization Mechanism Design. We design the Budget Feasible Mechanism, which is
illustrated in Algorithm 2, based on Chen’s random mechanism [7].

Let 𝑆∗ denote the set of registered users with bid price nomore than the budget 𝐵. With probability
2/5 (Lines 2-4), we select the registered user 𝑖∗ with maximum value in set 𝑆∗ as the winner, and
the payment for 𝑖∗ is equal to the budget.

With probability 3/5 (Lines 5-19), BFM performs the user selection step and payment determina-
tion step as follows:
In winner selection step (Lines 6-10), we process each registered user 𝑖 ∈ 𝑆∗\ 𝑆 iteratively

according to its marginal density 𝑓𝑖 (𝑆)
𝑏𝑖

, where 𝑓𝑖 (𝑆) is the marginal value over set 𝑆 of registered
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user 𝑖 , i.e. 𝑓𝑖 (𝑆) = 𝑓 (𝑆 ∪ {𝑖}) − 𝑓 (𝑆) . In each iteration, if the bid price is not more than 𝐵 ·𝑓𝑖 (𝑆)
2𝑓 (𝑆∪{𝑖 }) ,

we add the registered user 𝑖 into the winner set.
In payment determination step (Lines 11-19), for each winner 𝑖 ∈ 𝑆 , we execute the winner

selection step over 𝑆∗ \ {𝑖} and denote the winner set as 𝑆 ′(Lines 14-18). We apply the modified
proportional share allocation rule [52] to achieve the critical value of payment. The payment for any
winner 𝑖 is 𝛿𝑖 =𝑚𝑎𝑥𝑖′∈𝑆′

{
min

{
𝐵 ·𝑓𝑖 (𝑆′𝑖′−1)

2𝑓 (𝑆′𝑖′−1∪{𝑖 }) ,
𝑓𝑖 (𝑆′𝑖′−1) ·𝑏𝑖′
𝑓𝑖′ (𝑆′𝑖′−1)

}}
, where 𝑆 ′

𝑖′−1 is the winner set before we
add 𝑖 ′ into 𝑆 ′.
Lemma 1. BFM is computationally efficient.
Proof: The running time of BFM is dominated by the second branch (Lines 5-19). The maximum

number of winners can be 𝑛. Calculating 𝑓𝑒 (𝑆) takes 𝑂 (𝑚𝑛 ( |𝑉 | − 𝑛)) time, thus finding the user
with maximum marginal density (Line 6) takes 𝑂

(
𝑚𝑛2 ( |𝑉 | − 𝑛)

)
time. Hence, the while-loop

(Lines 7-10) takes 𝑂
(
𝑚𝑛3 ( |𝑉 | − 𝑛)

)
time. In each iteration of the for-loop (Lines 11-19), a process

similar to Lines 7-10 is executed. Hence, the payment determination takes 𝑂
(
𝑚𝑛4 ( |𝑉 | − 𝑛)

)
. The

running time of BFM is dominated by the payment determination step, which is bounded by
𝑂
(
𝑚𝑛4 ( |𝑉 | − 𝑛)

)
. ■

According to Lemma 1 and Corollary 3.5 in [23], we have the following theorem.
Theorem 2. BFM is computationally efficient, individually rational, budget feasible, truthful, and

has approximation ratio of 5.

6 PERFORMANCE EVALUATION
We have conducted thorough simulations to investigate the performance of proposed algorithms,
i.e., PEA (Parameter Estimation Algorithm) and BFM (Budget Feasible Mechanism). We use PEA-BFM
to represent our incentive mechanism using PEA to estimate the parameters. We evaluate the
performance of PEA-BFM against the following algorithms:

• NPEA-BFM (Non-topic Parameter Estimation Algorithm [41] - Budget Feasible Mechanism):
This mechanism still adopts EM algorithm to estimate the parameters. However, it does not
consider the topics of tasks.
• TIE-BFM (Topology based Influence Estimation [51] - Budget Feasible Mechanism): This mecha-
nism uses the influence estimation method based on topology of the social network without
considering the topics of tasks.
• HIE-BFM (History based Influence Estimation [51] - Budget Feasible Mechanism): This mecha-
nism uses history data to estimate the influence of registered users without considering the
topics of tasks.

We first measure the convergence of PEA. Then we measure the performance of four mechanisms
with different number of registered users (𝑛), number of tasks (𝑚), and budget (𝐵). All the simulations
are run on a Centos 7 machine with Intel Xeon CPU E5-2420 and 16 GB memory. Each measurement
is averaged over 100 instances.

6.1 Simulation Setup
We use two real-world datasets: Brightkite [5] and Gowalla [17] in our experiments with statistics
given in Table 3. The datasets contain both relationship between network users and check-in data.
The check-in records are in the form of <user id, check-in time, location>. We view each check-in
as activeness on a task. For each dataset, we generate a random task id for each record.
The bid prices of registered users are randomly selected from the auction dataset [32], which

contains 5017 bid prices for Palm Pilot M515 PDA from eBay. The bidding tasks of each registered
user are randomly selected from the task set. The parameter settings are given in Table 4.
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Table 3. Dataset Statistics

Brightkite Gowalla

Nodes 58228 196591
Edges 214078 950327

Check-ins 4491143 6442890

Table 4. Parameter Settings

Parameter Value

|𝑍 | 5
|𝑉 | 300
Y 0.001
𝑛 100
𝑚 80
𝐵 15000
Φ 7 days

topic distribution uniform distribution
number of tasks in each bid [10, 20]

To measure the diffusion performance, we define two metrics, called number of active users and
completion rate.

Number of active users: The algorithm outputs a winner set 𝑆 . For each winner and each
bidding task of this winner, we check her neighbors’ check-in records on the task in the testing data.
If a neighbor is not a registered user and has check-in records on the task, we count the neighbor
as an active user. Each neighbor can be count only once. The total count of all active neighbors
over all winners is the number of active users.

Completion rate: The algorithm outputs a winner set 𝑆 . For each winner and each bidding
task of this winner, we check her neighbors’ check-in records on the task in the testing data. If a
neighbor has check-in records on the task, we count the task once as a completed task. Each task
can be count for multiple times. The completion rate is the rate of total count of completed tasks to
the size of task set.

6.2 Convergence of PEA
We first measure the convergence of PEA through calculating the value of likelihood function
𝑙 (_; _̂𝑎) at each iteration on both datasets. As shown in Fig. 3, the likelihood function increases
rapidly at first, and then becomes stable after 50∼75 iterations in Brightkite, and 25∼50 iterations
in Gowalla. In fact, we determine the value of convergence threshold Y based on these experiments.
Since PEA can converge fast, we set a strict value of Y = 0.001, which is sufficient to guarantee the
precision of PEA.

6.3 Impact of Number of Registered Users
To investigate the scalability of proposed mechanisms, we vary the number of registered users
from 60 to 140. As shown in Fig. 4 and Fig. 5, the number of winners of all four algorithms increases
with the increasing number of registered users. When more registered users can be selected, BFM
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(a) (b)

Fig. 3. Likelihood function versus iteration: (a) Brightkite. (b) Gowalla.

will select ones with larger marginal density, thus, under the fixed budget, BFM can select more
users, and the value of platform of all four algorithms also increases.

60 80 100 120 140

Number of registered users (n)

8

9

10

11

12

13

N
u

m
b

er
 o

f 
w

in
n

er
s

PEA-BFM NPEA-BFM

TIE-BFM HIE-BFM

(a)

60 80 100 120 140

Number of registered users (n)

0.2

0.3

0.4

V
a
lu

e 
fu

n
ct

io
n

o
f 

p
la

tf
o
rm

PEA-BFM NPEA-BFM

TIE-BFM HIE-BFM

(b)

60 80 100 120 140

Number of registered users (n)

20

30

40

50

N
u

m
b

er
 o

f

a
ct

iv
e 

u
se

rs

PEA-BFM NPEA-BFM

TIE-BFM HIE-BFM

(c)

60 80 100 120 140

Number of registered users (n)

5

7

9

11

C
o
m

p
le

ti
o
n

 r
a
te

PEA-BFM NPEA-BFM

TIE-BFM HIE-BFM

(d)

Fig. 4. Brightkite: Impact of number of registered users: (a) Number of winners. (b) Value function of platform.
(c) Number of active users. (d) Completion rate.

The value of platform in TIE-BFM is much lower than that of PEA-BFM since TIE-BFM calculates
the influence only based on the topology of the social network. The value of platform in HIE-BFM
is also much lower than that of PEA-BFM. This is because the influence calculated by HIE-BFM
only depends on the binary observation of history data. In PEA-BFM, we conduct the fine-grained
process of history data by dividing the neighbors based on the delay threshold. Note that both
TIE-BFM and HIE-BFM do not consider the topics of tasks. Thus, the influence calculated by them
may be not accurate.
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Fig. 5. Gowalla: Impact of number of registered users: (a) Number of winners. (b) Value function of platform.
(c) Number of active users. (d) Completion rate.

The number of active users and completion rate reveal the effect of task diffusion. Similarly,
the number of active users of four algorithms increase with increasing registered users. Among
four algorithms, PEA-BFM has the best performance in terms of the number of active users and
completion rate. PEA-BFM outperformsNPEA-BFM. This is because PEA considers the topics of tasks
and influence probability over the topics, which makes the estimated parameters more accurate.
Moreover, HIE outperforms TIE in all settings, but the difference is rather small. This is because TIE
only consider the topology structure of social network, ignoring the history dataset.

6.4 Impact of Number of Tasks
Then, we vary the number of tasks from 40 to 120. Note that we measure the average the value
function of platform, number of active users and completion rate over all winners. As shown in Fig.
6 and Fig. 7, PEA-BFM has the best performance among all algorithms. We find that the average
contribution to the value of platform, number of active user and completion rate is decreasing with
the increasing number of tasks. This is because when the number of tasks increases, the possibility
that the bidding task sets of registered users have same tasks is less, reducing the influence on
tasks. This leads to the loss of value of platform, number of active user and completion rate.

6.5 Impact of Budget
To investigate the impact of the budget, we vary the budget from 10000 to 20000. We can see from
Fig. 8 and Fig. 9 that the number of winners increases with the increase of budget. Since the budget
only affects the number of winners, the value of platform, number of active users and completion
rate increase as well with increasing budget. PEA-BFM outperforms other three algorithms under
all settings of budget.

Summary: PEA-BFM has the best performance for crowdsourcing task diffusion in all cases.
HIE-BFM and TIE-BFM show low performance of task diffusion, comparing with the mechanisms
based on EM algorithm. Comparing with the Non-topic mechanism, for Brightkite, PEA-BFM can
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Fig. 6. Brightkite: Impact of number of tasks: (a) Number of winners. (b) Average value function of platform.
(c) Average number of active users. (d) Average completion rate.
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Fig. 7. Gowalla: Impact of number of tasks: (a) Number of winners. (b) Average value function of platform. (c)
Average number of active users. (d) Average completion rate.

achieve average improvement of 8.28%, 10.60% and 11.59% in terms of value of platform, number of
active users and completion rate, respectively. For Gowalla, the average improvement of PEA-BFM
is 8.98%, 9.00% and 10.46%, respectively.
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Fig. 8. Brightkite: Impact of budget: (a) Number of winners. (b) Value of platform. (c) Number of active users.
(d) Completion rate.
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Fig. 9. Gowalla: Impact of budget: (a) Number of winners. (b) Value of platform. (c) Number of active users.
(d) Completion rate.

7 CONCLUSION
In this paper, we have presented the mobile crowdsourcing task diffusion system and topic-aware
independent cascade model. We have formulated the BFTD problem to maximize the total value from

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 111. Publication date: August 2021.



Topic-aware Incentive Mechanism for Task Diffusion in Mobile Crowdsourcing through Social Network 111:21

task diffusion under the budget constraint. We have proposed a parameter estimation algorithm to
estimate the topics of crowdsourcing tasks and the influence of registered users based on the EM
algorithm. We have introduced the random budget feasible incentive mechanism, which satisfies
desirable properties of computational efficiency, individual rationality, budget feasible, truthfulness
and guaranteed approximation, to solve the BFTD problem. The simulation results based on two
real-world datasets show that our incentive mechanism can largely increase the number of active
users and improve the task completion rate.
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