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Cooperative Scheduling for Directional Wireless
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Abstract—Wireless Power Transfer (WPT) technology has been developed rapidly in recent years. The cooperative charging model
and corresponding scheduling methods have been proposed to save the charging cost in paid charging service. However, the
state-of-the-art methods ignore the spatial occupation issue of rechargeable devices. Moreover, the cooperative charging scheduling in
directional wireless charging has not been studied yet. This paper studies the cooperative scheduling for directional wireless charging
with spatial occupation. We formulate the Cooperative Charging Scheduling with Spatial occupation (CCSS) problem of Mobile
Rechargeable Sensor Devices (MRSDs) for optimizing the total cost of whole charging system. We first investigate the properties of
optimal arrangement of MRSDs in charging group and calculate the tight intervals of charging angles of MRSDs. We show that it is
sufficient to bound the error by conducting angle discretization for only two MRSDs in each charging group. Then, a
(lnn+ 1)(1 + ε)-approximation algorithm of the CCSS problem is proposed based on greedy approach, where n is the number of
MRSDs, and ε is the discretization error. The results of extensive simulations and field experiments demonstrate that our algorithm can
reduce at most 42.5% total cost comparing with the benchmark algorithms.

Index Terms—wireless rechargeable sensor network, cooperative charging, spatial occupation, directional wireless charging, angle
discretization.

F

1 INTRODUCTION

W IRELESS Sensor Networks (WSNs) have been applied
in various scenarios, such as military, agriculture,

and transportation [1]. The energy supplement problem for
a large number of sensor devices has raised widespread
concern from both academic and industrial communities.
Although some sensor devices can absorb various forms of
energy from the surrounding environment, such as solar
energy and wind energy [2], the energy extraction effi-
ciency is largely affected by the environment and weather,
and is highly unpredictable and unstable. Wireless Power
Transmission (WPT) can provide continuous and reliable
power supply for WSNs. With the advance of WPT technol-
ogy, Wireless Rechargeable Sensor Networks (WRSNs) have
been extensively developed in real life, such as unmanned
aerial vehicles [3], driverless Electric Vehicles (EVs) [4], in-
dustrial robots [5], RFID systems [6], and building structure
monitoring [7].

With the booming Internet of Things (IoT) and WPT, the
number of Mobile Rechargeable Sensor Devices (MRSDs),
including inspection robots and unmanned vehicles, in-
creases sharply in recent years. In future, the wireless
charger will become the infrastructure to provide paid
charging service for rechargeable devices. The Radio Fre-
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quency (RF) charging technology [8] can provide the energy
supply for multiple MRSDs in the near open field simulta-
neously without additional discharging cost [1]. Therefore,
multiple MRSDs in the common charging hours can share
the charging cost, reducing the individual cost. The coop-
erative charging can largely improve the energy utilization
and reduce the actual charging expenditure by exploring the
characteristics of RF charging technology and designing the
cooperative pricing structures. Such cooperative charging is
a natural and economical service model for the RF charging
technology. The cooperative charging is important, partic-
ularly in commercial wireless charging, since it increases
the market competitiveness of Charging Service Providers
(CSPs). How to model the commercial RF charging service
and optimize the charging cost is essential to popularizing
WPT technology further.

Moreover, the rechargeable sensor devices (including
sensing unit, processing unit, communication unit, battery
and power receiving antenna) need to take up certain space.
Comparing with the limited charging distance (usually sev-
eral meters), the spatial occupation of rechargeable sensor
devices cannot be omitted. Due to the spatial occupation, the
number of MRSDs assigned to a single charger is limited.
On the other hand, the rechargeable sensor devices with
different charging angles have different charging power in
directional wireless charging. The key problem of coopera-
tive scheduling in directional wireless charging with spatial
occupation is how to arrange the MRSDs assigned to the
charger to reduce the charging cost, which has not been
studied yet.

This paper aims to study the cooperative scheduling of
MRSDs in directional wireless charging with spatial occu-
pation under the commercial RF charging service model.
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Some studies have focused on the problem of scheduling
for mobile rechargeable devices [3] [9]. However, most of
them aim to optimize the charging efficiency or charging
time rather than the charging cost from the perspective of
economics through cooperative charging. To save the charg-
ing cost, the cooperative charging scheduling [10] has been
proposed recently. However, it does not consider either the
spatial occupation issue of rechargeable sensor devices or
the cooperative charging scheduling in directional wireless
charging. In addition, different from the traditional wire-
less charging systems, commercial wireless charging system
provides the paid wireless charging service with specific
pricing rule. The application scenarios of commercial wire-
less charging systems include wireless charging for electric
vehicles and sensor networks [11], [12]. However, in the
commercial wireless charging environment, the payment in
existing price rules simply depends on the charging time
or replenished energy independently. In other words, the
existing pricing mechanisms cannot promote the coopera-
tion among rechargeable devices through saving charging
expenditure.

Fig. 1. Illustration of cooperative charging system

In this paper, we present a cooperative charging system
shown in Fig. 1. We consider a set of directional wireless
chargers located at fixed positions in a 2D plane. These
chargers follow identical pricing structure. The chargers are
operated by different CSPs and may have different charging
price [10]. The MRSDs can move from the initial positions
to the charging facilities of chargers to obtain the charging
service. The MRSDs assigned to the same charger form a
charging group, in which the MRSDs can obtain the surplus
by sharing the charging cost in the common charging hours
[10]. We consider that each MRSD takes up some space,
thus, the size of charging group is limited. When the energy
is replenished, the MRSDs will come back to the initial
positions to continue the sensing tasks. The objective is to
find an assignment of MRSDs and the spatial conflict-free
arrangements of charging group to minimize the charging
cost (payment to the chargers) such that all MRSDs’ energy
demands can be satisfied.

The problem of cooperative scheduling for directional
wireless charging with spatial occupation is very challeng-
ing. First, we need to assign the MRSDs to multiple charging
groups. This problem is more difficult than the Capacitated
Facility Location Problem (CFLP) [13], which is a well-

known NP-hard problem. Second, in directional charging,
different charging angles of MRSD result in different charg-
ing power, charging time, and charging cost. To optimize
the cost, we need to not only assign the MRSDs to the
chargers but also decide the charging angles of assigned
MRSDs. However, the searching space of charging angles
is continuous, therefore, the possible charging angles are
infinite. Moreover, due to the spatial occupation of MRSDs,
we need to guarantee that the arrangement of MRSDs is
conflict-free. Therefore, a precise angle search interval of
each MRSD is needed to avoid the unfeasible solutions.

The main contributions of this paper are as follows:

• To the best of our knowledge, this is the first work
to study the cooperative scheduling for directional
wireless charging with spatial occupation. This work
will benefit the wireless charging economy through
promoting the economic cooperation of MRSDs and
reducing the charging cost for the commercial wire-
less charging services.

• We model the Cooperative Charging system for di-
rectional wireless charging and formalize the Coop-
erative Charging Scheduling with Spatial occupation
(CCSS) problem. We show that the CCSS problem is
NP-hard.

• We explore the properties of optimal arrangement
and find the spatial conflict-free arrangement of
MRSDs. Through calculating the precise angle search
interval of each MRSD, the efficiency of angle dis-
cretization of charging group can be largely im-
proved without loss. Our conclusions are generic
and can be commonly used for the problems re-
lated to the directional wireless charging with spatial
occupation, such as minimizing charging delay or
maximizing charging utility.

• We propose the greedy approach-based Charging
Scheduling Algorithm (CSA) through the angle dis-
cretization, which discretizes the infinite charging
angles of MRSDs with bounded discretization error.
We show that CSA is (lnn+1)(1+ε)-approximation
for the CCSS problem.

• Through extensive simulations and field experi-
ments, we demonstrate that the proposed algorithm
can reduce at most 42.5% total cost comparing with
the benchmark algorithms.

The rest of the paper is organized as follows. Section
2 presents the brief review on the state-of-art research.
Section 3 presents the system model and formulates the
CCSS problem. Section 4 presents the details of our solution.
The simulation results are presented in Section 5. Field
experiments are shown in Section 6. We discuss the solution
for omnidirectional wireless charging case in Section 7. We
conclude this paper in Section 8.

2 RELATED WORK

There has been extensive research on wireless charging
for scheduling the placement [14], charging power [9] or
switches [15] of chargers, or trajectory of mobile chargers
[16], [17] or mobile rechargeable devices [3], [9], [18], with
optimization objective of charging cost [16], [19], [20], [21],



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

charging time [8], [22], or charging utility [23], [24], etc. The
existing research can be classified as paid charging [11], [12]
and non-paid charging [10], [16]. From the perspective of
cooperation, there has been also cooperative charging [10]
and non-cooperative charging [14], [21]. According to the
charging model, it can be classified as directional charging
[8], [21], [25] and omnidirectional charging [10], [15]. We
briefly review the works on charging cost optimization,
scheduling for mobile rechargeable devices, paid charging,
cooperative charging, and directional charging, which are
closely related to this study.

Charging cost optimization. Wang et al. [16] studied
the energy minimization problem of wireless charging in a
dense WSN. They first found the initial charging clusters
and the charging path, and then improved the path to
reduce energy consumption. However, the cost defined in
this work is the proportion of energy consumption rather
than the actual charging expenditure. Zhou et al. [19] re-
laxed the strictness of perpetual operation by allowing
some sensor nodes to temporarily run out of energy while
still maintaining target k-coverage in the network at lower
cost of Mobile Charger (MC). Their extensive simulation
results demonstrated significant improvements of network
scalability and cost saving. However, in our paper, the
energy demands of all MRSDs should be satisfied. Jia et
al. [20] concerned the fundamental issue of charging path
design with the minimized energy cost, i.e., given a set of
rechargeable sensors, they appropriately designed the MC’s
charging path to minimize the energy cost which was due
to the wireless charging and the MC’s movement, such that
the different charging demand of each sensor was satisfied.
This paper also regarded the cost as the proportion of en-
ergy consumption. In [21], the authors studied the minimal
charging expenditure problem with directional chargers to
decrease the energy expenditure of the charger such that
the charging demands of all sensors are satisfied. However,
the proposed scheduling is for static sensors and cannot be
applied to mobile rechargeable devices.

Scheduling for mobile rechargeable devices. Jin et al.
[3] proposed the scheduling scheme of Unmanned Aerial
Vehicles (UAVs), which can fly to the buses to replenish
energy. In [9], the authors studied the issue of Charging on
the Move (CM) to optimize the scheduling of transmitting
power of static chargers for mobile devices with given
movement trajectories. In [18], the strategies of selecting
the local-optimal EVs with surplus energy for the EVs
with insufficient energy and rescheduling their travel routes
were investigated, and a distributed Reciprocal Charging
Mechanism (RCM) was proposed. However, in our paper,
the MRSDs cannot charge each other. Moreover, these stud-
ies did not consider the commercial paradigm of wireless
charging from the cooperative perspective.

Paid charging. Fan et al. [11] proposed a dynamic pric-
ing mechanism to maximize the long-term profit of the
charging platform by jointly controlling the demand queues
of multiple charging stations. Gupta et al. [12] proposed
a pricing model for dedicated charging of rechargeable
sensor devices and used game theory approach to find
the Nash equilibrium price as well as the individual profit
for each charger. However, all of works aforementioned
did not study the issue of cooperative scheduling for paid

charging. Moreover, most of existing pricing mechanisms
cannot provide the surplus from the cooperation.

Cooperative charging. Recently, Xu et al. [10] presented a
wireless charging service model and proposed the algorithm
for joint optimization of rechargeable devices’ charging cost
and moving cost. However, they only studied the cooper-
ative charging with omnidirectional chargers and did not
consider the spatial occupation issue as well.

Directional charging. Since the possible charging angles
of rechargeable devices in directional charging are contin-
uous and infinite, the angle discretization is widely used
to solve the directional charging scheduling problems [8].
However, the existing angle discretization method cannot
be applied straightforwardly to solve our CCSS problem.
Due to the spatial occupation of MRSDs, we should arrange
multiple MRSDs simultaneously and make all MRSDs sat-
isfy the discretization error.

Overall, there is no rechargeable device scheduling in the
literature for the directional wireless charging with spatial
occupation.

3 SYSTEM MODEL AND PROBLEM FORMULATION

3.1 System Model

TABLE 1
Frequently Used Notations

Symbol Description

M,m Set of chargers, number of chargers
N,n Set of MRSDs, number of MRSDs
Ei Energy demand of MRSD oi
Ere

i Residual energy of MRSD oi
EMAX Energy capacity of MRSDs
bi Unit moving energy consumption of MRSD oi

||sjoi|| Distance between charger sj and MRSD oi
dj Charging distance of charger sj

α, β, µ Charging parameters of chargers
θij Charging angle between charger sj and MRSD oi
θ4j Minimum angle interval of MRSDs in charging

group Gj

δ Maximum charging angle of chargers
Pr(sj , oi, θij) Charging power from charger sj to MSRD oi with

charging angle θij
Gj Charging group of charger sj
aj Unit continued charging price of charger sj
Aj Base fare of charger sj
Tj Charging time threshold of charger sj
φj Charging angle profile (arrangement) of charging

group Gj

Ti(sj , θij) Charging time of MSRD oi in charging group Gj

with charging angle θij
T (Gj , φj) Charging time of the charging group Gj

c(Gj , φj) Cost of charging group Gj

Ei(sj) Actual replenished energy from charger sj required
by MRSD oi

ε Discretization error

We consider a set M = {s1, s2, ..., sm} of m direc-
tional wireless chargers located at fixed positions in a 2D
plane Ω. These chargers are operated by different Charging
Service Providers (CSPs), and therefore, they may have
different charging prices. Suppose that there are a set
N = {o1, o2, ..., on} of n Mobile Rechargeable Sensor De-
vices (MRSDs) located in the same 2D plane. Each MRSD
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oi ∈ N has the energy demand Ei, the residual energy Erei ,
and the unit moving energy consumption bi. Note that the
energy demand Ei is not the actual replenished energy from
the charger, but the increased energy of oi after it comes back
to the initial position comparing to the residual energy Erei .
We consider that the MRSDs are homogeneous and have the
same energy capacity EMAX.

As shown in [26], if the RF antenna of MRSD is blocked
by obstacles, the received power will be largely reduced.
Since the MRSDs have non-negligible spatial occupation,
each charger sj has a charging facility to fix the MRSDs with
charging distance dj to avoid the block between MRSDs.
The MRSDs need to move to the charging facilities for
energy replenishment. Actuality, many mobile rechargable
devices with non-negligible spatial occupation have such
charging facilities, such as the wireless charging parking
place for Electric Vehicles (EVs) [27], wireless charging pad
for Unmanned Aerial Vehicles (UAVs) [28], wireless charg-
ing area for rechargeable robots [29].

In most cases, the mobile sensor networks are deployed
in large-scale scenarios, such as disaster assessment [30],
life detection [31], battlefield situational awareness [32], and
inspection robot for large substation [33] or warehouse [34].
Therefore, the charging distance dj can be omitted when we
calculate the moving distance of MRSDs. Specifically, the
moving distance from any MRSD oi to any charger sj is
defined as the Euclidean distance between them, denoted
by ||sjoi||.

According to the directional charging model given in [8],
the charging power from any charger sj to any MSRD oi is

Pr(sj , oi, θij) =


µ(cosθij + α)

(β + dj)
2 , dj ≤ D, |θij | ≤ δ

0, otherwise,
(1)

where α, β, and µ are three parameters determined by the
magnetic environment and hardware. θij is the charging
angle between sj and oi, and δ ∈ (0, π2 ] is the maximum
charging angle of chargers. D is the maximum charging
distance. Since dj is a known constant and is not more than
D definitely in our system model, the MRSDs can always
obtain positive power if it is within the maximum charging
angle of chargers.

To keep working (e.g., perform sensing tasks), the
MRSDs must return to the initial locations after the energy
is replenished. Let Gj be the charging group of sj , i.e.,
the set of MRSDs charged by charger sj . Then the actual
replenished energy from charger sj required by oi is the
sum of requested energy and the round-trip moving energy
consumption between the initial location and the charging
position, which can be calculated by

Ei(sj) = Ei + 2bi||sjoi||. (2)

The charging time of oi in charging group Gj with
charging angle θij is

Ti(sj , θij) =
Ei(sj)

Pr(sj , oi, θij)
. (3)

We use φj to denote the charging angle profile (also
called arrangement) of MRSDs in Gj . For a charging group
Gj and a charging angle profile φj , the charging time of the

charging group is the maximum charging time of all MRSDs
in the charging group:

T (Gj , φj) = max
oi∈Gj

Ti(sj , θij). (4)

Although the arriving time of MRSDs may be different,
according to [10], the moving time of MRSDs can be ignored
because it is very small compared to the charging time.

To promote cooperation between the MRSDs, we present
a charging time-based pricing rule of chargers, where the
cost of the charging group only depends on the maximum
charging time of MRSDs. Moreover, since the size of charg-
ing group is limited due to the spatial occupation of MRSDs,
we introduce the base fare pricing structure to ensure the
revenue of CSPs. The base fare pricing structure has been
widely used in many fields, such as taxi pricing [35] and
express delivery industry [36]. The cost of charging group
Gj with arrangement φj is defined as

c(Gj , φj) =

{
Aj , T (Gj , φj) ≤ Tj

Aj + aj(T (Gj , φj)− Tj), otherwise,
(5)

where Aj and aj are the base fare and unit continued
charging price of sj , respectively. Tj is the charging time
threshold of sj . These parameters are determined by the
CSPs based on the charging market, and the detail is not of
academic interest. Following the realistic base fare models,
there is

Aj ≥ ajTj . (6)

Considering the spatial occupation of MRSDs, we need
to calculate the minimum angle interval between any two
adjacent MRSDs to avoid the space occupation conflict.
Without loss of generality, as shown in Fig. 2, we consider
that each MRSD (including the antenna) occupies the space
with length x and the antenna is located in the center of the
front of MRSD. Therefore, the minimum angle interval of
MRSDs in charging group Gj can be calculated as

θ4j = 2tan−1 x

2dj
. (7)

Obviously, if the angle difference of any two adjacent
MRSDs is not less than the minimum angle interval, the ar-
rangement must be conflict-free. An illustration of charging
group Gj with three MRSDs is shown in Fig. 3.

We list the frequently used notations in Table 1.

Fig. 2. Illustration of MRSD with spatial occupation
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Fig. 3. Illustration of charging group Gj

3.2 Problem Formulation

The problem is to find an assignment of MRSDs and the
spatial conflict-free arrangements of charging group to min-
imize the total cost of all charging groups such that each
MRSD is assigned to exactly one charger without conflict
of spatial occupation. We refer to this problem as Cooper-
ative Charging Scheduling with Spatial occupation (CCSS)
problem, which can be formulated as

(CCSS) : min
∑
sj∈M

c(Gj , φj), (8)

s.t.
⋃

sj∈M
Gj = N, (8-1)

Gj ∩Gj′ = ∅, ∀sj 6= sj′ , sj ∈M, sj′ ∈M, (8-2)

|θij − θi′j | ≥ θ4j , ∀oi 6= oi′ , oi, oi′ ∈ Gj , sj ∈M, (8-3)

|θij | ≤ δ, ∀oi ∈ Gj , sj ∈M. (8-4)

The constraint (8-1) ensures that all MRSDs should be
charged. The constraint (8-2) ensures that each MRSD can
be scheduled to exact one charger. In view of the com-
mercial feasibility of charging economy, we consider that
each MRSD can only obtain the charging service from one
charger every time. The constraint (8-3) ensures that the
arrangement is conflict-free. The constraint (8-4) ensures
that the MRSDs are within the maximum charging angles
of chargers.

To guarantee the existence of feasible solutions of CCSS
problem, three conditions should be satisfied. First, the
residual energy of any MRSD should be sufficient to reach
the furthest charger, i.e.,

Erei ≥ max
sj∈M

bi||sjoi||,∀oi ∈ N. (9)

Second, the energy demand of any MRSD can be satis-
fied after returning the initial position, i.e.,

Ei ≤ EMAX − max
sj∈M

bi||sjoi|| − Erei ,∀oi ∈ N. (10)

Third, there is enough space to place all MRSDs, i.e.,∑
sj∈M

b
2δ

θ4j
+ 1c ≥ n. (11)

If the above three conditions cannot be satisfied, we can
conduct a simple preprocessing before solving the problem:
Remove the MRSDs that do not satisfy (9) or (10). After-
wards, if (11) is not satisfied, remove the MRSDs with most
residual energy until there is enough space.

4 SOLUTION OF CCSS PROBLEM

In this section, we present the approximation algorithm of
the CCSS problem. We first show the hardness of CCSS
problem and introduce the design rationale of solution.
Then, we explore the properties of optimal arrangement
of MRSDs in charging group and propose the angle dis-
cretization method to obtain the finite candidate angles and
the corresponding approximate charging power. Finally, we
give the details of algorithm design and analysis.

4.1 Hardness
First, we attempt to find an optimal algorithm for the CCSS
problem. Unfortunately, as the following theorem shows,
the CCSS problem is NP-hard.

Theorem 1. The CCSS problem is NP-hard.
Proof: We first introduce the following Capacitated Gen-

eralized Facility Location Problem (CGFLP): There are a
set M of facilities and a set N of clients. The connection
cost of any client oi ∈ N to any facility sj ∈ M is
max{0, aj(T (Gj , φj)− Tj)}∑

oi∈N
xij

. The facility cost of facility sj

is Aj . The capacity of facility sj is b
2δ

θ4j
+ 1c. The objective

is to find an assignment of each client to an open facility
to minimize the total cost incurred. The CGFLP can be
formulated as follows

(CGFLP ) : min
∑

sj∈M

∑
oi∈N

max{0, aj(T (Gj , φj)− Tj)}∑
oi∈N

xij
xij

+
∑

sj∈M
Ajyj ,

(12)∑
oi∈N

xij ≤ b
2δ

θ4j
+ 1c,∀sj ∈M, (12-1)

s.t.
∑
sj∈M

xij = 1,∀oi ∈ N, (12-2)

xij ≤ yj ,∀sj ∈M, ∀oi ∈ N, (12-3)

xij ∈ {0, 1},∀sj ∈M, ∀oi ∈ N, (12-4)

yj ∈ {0, 1},∀sj ∈M, (12-5)

where yj is a binary variate indicating whether facility sj is
open. xij is a binary variate indicating whether client oi is
assigned to facility sj .

Based on (5), the objective function of CCSS problem can
be represented as follows∑
sj∈M

c(Gj , φj) =
∑

sj∈M

∑
oi∈N

max{0, aj(T (Gj , φj)− Tj)}∑
oi∈N

xij
xij

+
∑

sj∈M
Ajyj .

(13)
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Thus, the CCSS problem defined in (8) is equivalent to
the CGFLP. If the connection cost of any client oi ∈ N to any
facility sj ∈ M is a constant, the problem defined in (12)
is simplified to the Capacitated Facility Location Problem

(CFLP) [13]. In CCSS problem,
max{0, aj(T (Gj , φj)− Tj)}∑

oi∈N
xij

is related to the clients assigned to the facility sj and cannot
be known in advance. Since the CFLP is NP-hard, the CCSS
problem is NP-hard. �

4.2 Design Rationale

Since the CCSS problem is NP-hard, it is impossible to
compute the optimal solution in polynomial time. We turn
our attention to the approximation algorithm design.

Our solution follows the greedy approach. We iteratively
assign a MRSD set to a charger to minimize the ratio of
the marginal cost to the number of newly covered MRSDs
(termed cost effectiveness) until all MRSDs are assigned.

Based on (11), the number of MRSDs that can be as-
signed to any charger sj is at most b2δ/θ4j c + 1. On the
other hand, based on (5), the cost of charging group is
monotone nondecreasing with the charging time of charg-
ing group. Further, given the size of charging group, the
charging time of charging group consisting of the MRSDs
with low actual replenished energy is obvious smaller than
the charging group consisting of MRSDs with high actual
replenished energy. Therefore, given the number of MRSDs
k ∈ {1, 2, ..., b2δ/θ4j c+ 1}, we can assign the top k MRSDs
with lowest actual replenished energy to the charger sj ,
achieving the lowest marginal cost.

Afterwards, given the set of k MRSDs, we need to
decide the charging angles of these MRSDs to minimize the
charging time of the charging group. However, the search-
ing space of charging angles is continuous. To solve this
problem, we use the angle discretization technique to get
the finite candidate charging angles and the corresponding
approximate charging power.

4.3 Properties of Optimal Arrangement

We first explore the properties of optimal arrangement of
MRSDs in charging group, where the optimal arrangement
is the arrangement with the minimum charging time of
charging group.

Lemma 1. For any two adjacent MRSDs oi, oi′ ∈ Gj , the
angle interval of oi and oi′ in the optimal arrangement of charging
group Gj is θ4j , i.e., |θij − θi′j | = θ4j .

Proof: We first show |θij−θi′j | < θ4j is unfeasible because
such arrangement will result in spatial occupation conflict.

Next, we show |θij − θi′j | > θ4j is unreasonable. Sup-
posing |θij − θi′j | > θ4j in the optimal arrangement for any
two adjacent MRSDs oi, oi′ ∈ Gj , we consider the following
two cases:

Case 1: oi and oi′ are placed on the different sides of
center line of charger sj .

In this case, we can rotate all MRSDs towards to the
center line of charger, and make oi and oi′ encounter right
at the center line. By this way, the charging power of all
MRSDs in Gj will increase, and the charging time of all

MRSDs in charging group Gj will reduce accordingly based
on (3). Further, the charging time of charging group Gj will
reduce based on (4).

Case 2: oi and oi′ are placed on the same side of center
line of charger sj .

In this case, we can rotate the MRSDs farther from center
line of charger towards to the center line until the first
MRSD encounters another MRSD. By this way, the charging
power of all rotated MRSDs in Gj will increase. Therefore,
the charging time of charging group Gj may reduce. �

Lemma 2. For any two MRSDs oi, oi′ ∈ Gj , Ei(sj) ≤
Ei′(sj), θij and θi′j are the charging angles of oi and oi′ in
the optimal arrangement, respectively, then |θij | ≥ |θi′j | (i.e.,
Pr(sj , oi, θij) ≤ Pr(sj , oi′ , θi′j)).

Proof: We assume |θij |<|θi′j | in the optimal arrange-
ment for any two MRSDs oi, oi′ ∈ Gj , Ei (sj) ≤ Ei′ (sj),
and denote the corresponding charging time of Gj by
T (Gj , φj). In this case, the maximum charging time

of oi and oi′ is max{
Ei(sj)

Pr(sj , oi, θij)
,

Ei′(sj)

Pr(sj , oi′ , θi′j)
} =

Ei′(sj)

Pr(sj , oi′ , θi′j)
. We exchange the charging angles of

oi and oi′ , and denote the charging time of Gj by
T (Gj , φ

′
j). In this case, the maximum charging time of

oi and oi′ is max{
Ei(sj)

Pr(sj , oi′ , θi′j)
,

Ei′(sj)

Pr(sj , oi, θij)
}. Since

Ei(sj)

Pr(sj , oi′ , θi′j)
≤

Ei′(sj)

Pr(sj , oi′ , θi′j)
and

Ei′(sj)

Pr(sj , oi, θij)
<

Ei′(sj)

Pr(sj , oi′ , θi′j)
, and the charging time of other MRSDs in

Gj is unchanged, we have T (Gj , φ
′
j) < T (Gj , φj), which

contradicts the definition of optimal arrangement. �
Based on Lemma 1 and Lemma 2, we can conclude that

the MRSDs in any charging group are tightly arranged and
the MRSD with larger actual replenished energy is arranged
closer to the center line of the charger in the optimal ar-
rangement. For convenience, we only discuss the situation
where the MRSD with largest actual replenished energy is
always placed on the anticlockwise side of charger’s center
line in this paper since the arrangement in the charging
group is symmetrical. Without loss of generality, as illus-
trated in Fig. 4, we consider that there are k MRSDs in
charging group Gj = {o1, o2, ..., ok} with nonincreasing
order of actual replenished energy. Then, o2, o3, ..., ok will
be arranged tightly and alternately on two sides of o1 in
order. Therefore, we have the following lemma.

Lemma 3. Given k MRSDs in charging group Gj =
{o1, o2, ..., ok}, E1(sj) ≥ E2(sj) ≥ ... ≥ Ek(sj), k ≥ 1,

for any oi ∈ Gj , there is θi,j = θ1,j + (−1)i+1b
i

2
cθ4j in the

optimal arrangement.

4.4 Angle Discretization

Based on the previous analysis, we only need to decide the
charging angle of the MRSD with largest actual replenished
energy (denoted by o1 for convenience), and the other
MRSDs’ charging angle can be determined based on Lemma
3. However, the possible charging angles are continuous and
infinite. To solve this problem, we use the angle discretiza-
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Fig. 4. Illustration of charging angles of MRSDs in charging group Gj ,
where E1(sj) ≥ E2(sj) ≥ ... ≥ Ek(sj)

tion technique to obtain the finite candidate angles and the
corresponding approximate charging power.

First of all, to guarantee that all MRSDs in the charging
group are in the maximum charging angle of charger, the
charging angle of o1 should be constrained in a specific
interval. We have the following lemma.

Lemma 4. Given the charging group Gj = {o1, o2, ..., ok},
E1(sj) ≥ E2(sj) ≥ ... ≥ Ek(sj), k ≥ 1, there must be θ1,j ∈

[b
k − 1

2
cθ4j − δ, δ − b

k

2
cθ4j ] if k is odd, and θ1,j ∈ [b

k

2
cθ4j −

δ, δ − b
k − 1

2
cθ4j ] otherwise.

Proof: If k = 1, the optimal arrangement is θ1,j = 0, and
we obtain the lemma straightforwardly.

If k > 1, we only need to guarantee that |θk,j | ≤ δ and
|θk−1,j | ≤ δ based on Lemma 3, i.e.,

|θk,j | = |θ1,j + (−1)k+1b
k

2
cθ4j | ≤ δ. (14)

|θk−1,j | = |θ1,j + (−1)kb
k − 1

2
cθ4j | ≤ δ. (15)

We consider the following two cases.
Case 1: k is odd.
ok is on the anticlockwise side of charger’s center

line, and θ1,j + (−1)k+1b
k

2
cθ4j > 0. Further, ok−1 is on

the clockwise side of charger’s center line, and θ1,j +

(−1)kb
k − 1

2
cθ4j < 0.

Case 2: k is even.
ok is on the clockwise side of charger’s center line,

and θ1,j + (−1)k+1b
k

2
cθ4j < 0. Further, ok−1 is on the

anticlockwise side of charger’s center line, and θ1,j +

(−1)kb
k − 1

2
cθ4j > 0.

Solving (14) and (15) for the aforementioned two cases,
respectively, we obtain the lemma. �

Theoretically, we can discretize the intervals given in
Lemma 4 to obtain the approximate solution of θ1,j . How-
ever, the intervals given in Lemma 4 are not tight. To reduce
the searching space of θ1,j , we further tighten range of θ1,j .

Lemma 5. Given the charging group Gj = {o1, o2, ..., ok},
E1(sj) ≥ E2(sj) ≥ ... ≥ Ek(sj), k ≥ 1, there must be

θ1,j ∈ [0,min{
θ4j
2
, δ − b

k

2
cθ4j }], if k is odd, and θ1,j ∈

[max{0, b
k

2
cθ4j − δ},min{

θ4j
2
, δ − b

k − 1

2
cθ4j }] otherwise.

Proof: We first show θ1,j ∈ [0,
θ4j
2

] in the optimal ar-
rangement. Since we only study the situation where the
MRSD with largest actual replenished energy is always
placed on the anticlockwise side of charger’s center line in

this paper, we have θ1,j ≥ 0. Next, we prove θ1,j ≤
θ4j
2

.

Suppose θ1,j >
θ4j
2

. If k = 1, there must be θ1,j = 0 in
the optimal arrangement, which contradicts the assumption.
If k > 1, we have θ2,j = θ1,j − θ4j based on Lemma 3
and |θ2,j | < |θ1,j |. Since E1(sj) ≥ E2(sj), this contradicts

Lemma 2. Thus, θ1,j ∈ [0,
θ4j
2

].
On the other hand, based on Lemma 4, we have θ1,j ∈

[b
k − 1

2
cθ4j − δ, δ− b

k

2
cθ4j ] if k is odd, and θ1,j ∈ [b

k

2
cθ4j −

δ, δ−b
k − 1

2
cθ4j ] otherwise. Since k ≤ b2δ/θ4j c+1, we have

the following inequations:

b
k

2
cθ4j − δ ≤ b

b2δ/θ4j c+ 1

2
cθ4j − δ ≤

θ4j
2
. (16)

δ − b
k

2
cθ4j ≥ −

θ4j
2
. (17)

b
k − 1

2
cθ4j − δ ≤ 0. (18)

δ − b
k − 1

2
cθ4j ≥ 0. (19)

Combining θ1,j ∈ [0,
θ4j
2

] and Lemma 4 using (16), (17),
(18) and (19), we obtain the Lemma. �

For any MRSD oi ∈ Gj , we use the angle discretization
method in [8] to obtain the finite candidate set of charg-
ing angles. We denote the maximum charging power and
minimum charging power of oi in the discretization interval
(e.g., the discretization interval of o1 is given in Lemma 5) by
PrMAX

ij and PrMIN
ij , respectively. We further denote the v-th

discrete charging angle of oi as θvij and the corresponding
charging power as Prvij . Let ni be the number of segments
of oi after angle discretization. Given the discretization error
ε > 0, let

Prvij = PrMAX
ij (1 + ε)−v, v = 1, 2, ..., ni. (20)

Specifically, we have Pr0
ij = PrMAX

ij , Prniij = PrMIN
ij ,

and Prvij = Prv−1
ij (1 + ε)−1 for v = 1, 2, ..., ni − 1.

According to (1), θvij can be calculated by

θvij = cos−1(
Prvij(β + dj)

2

µ
− α). (21)

Based on (20), we have

ni = d
ln(PrMAX

ij /PrMIN
ij )

ln(1 + ε)
e. (22)
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For example, we set ni = 3 in Fig. 5. Thus, the discretiza-
tion interval is partitioned into 3 subintervals, and any
angles in the same subinterval have the same approximate
charging power.

Fig. 5. Angle discretization with ni = 3. The black dotted curves stand
for the approximated value of charging power.

Let Pr(θij) denote the charging power that MRSD oi
receives from sj with charging angle θij . Given the dis-
cretization error ε > 0, we have the following lemma.

Lemma 6. Let Pr0
ij = PrMAX

ij , Prniij = PrMIN
ij , and

Prvij = Prv−1
ij (1+ε)−1 for v = 1, 2, ..., ni−1 (therefore, θvij =

cos−1(
Prvij(β + dj)

2

µ
− α) and ni = d

ln(PrMAX
ij /PrMIN

ij )

ln(1 + ε)
e).

For any |θij | ≤ δ, let θ̃ij be the corresponding discrete angle of
θij , we have

Pr(θij)

Pr(θ̃ij)
≤ 1 + ε. (23)

Proof: If θij = cos−1(
PrMAX

ij (β + dj)
2

µ
− α), we have

Pr(θij)

Pr(θ̃ij)
=
PrMAX

ij

Pr1
ij

= 1 + ε.

If θv−1
ij < θij ≤ θvij , we have

Pr(θij)

Pr(θ̃ij)
=

Pr(θij)

Pr(θvij)
≤

Pr(θv−1
ij )

Pr(θvij)
=
Prv−1

ij

Prvij
= 1 + ε. �

In order to obtain the finite candidate angles of MRSD
with the largest actual replenished energy, in theory, we
should conduct angle discretization for all MRSDs in the
charging group. This is because we need to guarantee
that every MRSD in the charging group can obtain the
approximate charging power. To further improve the search
efficiency, we show that it is sufficient to bound the error by
conducting angle discretization for only two MRSDs in the
charging group.

Lemma 7. Given the charging group Gj = {o1, o2, ..., ok},
E1(sj) ≥ E2(sj) ≥ ... ≥ Ek(sj), k > 1, conducting angle
discretization for ok−1 and ok, we have

Pr(θij)

Pr(θ̃ij)
≤ 1 + ε,∀oi ∈ Gj . (24)

Proof: We first consider the anticlockwise side of
charger’s center line. Let ~Gj be the set of MRSDs on the
anticlockwise side of charger’s center line. Given Pr(θij) =
µ(cosθij + α)

(β + dj)2
, θij ∈ (0, δ], δ ∈ (0,

π

2
]. The first order

derivative of Pr(θij) is: Pr′(θij) =
− µsinθij
(β + dj)2

< 0. The

second derivative of Pr(θij) is: Pr′′(θij) =
− µcosθij
(β + dj)2

< 0.

Therefore, Pr(θij) is a strictly decreasing concave function

of θij for θij ∈ (0, δ], δ ∈ (0,
π

2
]. For any δ ≥ θi′j +4θ =

θ̃i′j > θi′j ≥ θij > 0, we have

Pr(θij)− Pr(θij +4θ) < Pr(θi′j)− Pr(θi′j +4θ). (25)

When
Pr(θi′j)

Pr(θ̃i′j)
=

Pr(θi′j)

Pr(θi′j +4θ)
≤ 1 + ε, we have

Pr(θi′j)− Pr(θi′j +4θ) ≤ εPr(θi′j +4θ). (26)

Since Pr(θij) is a strictly decreasing function of θij for

θij ∈ (0, δ], δ ∈ (0,
π

2
], we have

εPr(θi′j +4θ) < εPr(θij +4θ). (27)

Integrating (25), (26) and (27), we have

Pr(θij)

Pr(θij +4θ)
≤ 1 + ε,∀oi ∈ ~Gj . (28)

This indicates that conducting angle discretization for o′i
can guarantee the discretization error of oi.

For the situation of clockwise side of charger’s center
line, it is not difficult to get the similar conclusion using the
same deduction. �

Lemma 7 indicates that we only need to conduct angle
discretization for the farthest MRSDs on both sides (i.e.,
ok−1 and ok, k > 1). The discretization intervals of ok−1 and
ok can be calculated using Lemma 3 and Lemma 5 through
mapping the discretization interval of o1 to ok−1 and ok.
Specifically, we consider the following two cases:

Case 1: k is odd.
The discretization intervals of ok−1 and ok are

θk−1,j ∈ [
1− k

2
θ4j ,min{(1−

k

2
)θ4j , δ − (k − 1)θ4j }]. (29)

θk,j ∈ [
k − 1

2
θ4j ,min{

k

2
θ4j , δ}]. (30)

Case 2: k is even.
The discretization intervals of ok−1 and ok are

θk−1,j ∈ [max{(
k

2
−1)θ4j , (k−1)θ4j −δ},min{

k − 1

2
θ4j , δ}].

(31)

θk,j ∈ [max{−
k

2
θ4j ,−δ},min{

1− k
2

θ4j , δ − (k − 1)θ4j }].
(32)

Let φ̃j be the approximate arrangement, we have the
following lemma:

Lemma 8. Given the charging group Gj = {o1, o2, ..., ok},
E1(sj) ≥ E2(sj) ≥ ... ≥ Ek(sj), k > 1, conducting angle
discretization for ok−1 and ok, we have

T (Gj , φ̃j)

T (Gj , φj)
≤ 1 + ε. (33)
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Algorithm 1 : Charging Scheduling Algorithm (CSA)

Input: M , N , α, β, µ, δ, Ei, bi, ∀oi ∈ N , θ4j , aj , Aj , Tj , dj ,
∀sj ∈M

Output: (Gj , φj),∀sj ∈M
1: foreach sj ∈M do
2: Gj ← ∅; φj ← ∅;
3: end
4: N ′ ← N ;
5: while N ′ 6= ∅ do
6: foreach sj ∈M do
7: (G′j , φ

′
j)← CEM(sj , Gj , N

′);
8: end

9: sj ← arg min
sj′∈M,Gj′⊂G′j′

c(G′j′ , φ
′
j′)− c(Gj′ , φj′)
|G′j′\Gj′ |

;

10: Gj ← G′j ; φj ← φ′j ; N
′ ← N ′\G′j ;

11: end

Proof: We first consider that the MRSD with the maxi-
mum charging time is on the anticlockwise side of charger’s
center line. We have

T (Gj , φ̃j)

T (Gj , φj)
=

max
oi∈Gj

Ti(sj , θ̃ij)

max
oi∈Gj

Ti(sj , θij)
=

max
oi∈~Gj

Ei(sj)

Pr(θ̃ij)

max
oi∈~Gj

Ei(sj)

Pr(θij)

≤
max
oi∈~Gj

Ei(sj)

Pr(θ̃ij)

max
oi∈~Gj

Ei(sj)

(1 + ε)Pr(θ̃ij)

= 1 + ε

where the inequality relies on (24).
For the situation that the MRSD with maximum charging

time is on the clockwise side of charger’s center line, it is
not difficult to get the similar conclusion using the same
deduction. �

After angle discretization, the CCSS problem can be
reformulated as

(C̃CSS) : min
∑
sj∈M

c(Gj , φ̃j), (34)

s.t.
⋃

sj∈M
Gj = N, (34-1)

Gj ∩Gj′ = ∅, ∀sj 6= sj′ , sj ∈M, sj′ ∈M, (34-2)

|θ̃ij − θ̃i′j | ≥ θ4j , ∀oi 6= oi′ , oi, oi′ ∈ Gj , sj ∈M, (34-3)

|θ̃ij | ≤ δ, ∀oi ∈ Gj , sj ∈M. (34-4)

4.5 Algorithm Design
CSA outputs the charging group Gj and the arrange-

ment of MRSDs φj for each charger sj ∈M . As illustrated in
Algorithm 1, we call the function CEM(·) (Line 7) to find the
MRSD set from the unassigned MRSD set N ′ and the corre-
sponding arrangement φ′j for each sj that can minimize the
cost effectiveness over sj ’s current charging group Gj after
discretization. Then we find the extended charging group
G′j with minimum cost effectiveness among all chargers
(Line 9), and update the charging group, arrangement of

Algorithm 2 : Cost Effectiveness Minimization (CEM)
Input: sj , Gj , N ′

Output: (G′j , φ
′
j)

1: l← 0; Gj(l)← Gj ; N∗ ← N ′;
2: sort oi based on Ei(sj) for ∀oi ∈ Gj in the nonin-

creasing order and the sequence is denoted by Qj ←
{o1, o2, ..., o|Gj |};

3: while l + |Gj | < b
2δ

θ4j
c+ 1 and l < |N ′| do

4: oi ← arg min
oi′∈N∗

Ei′(sj);

5: N∗ ← N∗\{oi};
6: l← l + 1; Gj(l)← Gj(l − 1) ∪ {oi}; Qj ← Qj

+
∪ {oi};

7: φ̃j(l)← AD(Qj , Gj(l), l);
8: end

9: (G′j , φ
′
j)← arg min

(Gj(l),φ̃j(l)):l>0

c(Gj(l), φ̃j(l))− c(Gj , φj)
l

;

Algorithm 3 : Angle Discretization (AD)
Input: Qj , Gj(l), l
Output: φ̃j(l)
1: k ← |Gj(l)|;
2: if k == 1 then
3: φ̃j(l)← {0◦};
4: return φ̃j(l);
5: end
6: if k is odd then
7: calculate the discretization interval of ok−1 in Qj based

on (29);
8: calculate the discretization interval of ok in Qj based

on (30);
9: else

10: calculate the discretization interval of ok−1 in Qj based
on (31);

11: calculate the discretization interval of ok in Qj based
on (32);

12: end
13: conduct angle discretization for ok−1 and ok;
14: let Ψj(l) be the set of all candidate arrangements after

angle discretization;
15: φ̃j(l)← arg min

φ̃′j(l)∈Ψj(l)
T (Gj(l), φ̃′j(l));

MRSDs of sj and the unassigned MRSD set N ′(Lines 10).
The iteration terminates when all MRSDs are assigned.

As illustrated in Algorithm 2, the function CEM(·) re-
turns the charging group and the corresponding arrange-
ment with the minimum cost effectiveness. Let l be the
number of MRSDs added into the charging group. Let Gj(l)
be the charging group of sj after l MRSDs are added. We
first sort all MRSDs in the current charging group based on
the actual replenished energy in the nonincreasing order,
and the sequence is denoted by Qj (Line 2). Then, we
traverse all possible values of l. If the charger still has space
for placing MRSDs and there are unassigned MRSDs (Line
3), we find the MRSD with lowest actual replenished energy
from the unassigned MRSD set N∗ (Line 4), and assign it
to the charging group and MRSD queue (Line 6), where
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operation
+
∪ represents inserting MRSD in front of the queue.

Note that we always select the MRSD with lowest actual
replenished energy from the unassigned MRSD set at each
iteration, therefore, the selected MRSD must be in the front
of the queue. Then, we call function AD (·) to find the
near optimal arrangement φ̃j(l) through angle discretization
(Line 7). Finally, we return the extended charging group
and the corresponding arrangement with the minimum cost
effectiveness from all Gj(l) and φ̃j(l) for possible values of

l, l = 1, 2, ...,min{b
2δ

θ4j
c+ 1− |Gj |, |N ′|} (Line 9).

The function AD (·) illustrated in Algorithm 3 returns the
near optimal arrangement φ̃j(l) of charger sj through angle
discretization when l MRSDs have added in the charging
group. Let k be the number of MRSDs in Gj(l) (Line 1).
If k is odd, we calculate the discretization intervals of the
(k− 1)-th MRSD and the k-th MRSD in the queue Qj based
on (29) and (30), respectively (Lines 7-8). If k is even, we
calculate the discretization intervals of the (k− 1)-th MRSD
and the k-th MRSD in the queue Qj based on (31) and (32),
respectively (Lines 10-11). For each discretization interval,
we conduct angle discretization (Line 13), which has been
given in Lemma 6. Each discrete angle of ok−1 and ok corre-
sponds to a candidate arrangement of Gj(l). We denote the
set of all candidate arrangements after angle discretization
by Ψj(l) (Line 14). Finally, we find the arrangement with
minimum charging time of charging groupGj(l) from Ψj(l)
(Line 15). Note that, given the value of l, minimizing the cost
effectiveness is equivalent to minimizing the charging time
of extended charging group.

Next, we give the time complexity analysis and approx-
imation analysis of CSA.

Lemma 9. The time complexity of CSA is

O

(
n3m

(⌈
ln 1+α
cosδ+α

ln(1+ε)

⌉
+ 1

))
.

Proof: We first analyze the time complexity of AD(·).
The running time of AD(·) is dominated by finding the
arrangement with minimum charging time of charging
group (Line 15 of Algorithm 3). According to Lemma 6,
the number of discrete angles of any oi ∈ Gj is ni + 1 =⌈

ln(PrMAXij /PrMINij )
ln(1+ε)

⌉
+ 1. Considering the largest discretiza-

tion interval [0, δ], the total number of discrete angles of

ok−1 and ok is 2

(⌈
ln 1+α
cosδ+α

ln(1+ε)

⌉
+ 1

)
. For each φ̃′j(l), calcu-

lating T (Gj(l), φ̃′j(l)) tasks at most O(n) time. Therefore,

AD(·) takes O
(
n

(⌈
ln 1+α
cosδ+α

ln(1+ε)

⌉
+ 1

))
time. The time com-

plexity of CEM(·) is dominated by executing AD(·) (Line 7 of

Algorithm 2), which takes O
(
n2

(⌈
ln 1+α
cosδ+α

ln(1+ε)

⌉
+ 1

))
time.

In CSA, CEM(·) is executed at most nm times. Therefore, the

time complexity of CSA is O
(
n3m

(⌈
ln 1+α
cosδ+α

ln(1+ε)

⌉
+ 1

))
. �

Remark: Note that the running time of CSA,

O

(
n3m

(⌈
ln 1+α
cosδ+α

ln(1+ε)

⌉
+ 1

))
, is very conservative since the

discretization interval is much small than [0, δ] in practice.
Theorem 2. CSA is a (lnn + 1)(1 + ε)-approximation

algorithm of the CCSS problem.
Proof: We first prove CSA is a (lnn + 1)-approximation

algorithm of the C̃CSS problem. Number the MRSDs of N
in the order in which they were covered by CSA resolving
ties arbitrarily. Let o1, o2, o3, ..., on be the numbering. As-
sume ok, k = 1, 2, ..., n is covered by the extended charging
group G′j of charger sj over Gj . Then the cost effectiveness
of ok is defined as

cost(ok) =
c(G′j , φ

′
j)− c(Gj , φj)
|G′j\Gj |

. (35)

Let ÕPT be the optimal total cost of the C̃CSS problem.
Consider the iteration in which ok was covered, the charging
groups of optimal solution can cover the remaining MRSDs
in N ′ with cost at most ÕPT . Therefore, among all charging
groups in the optimal solution, there must be one having
cost effectiveness at most ÕPT/|N ′|, where |N ′| ≥ n−k+1.
Since ok was covered by set G′j of charger sj with minimum
cost effectiveness in this iteration, it follows

cost(ok) ≤
ÕPT

|N ′|
≤

ÕPT

n− k + 1
. (36)

Since the cost of each charging group is distributed
among the new MRSDs covered, the total cost of the charg-
ing groups obtained by CSA is equal to∑n

k=1 cost(ok)

≤
∑n
k=1

ÕPT

n− k + 1

= (1 +
1

2
+ ...+

1

n
)ÕPT

≤ (lnn+ 1)ÕPT .

(37)

Next, we denote the optimal total cost of the CCSS
problem by OPT . We show that ÕPT ≤ (1 + ε)OPT . We
consider the following three cases:

Case 1: T (Gj , φj) ≤ T (Gj , φ̃j) ≤ Tj .
Based on (5), we have

c(Gj , φ̃j) = c(Gj , φj) = Aj . (38)

Case 2: T (Gj , φj) ≤ Tj < T (Gj , φ̃j).
We have

c(Gj , φ̃j)

c(Gj , φj)

=
Aj + aj(T (Gj , φ̃j)− Tj)

Aj

≤ 1 +
aj(T (Gj , φ̃j)− Tj)

ajTj

=
T (Gj , φ̃j)

Tj

≤
T (Gj , φ̃j)

T (Gj , φj)
≤ 1 + ε,

(39)

where the first inequality relies on (6), the second inequality
relies on T (Gj , φj) ≤ Tj , and the last inequality relies on
(33).

Case 3: Tj < T (Gj , φj) ≤ T (Gj , φ̃j).
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We have

c(Gj , φ̃j)

c(Gj , φj)

=
Aj + aj(T (Gj , φ̃j)− Tj)
Aj + aj(T (Gj , φj)− Tj)

≤
Aj + aj((1 + ε)T (Gj , φj)− Tj)

Aj + aj(T (Gj , φj)− Tj)

= 1 +
ajεT (Gj , φj)

Aj + aj(T (Gj , φj)− Tj)
≤ 1 + ε,

(40)

where the first inequality relies on (33), and the last inequal-
ity relies on (6).

Based on (38), (39) and (40), we have:

ÕPT

OPT
=

∑
sj∈M c(Gj , φ̃j)∑
sj∈M c(Gj , φj)

≤ 1 + ε. (41)

Combining (37) and (41), we obtain the theorem. �

5 SIMULATION RESULTS

In this section, we perform simulations to verify the perfor-
mance of our algorithm.

5.1 Simulation Setup

For the simulations, we randomly distribute the chargers
and MRSDs in a 2D plane. The default values of parameters
are given in Table 2. The unit of power is watt. We will vary
the value of the key parameters to explore the impacts on
the algorithms. All the simulations are run on a Windows
machine with Intel(R) Xeon(R) CPU i5-8250U and 8 GB
memory. Each measurement is averaged over 100 instances.

TABLE 2
Default Settings of Parameters

Parameter Default value

Ω 250m ∗ 250m
m 30
n 100
δ π/2
x 0.2m
Ei [1500, 2000]J
bi [5, 10]J/m
aj [0.001, 0.0015]
Aj [200, 220]
Tj [60000, 80000]s
dj [0.4, 0.6]m

α, β, µ 0.11, 0.01, 0.0108
ε 0.1

We compare our algorithm with following three algo-
rithms:

• IBC (Improved BC): We modify the BC in [10] to
fit the scenario of this paper. In each iteration, IBC
traverses all MRSDs, and each MRSD chooses the
best available charger (space feasible) and charging
angle such that the increased cost is minimized. Then
the MRSD with the lowest marginal cost is assigned.
The charging angles of assigned MRSDs no longer

change in the subsequent iterations. The iterations
terminate when all MRSDs are assigned.

• GBC (Group BC): GBC is also modified from the BC
in [10]. In each iteration, GBC traverses all chargers.
For each charger, GBC finds a set of unsigned MRSDs
to form a charging group such than the cost of charg-
ing group is minimized. The MRSD with maximum
actual replenished energy is placed at the center
line. The arrangement of other MRSDs follows the
properties given in section 4.3. Then the charger with
the lowest cost of charging group is selected. The
iterations terminate when all MRSDs are assigned.

• IAASA (Improved AASA): We modify the AASA
in [37] to fit the scenario in this paper. The only
difference with GBC is that the charger with the
lowest average cost (the ratio of charging cost to the
size of group) is selected at the end of each iteration.

5.2 Total Cost

To test the scalability of our algorithm, we increase the
number of MRSDs from 70 to 120. As shown in Fig. 6,
the total cost of all algorithms increases with the increasing
number of MRSDs. CSA always outputs the lowest total
cost. Specifically, CSA reduces 37.7%, 10.9% and 10.0% of
total cost on average comparing with IBC, GBC and IAASA,
respectively. IBC selects the MRSD with minimum marginal
cost at each time, and allocates the best charging angle to
the currently selected MRSD. Therefore, the MRSD with
low actual replenished energy will obtain the high power,
increasing the total cost. On the other hand, both GBC and
IAASA determine a set of MRSDs to form the charging
group at a time rather than assign a single MRSD to the
charger, thus, some of MRSDs in the charging group proba-
bly do not suit for the current charger. Moreover, GBC and
IAASA do not conduct the angle discretization, therefore,
cannot bound the performance.

Then, we increase the number of chargers from 20 to 45.
As shown in Fig. 7, the total cost of all algorithms decreases
with the increasing number of chargers. This is because with
more chargers, the MRSDs can move to closer or cheaper
chargers. Averagely, CSA reduces the total cost by 37.7%,
12.3% and 10.2% comparing with IBC, GBC and IAASA,
respectively.

We change the length of MRSDs. With the increasing
spatial occupation of MRSD, less MRSDs can be placed in
the charging groups. This indicates that the cooperation op-
portunities reduce and more chargers are needed. Therefore,
the total cost of all algorithms increases. As shown in Fig. 8,
CSA reduces 42.5%, 15.6% and 15.0% of total cost on average
comparing with IBC, GBC and IAASA, respectively.

Fig. 9 shows the impact of base fare on the total cost.
With the increase in base fare, the cost of opening new
charging group increases, therefore, the total cost of all
algorithms increase accordingly. Moreover, we can see that
the total cost of IBC increases rapidly than other three
algorithms. This is because IBC chooses the best available
charging angle for the current MRSD such that the increased
cost is minimized. Once the charging angle is determined,
IBC does not change the charging angle in the subsequent
iterations. Thus, the average spatial occupation of MRSDs is
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larger than other algorothms, and more chargers are needed
in IBC. Averagely, CSA reduces the total cost by 37.9%,
13.6% and 11.2% comparing with IBC, GBC and IAASA,
respectively.

Fig. 10 shows the impact of charging distance on the
total cost. With the increase in charging distance, the total
cost of all algorithms increases. This is because the charging
power decreases with increasing charging distance, thus,
more charging time is needed to fulfill the energy demands
of MRSDs. Averagely, CSA reduces the total cost by 41.3%,
23.4% and 22.8% comparing with IBC, GBC and IAASA,
respectively.

Fig. 11 shows the impact of angle discretization error on
the cost of CSA. With the increase in discretization error,
the total cost of CSA increases accordingly. When ε = 0.6,
the total cost increases by 29.93 comparing with the total
cost when ε = 0.1. This consistent with our approximation
analysis given in Theorem 2.
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Fig. 13. Comparison with the optimal solution of C̃CSS problem. (a)
total cost (b) running time.

5.3 Running Time
We measure the running time of IBC, GBC, IAASA and
CSA. We can see from Fig. 12 that the running time of all
algorithms grows with increasing number of MRSDs. The
running time of GBC and IAASA is much lower than IBC
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and CSA. This is because GBC and IAASA assign MRSDs
group by group, while IBC and CSA assign MRSDs one by
one. The running time of CSA is higher than IBC since CSA
conduct angle discretization. However, CSA can output the
solution in 0.4 seconds when there are 120 MRSDs. As
shown in Fig. 11, the running time of CSA decreases sharply
with the increase in discretization error. This is because less
discrete charging angles need to be traversed in Algorithm
3.

5.4 Comparison with ÕPT
Since the possible charging angles are infinite, we compare
the performance of our algorithms with the optimal solution
of C̃CSS problem in a small charging network (40m∗40m).
To realize the ÕPT , we traverse all possible assigments
between MRSDs and chargers. Given the MRSDs of each
charging group, we adopt the optimal arrangement and
angle discretization presented in section 4.3 and section 4.4,
respectively. As shown in Fig. 13, the total cost of CSA is
only 4.12% higher than that of ÕPT on average. At the
beginning, the results of the two algorithms are exactly same
because when the number of MRSDs is small, one charger
can meet all charging demands. For the same charging
group, both algorithms determine the charging arrangement
in the same way. However, when the number of MRSDs
increases, more chargers are needed, and CSA can only
obtain approximate solutions. However, ÕPT takes 11.6
seconds even for 9 MRSDs, and is much slower than CSA.

6 FIELD EXPERIMENTS

We have conducted the field experiments to evaluate all five
algorithms. We implemented the algorithms on a testbed
consisting of 8 MRSDs, 5 directional chargers (TX91501
power transmitters produced by Powercast [38]), and an AP
that connects to a laptop for reporting energy data collected
from the MRSDs as shown in Fig. 14. We carried out the
experiment in 40m ∗ 40m square area. The coordinates of
the chargers are (10,10), (10, 30), (20, 20), (30, 10), and (30,30).
The 8 MRSDs are randomly placed in the area. According
to our tests, we have α = 0.11, β = 0.01, and µ = 0.00738.
Since the charging time will reach tens of hours in previous
simulations, we change the parameter settings in order to
accelerate the field experiments. In our field experiments,
the energy demands of MRSDs, base fare and charging
time threshold of chargers are in [150, 200], [20, 22] and
[6000, 8000], respectively. Moreover, such parameter settings
make the charging time of some MRSDs lower than the time
threshold and the charging time of others higher than the
time threshold, which helps to simulate a real world situa-
tion with various charging demands. The specific parameter
settings of chargers and MRSDs are summarized in Table 3
and Table 4, respectively. The settings of other parameters
are same with those in Table 2.

The scheduling results of CSA are shown in Fig. 15,
where the triangles represent the chargers and the dots rep-
resent the MRSDs. The arrangment of MRSDs of charging
group G5 of CSA is illustrated in Fig. 16. The quantized
scheduling results and total cost of all algorithms are sum-
marized in Table 4. The scheduling result of each MRSD is

Fig. 14. Testbed

TABLE 3
Parameters of All Chargers

Charger Aj aj Tj(s) dj(m)

1 21.7 0.0011 6240 0.45
2 20.4 0.0012 7250 0.55
3 21.3 0.0014 6690 0.5
4 21.8 0.0013 6670 0.5
5 20.4 0.0011 7150 0.5

represented as a two-tuple, where the first item represents
the charger assigned and the second item represents the
charging angle. We can see that CSA outputs the same
scheduling result with ÕPT , and only need one charger
due to the fine-grained arrangement of MRSDs through the
angle discretization. CSA reduces 36.3% and 22.0% total
cost comparing with IBC and GBC (IAASA) in our field
experiments, respectively.

Fig. 15. Scheduling results of CSA

Fig. 16. Charging group G5 of CSA
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TABLE 4
Scheduling Results of All Algorithms

MRSD Ei(J) bi(m/J) IBC GBC, IAASA CSA, ÕPT

1 199 8.7 (2, 0◦) (2, 0◦) (5, 7.7◦)
2 176 9.7 (2,−20.6◦) (5, 22.6◦) (5,−37.5◦)
3 171 7.5 (2, 20.6◦) (5,−67.8◦) (5, 75.5◦)
4 160 8.9 (2,−41.2◦) (5,−22.6◦) (5, 30.3◦)
5 166 7.3 (2, 41.2◦) (5, 0◦) (5,−14.9◦)
6 155 9.2 (2,−61.8◦) (5, 45.2◦) (5,−60.1◦)
7 169 6.9 (2, 61.8◦) (5, 67.8◦) (5,−82.7◦)
8 166 8.7 (4, 0◦) (5,−45.2◦) (5, 52.9◦)

Total cost 81.3 66.4 51.8

7 DISCUSSION

Our CSA can also be used to solve the CCSS problem in
omnidirectional wireless charging case after a minor modi-
fication. In omnidirectional wireless charging, the charging
power from any charger sj to any MSRD oi is

Pr(sj , oi) =


α

(β + dj)
2, dj ≤ D

0, otherwise.

(42)

For any charger sj ∈ M , at most b
2π

θ4j
c MRSDs can

be placed in the charging group Gj . Thus, the following
inequation should be satisfied to guarantee that there is
enough space to place all MRSDs:∑

sj∈M
b

2π

θ4j
c ≥ n. (43)

The CCSS problem for omnidirectional wireless charging
can be formulated as

min
∑
sj∈M

c(Gj), (44)

s.t.
⋃

sj∈M
Gj = N, (44-1)

Gj ∩Gj′ = ∅, ∀sj 6= sj′ , sj ∈M, sj′ ∈M, (44-2)

|Gj | ≤ b
2π

θ4j
c,∀sj ∈M. (44-3)

This problem is still NP-hard by reduction from the

CGFLP problem, where the capacity of facility sj is b
2π

θ4j
c.

The work flow of CSA for omnidirectional wireless
charging is similar with that for directional wireless charg-
ing. The difference is that the charging angle calculation
and angle discretization (Algorithm 3) are not needed. We
can determine the charging group with the minimum cost
effectiveness for any charger sj directly. Since Algorithm 3
is not needed, Algorithm 2 takes O(n2) time, and the time
complexity of CSA for omnidirectional wireless charging is
O(n3m). Moreover, since it is not necessary to conduct angle
discretization, CSA for omnidirectional wireless charging
can achieve (lnn+ 1)-approximation for the CCSS problem
in omnidirectional wireless charging case.

8 CONCLUSION

In this paper, we have presented a cooperative charging
system model for directional wireless charging with spa-
tial occupation and have formulated the CCSS problem
for optimizing the total charging cost. The properties of
optimal arrangement of MRSDs in the charging group has
been revealed. We have employed the angle discretization
technique to get the finite candidate charging angles and
the corresponding approximate charging power of MRSDs.
We also have shown that it is sufficient to bound the error
by conducting angle discretization for only two MRSDs in
the charging group. We have proposed a (ln n+ 1) (1 + ε)-
approximation algorithm based on the greedy approach.
The results demonstrate that our algorithm can reduce
at most 42.5% and 36.3% total cost comparing with the
benchmark algorithms in extensive simulations and field
experiments, respectively.
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