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Abstract—Mobile crowdsourcing has become an efficient paradigm for performing large scale tasks. The incentive mechanism is
important for the mobile crowdsourcing system to stimulate participants, and to achieve good service quality. In this paper, we focus on
solving the insufficient participation problem for the budget constrained online crowdsourcing system. We present a two-tiered social
crowdsourcing architecture, which can enable the selected registered users to recruit their social neighbors by diffusing the tasks to
their social circles. We present three system models for two-tiered social crowdsourcing system based on the arrival modes of
registered users and social neighbors: offline model, semi-online model, and full-online model. We consider the tasks are associated
with different end times. We present an incentive mechanism for each of three system models. Through both rigorous theoretical
analysis and extensive simulations, we demonstrate that the proposed incentive mechanisms achieve computational efficiency,
individual rationality, budget feasibility, cost truthfulness, and time truthfulness. We further show that our incentive mechanisms for
semi-online model and full-online model can obtain averagely 51.1% and 39.7% value of approximate optimal untruthful offline
algorithm, respectively.

Index Terms—Mobile crowdsourcing, incentive mechanism, social network, online mechanism.
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1 INTRODUCTION

NOWADAYS, smartphones become almost indispensable
to our lives. Smartphones are integrated with a variety

of embedded sensors such as camera, light sensor, GPS,
accelerometer, digital compass, gyroscope, microphone, and
proximity sensor. These sensors can collectively monitor
diverse human activities and the surrounding environment.
Compared with the traditional sensor networks, mobile
crowdsourcing has a huge potential due to the prominent
advantages, such as wide spatio-temporal coverage, low
cost, good scalability, and pervasive application scenario. It
can be applied in various domains, such as Sensorly [2] for
constructing cellular/WiFi network coverage maps, Nericell
[3] and VTrak [4] for providing traffic information, as well
as Ear-Phone [5] and NoiseTube [6] for creating noise maps.

There have been many research efforts on incentive
mechanism design for mobile crowdsourcing [7, 8, 9]. On-
line incentive mechanism [10, 11] aims to deal with the
mobile crowdsourcing, where the users arrive one by one in
random order and user availability will change over time,
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and enables the decision on whether to buy users’ service
based on the current information.

However, most of the online mechanisms assume that
there are enough participants in the mobile crowdsourcing
systems. In reality, however, many tasks cannot be com-
pleted in time due to the insufficient participation. The
bases of participants of crowdsourcing applications are still
not big enough. According to [12], mobile crowdsensing
applications have rarely scaled up to more than 1000 par-
ticipants. According to the data of the fourth quarter in 2016
from Analysys [13], only 6.02% and 3.83% of all registered
users can provide the real-time sensing data for the traffic
condition in Tencent map and Tianyi navigation, respec-
tively. Moreover, the crowdsourcing platform also benefits
the developed platform when it cannot find enough workers
interested in some specific tasks. The tasks requested by
various crowdsourcers would require professional work-
ers to complete. For example, an important proportion of
Human Intelligence Tasks (HITs) in Amazon Mechanical
Turk (AMT) [14] requires the workers to complete a test
in order to be qualified. Our statistics data showed that
there are 21.1 uncompleted requests that were publicized
more than 2 weeks in AMT on average from 2021-5-19
to 2021-5-30, while each request may include several HITs
(Human Intelligence Tasks). Among these requests, 79.3%
requests were publicized more than one month. Another
observation from Freelancer [15] from 2021-5-19 to 2021-5-
30 showed that there were 51.9 uncompleted projects that
were publicized more than 2 weeks on average. Among
them, 60.1% projects were publicized more than one month.
The above surveys reveal the insufficient participant prob-
lem of current crowdsourcing systems. In addition, at the
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early beginning, the crowdsourcing platform faces the cold-
start problem and cannot provide sufficient workers for
completing tasks. Thus how to expand the user pool of the
crowdsourcing system is a nontrivial issue. As far as we
known, there is no off-the-shelf online incentive mechanism
designed in the literature for recruiting the users out of the
crowdsourcing system to perform the tasks.

To address the insufficient participation problem, we
extend the mobile crowdsourcing systems to the social
networks in order to recruit more participants. We consider
that the crowdsourcing platform is operated by an online
community. Thus the platform can extract the personal
profile of users in the online community. This assumption
is reasonable and pervasive since many online communities
have developed crowdsourcing systems themselves, such as
Stepes [16] operated by Facebook, Google Image Labeler
[17] and Translate Community [18] operated by Google+,
QQ-Crowd [19] owned by QQ, Crowdtesting [20] and Baidu
Baike [21] operated by Baidu.
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Fig. 1. Two-tiered social crowdsourcing system

In this paper, we propose a two-tiered social crowd-
sourcing architecture, which is illustrated by Fig. 1. In the
proposed crowdsourcing system, a set of agents are selected
from the registered users of the crowdsourcing system. The
selected agents are in charge of diffusing the crowdsourcing
tasks to their social neighbors through the social circle,
such as Twitter, Microblog, Facebook, and WeChat. The
social neighbors cannot interact with the platform directly
since they haven’t been registered with the crowdsourc-
ing system. Thus, differently from most existing mobile
crowdsourcing systems, there are two interaction tiers in
the crowdsourcing system.

The online arrival of users is a more realistic setting
for most crowdsourcing application systems since the users
are not always ready all the time, and cannot wait the
decision of task allocation for a long time [10, 11]. This is an
especially important consideration for our two-tiered social
crowdsourcing architecture because the task performers are
social neighbors rather than the professional workers.

The incentive mechanism design for the registered users
to perform tasks in mobile crowdsourcing system has been
studied extensively [10, 11, 22]. Thus, we focus on address-

ing the insufficient participation problem in crowdsourcing,
and only consider the incentives to the agents for diffusing
tasks and the social neighbors for performing tasks.

To find the suitable agents, the influence of registered
users should be calculated. Many topology-based social
influence calculation methods have been proposed [23, 24,
25, 26]. However, these influence calculation methods are
unsuitable for crowdsourcing context. First, the current
online communities such as Twitter, Microblog, Facebook,
and WeChat are usually large-scale. Therefore, the time
complexity of computing the topology-based measures such
as eigenvector centrality [23], degree centrality [24], be-
tweenness centrality [25] and closeness centrality [26] over
whole social network is very high. Moreover, measuring the
influence of users only based on the network topology in
crowdsourcing context is not sufficient because the users
with good metrics of network structure probably cannot
perform the tasks. Finally, it is hard to obtain the global
knowledge of network structure in crowdsourcing system.
Although many online communities have developed their
own crowdsourcing systems, only limited knowledge can
be obtained in most practical situations.

To address these issues, we only recruit the social neigh-
bors of registered users of crowdsourcing platform. By this
way, only the network structure of one-hop is needed, there-
fore, both the time complexity and the required topology
knowledge can be largely reduced, improving the applica-
bility and practicability of designed mechanisms. Note that
once the social neighbors participate in the crowdsourcing
tasks, they can be viewed as the new registered users, and
the next round of social crowdsourcing can be launched
with a larger registered user pool. Moreover, for influence
calculation, we take into consideration the matching degree
of task types and social neighbors’ interests. In the context
of crowdsourcing, the impact of tasks diffused is more
important than the influence of agents to the social neigh-
bors. Considering the purpose of recruiting participants to
perform the crowdsourcing tasks, our method is more suit-
able for task diffusion, comparing with traditional influence
computing only based on topology-based measures.

The problem of designing truthful incentive mechanism
for the two-tiered social crowdsourcing system is very
challenging. First, the new role of agent is introduced into
the system, and a realistic system model, including the
interactions between the agents and crowdsourcing plat-
form and social neighbors, should be defined to enable the
task diffusion through the two-tiered social crowdsourcing
system. Second, since the mobile crowdsourcing system
works online, the designed incentive mechanism should
decide whether to accept the service or not, and at what
price before the tasks expire and the social neighbors de-
part. It is challenging to satisfy the desirable properties of
individual rationality, budget feasibility, and truthfulness
simultaneously in online setting. Moreover, for our two-
tiered social crowdsourcing system, both agents and social
neighbors should be selected. It is a challenging problem
to select appropriate agents to diffuse the tasks to the
social neighbors who are interested in performing tasks to
complete tasks as many as possible. In addition, to reduce
the complexity of designed mechanism and the knowledge
requirement of social network, only limited knowledge can
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be used to evaluate the influence of registered users. Finally,
the social neighbors and the registered users may take a
strategic behavior by submitting dishonest bid price and
arrival/departure time to maximize their utilities.

The main contributions of this paper are as follows:

• We present the two-tiered social crowdsourcing ar-
chitecture, which select and enable a set of agents
to recruit the users from the social circle, to solve the
insufficient participation problem as well as the cold-
start problem of crowdsourcing systems.

• We propose three system models: offline model,
semi-online model, and full-online model for the pro-
posed social crowdsourcing architecture based on the
availability of registered users and social neighbors.

• We design the incentive mechanism for each model.
We show that the designed incentive mechanisms
satisfy computational efficiency, individual rational-
ity, budget feasibility, and truthfulness.

• The results of simulations based on the real-world
data set show that our incentive mechanisms for
semi-online model and full-online model can obtain
averagely 51.1% and 39.7% value of approximate
optimal untruthful offline algorithm, respectively.

The rest of the paper is organized as follows. We review
the related work in Section 2. Section 3 formulates three
system models and lists desirable properties. The designs
of incentive mechanisms for three models are presented in
Section 4, Section 5, and Section 6, respectively. Performance
evaluation is shown in Section 7. We give the discussion in
Section 8, and conclude this paper in Section 9.

2 RELATED WORK

2.1 Offline Incentive Mechanisms
Many incentive mechanisms for mobile crowdsourcing have
been proposed [27, 28, 29, 30]. Bhattacharjee et al. proposed
an event-trust and user-reputation model, called QnQ model
[31], where the user reputation scores are based on both
quality (accuracy of contribution) and quantity (degree of
participation) of their contributions, to segregate different
user classes such as selfish, malicious and honest. Yang et al.
proposed two models of smartphone crowdsourcing [32]:
the platform-centric model where the platform provides a
reward shared by participating users, and the user-centric
model where users have more control over the payment
they will receive. Jin et al. studied the QoI problem of crowd-
sensing, and designed the incentive mechanisms based on
reverse combination auction for single-minded and multi-
minded scenarios [33]. Barnwal et al. extended the PS-
Sim framework with a novel budget allocation mechanism
for incentivizing participants [34]. However, all the studies
above mentioned do not aim at solving insufficient user par-
ticipation problem. Moreover, they designed the incentive
mechanisms only for offline case. Chen et al. proposed to in-
corporate sensing platform and social network applications,
which already have large user bases, to build a three-layer
network model. Furthermore, they designed the incentive
mechanisms for both intermediaries and the crowdsensing
platform [35]. However, they only considered the offline
case without budget constraint.

2.2 Online Incentive Mechanisms

Online auction is the essence of many networked mar-
kets. The information about goods, agents, and outcomes
is revealed one by one online in a random order, and the
agents must make irrevocable decisions without knowing
future information in online auction. Zhao et al. proposed
OMZ and OMG models, which follow the multiple-stage
sampling-accepting process [10]. At every stage, the mecha-
nism allocates tasks to a smartphone user only if its marginal
density is not less than a certain density threshold computed
using previous users’ information. However, Zhao’s method
assumes that both the arrival time of the users and the value
from the users are equally distributed over the time. In this
paper, the selected agents may have different influence to
their social neighbors. The agent with high influence can re-
cruit the social neighbors who are more interest in perform-
ing crowdsourcing tasks. Thus, OMZ and OMG cannot help
to attract high valued users as well as to improve task com-
pletion level. Xiao et al. proposed an online task assignment
for crowdsensing in predictable mobile social networks [11].
The LOTA algorithm for the Minimum-Largest-Makespan task
assignment problem follows the greedy strategy, in which
the requester assigns the task with the largest workload, in
turn, to the earliest idle mobile user. Gao et al. formulated
an optimization problem of maximizing the amount of high
quality sensing data subject to the task budget, and pro-
posed an effective and quality-aware online incentive mech-
anism to solve the problem [36]. However, [36] assumes that
the platform is capable of recruiting enough users. In this
paper, we not only take dynamic users into consideration,
but also take dynamic tasks and agents into consideration.

2.3 Incentive Mechanisms with Social Network

Social networks have been extensively discussed in mobile
crowdsourcing [37, 38, 39, 40]. When the participants are not
enough to complete the sensing tasks, the social network
can help to spread the tasks to more potential participants.
Xu et al. studied the user compatibility problem for coop-
erative crowdsensing tasks in the online community, and
designed truthful incentive mechanisms to minimize the
social cost such that each of the cooperative tasks can be
completed by a group of compatible users [37]. Stefano
et al. defined a multi-layer social sensing framework to
explore and quantify the dynamics patterns of interactions
[38]. However, they aimed at evaluating and quantifying
the role of homophily, network heterogeneity and multi-
plexity in the emergence and sustainability of cooperation
on the social multiplex network of human users, and did
not address the insufficient participation problem. Wang
et al. proposed a game-theoretic team formation model by
modeling each subtask as a cooperative mobile agent, and
then each agent targets to move to the individual that
has the least workload [41]. Nguyen et al. proposed the
notions of node observability and coverage utility score, and
designed a new context-aware approximation algorithm to
find vertex cover that is tailored for crowd-sensing tasks
in opportunistic mobile social networks [42]. The above
research efforts utilize the social relationship to stimulate
higher cooperative level, higher mobile participation level,
or greater revenue of the crowdsensing service provider, and
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cannot recruit the social users out of the system and as well
as solve the cold-start problem.

Han et al. formulated the participant recruitment in
mobile opportunistic D2D networks from the perspective of
the seeds, which face the dilemma of how to carefully invite
additional participants in order to maximize their gain while
keeping the risk of losing their payment low and propose a
dynamic programming algorithm to solve it [43]. However,
the problem is unique due to the opportunistic network
setting. Luo et al. introduced a social concept called nepotism
into participatory sensing to enhance the trustworthy and
used Stackelberg game framework to maximize the utility of
the sensing campaign organizer, while ensuring participants
to strictly have incentive to participate [44]. However, they
only considered the offline case, where all strategies can be
calculated in advance.

Nie et al. modeled the interaction between the crowd-
sensing service provider and mobile users as a two-stage
Stackelberg game, and investigated two types of incen-
tive mechanism for the crowdsensing platform with com-
plete and incomplete information on social network effects
[45, 46]. They further proposed a multi-leader and multi-
follower Stackelberg game approach to model the strategic
interactions among multiple service providers and users
[47]. Different from [47], our paper takes advantage of social
influence to promote the crowdsourcing task diffusion to
social users. Yang et al. proposed a framework for designing
the social incentive mechanism to promote cooperation in
crowdsensing, where the utility of a user largely relies on
the participation of its social friends [48]. These studies
aim at weighing the influence and its relationship among
social users using game-theoretical approaches. However,
weighing the influence of neighbors and the relationship
with the choices of users require the social ties of whole
network, which is usually hard to obtain. Moreover, in our
online scenario, when making the choice, the user cannot
know whether the social friends will be online and partic-
ipate in the crowdsourcing. Thus, it is unlikely to calculate
the relationship of users’ choices exactly, i.e., it is hard to
calculate the impact of social friends on his utility, therefore,
the game-theoretical approaches would be ineffective. Take
all these into account, we consider that the social neighbors
make their decision (bid for tasks) independently, and their
utilities are not affected by other social users’ choices.

Overall, there is no off-the-shelf incentive mechanism
designed in the literature, which recruits users from social
network to perform the tasks in the online manner.

3 SYSTEM MODEL AND DESIRABLE PROPERTIES

In this section, we present three different mobile crowd-
sourcing system models based on two-tiered social crowd-
sourcing architecture: offline model, semi-online model, and
full-online model. At the end of this section, we present
some desirable properties.

3.1 Offline Model of Two-tiered Social Crowdsourcing
In the offline model, both registered users and social neigh-
bors are always ready to participate in the crowdsourcing.
This means the registered users can diffuse the tasks im-
mediately once the platform publicizes them, and the social

neighbors can bid via the registered users for performing
tasks in a short time. This is possible only in some special
cases where the registered users have a large group of social
neighbors and have great influence over their cycles. The
main reason for studying this model is to provide a perfor-
mance benchmark for realistic online models. To enable the
benchmark to output an upper bound of performance, we
consider the registered users are not profit-driven, i.e., the
registered users can diffuse the tasks before they are selected
as agents.
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Fig. 2. Offline two-tiered social crowdsourcing system

As shown in Fig. 2, we consider that the platform publi-
cizes a set of tasks Γ={τ1, τ2, ..., τm} to registered users with
budget, where each task τk ∈ Γ, k = 1, 2, ...,m, is associated
with an end time ek and a type tk. The task types, such
as translation, data collection, and image recognition, are
predefined by the platform, and different tasks can have the
same task type. For the sake of brevity, we consider all tasks
are launched at time step one.

Assume that a set of registered users J = {1, 2, . . . , n}
of the platform are interested in diffusing crowdsourcing
tasks. There is a budget B, which is the maximum value
that the platform is willing to pay for the participants when
they complete the tasks. There is also a total reward R for
incentivizing the agents to diffuse the tasks.

Upon receiving the tasks, the registered users diffuse the
tasks to their social cycles immediately. Let SN j represent
the set of influenced social neighbors of any registered
user j ∈ J , and SN represent the set of influenced social
neighbors of all registered users, i.e., SN = ∪j∈JSN j .

The influenced social neighbors can participate in the
mobile crowdsourcing through a reverse auction, and each
social neighbor can get the payment for providing the
crowdsourcing service. In the reverse auction, each social
neighbor i ∈ SN j submits a bid θi = (Γi, bi, j) to the
platform via registered user j, where Γi ⊆ Γ is the task
set he/she is willing to perform, and bi is the reserve price.

The platform calculates the winner set S ⊆ SN , and
determines the payment pi for each social neighbor i ∈ SN .
Meanwhile, the platform selects a subset of registered users
A ⊆ J as the agents, and determines the reward rj to each
registered user j ∈ J . Then the platform notifies the agents
and the winning social neighbors of the determination. The
winners submit the task results to the platform via the
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corresponding agents. Finally, each winner/agent obtains
the payment/reward, which is determined by the platform.

We consider the real cost ci for performing Γi is private
and only known to social neighbor i. Since we consider the
social neighbors are selfish and rational individuals, each
social neighbor can behave strategically by submitting the
dishonest reserve price to maximize its utility. Note that a
social neighbor cannot lie about the task set it is willing to
perform and the agent it is associated with since they can be
directly verified by the platform or the agents.

We define the utility of social neighbor i as the difference
between the payment and its real cost:

ui = pi − ci (1)

Specifically, the utility of the losers would be zero be-
cause they are paid nothing in our designed mechanisms
and there is no cost for performing tasks.

Given the task set Γ and the bid profile Θ =
{θ1, θ2..., θ|SN |}, budget B, and total reward R, the in-
centive mechanism M(Γ,Θ, B,R) outputs the winner set
S ⊆ SN , the payment vector p = (p1, p2, ..., p|SN |), the
agent set A ⊆ J , and the reward vector r = (r1, r2, ..., rn).

Let vi be the value of any winner i. Let V (S) be the
value function of the platform over the winner set S. The
objective of our incentive mechanism is maximizing value
from the winners’ services under the budget constraint B
and the reward constraint R, i.e.

maxV (S) s.t.
∑
i∈S

pi ≤ B,
∑
j∈A

rj ≤ R (2)

In this study, we consider the value function V (S) is
nonnegative, monotone, and submodular, which is defined
in Definition 1. Many value functions of crowdsourcing
systems satisfy the submodularity [5, 8, 10, 49], which
covers many realistic scenarios, such as [3, 36]. Note that
the incentive mechanisms designed in this paper is effec-
tive for all nonnegative, monotone, and submodular value
functions. The exact form value function is obviously subject
to applications. For convenience, we adopt a simple linear
cumulative function in our experiments: V (S) =

∑
i∈S

vi =∑
i∈S

∑
τk∈Γi

v (k), where vi is the value of social neighbor i,

v (k) is the value of task τk ∈ Γ .
Definition 1 (Nonnegative Monotone Submodular Func-

tion): Let Ω be a finite set. A function f :2Ω → R is submodular if
and only if

(1)f(X) ≥ 0, for anyX ⊆ Ω

(2)f(X) ≤ f(Y ), for anyX ⊆ Y ⊆ Ω

(3)f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y ), for any

X ⊆ Y ⊆ Ω, and x ∈ Ω \ Y,

where 2Ω is the power set of Ω, R is the set of reals.

3.2 Semi-online Model of Two-tiered Social Crowd-
sourcing
In semi-online model, we consider the registered users are
always ready to participate in crowdsourcing. The profes-
sional workers are employed in crowdsourcing systems,
such as the full-time photo annotator in Google Image

Labeler [17], and the full-time software testers in QQ-Crowd
[19] and Crowdtesting [20]. The registered users even can
develop the automatic bidding program, which is available
all the time, to bid for task diffusion automatically. However,
the social neighbors do not keep in touch with the registered
users all the time since they are not the professional workers
of crowdsourcing. The social neighbors arrive one by one in
a random order, and user availability changes over time.

There are two key differences from the offline model.
First, to make our model more practical, we consider the
registered users are profit-driven, i.e., the registered users
only diffuse the tasks after they are selected as agents.
This means the platform needs to select the agents before
selecting winners in order to diffuse tasks. Second, each
social neighbor has an arrival time and a departure time,
and is only available before it departs.

Since the registered users are always online, we model
the mobile crowdsourcing in this case as a dual budget
feasible auction, which enables our incentive mechanism
to work effectively under the actual situation with rational
registered users. We first select the agents through a budget
feasible reverse auction. Then we select the winners through
an online budget feasible reverse auction.
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Fig. 3. Semi-online two-tiered social crowdsourcing system

Now we give the workflow of mobile crowdsourcing
in the semi-online model, and highlight the differences
between the offline model and the semi-online model for
the sake of brevity. The platform publicizes a set of tasks
to registered users. Each registered user j ∈ J bids for
task diffusion with reserve price bj . The platform selects the
agents from the bidders, and determines the reward for all
registered users. Once the registered users are selected as the
agents, they diffuse the tasks to their social neighbors. Each
social neighbor i ∈ SN j submits a bid θi = (ai, di, Γi, bi, j)
to the platform via agent j when it is online, where ai and
di are the arrival time and departure time of social neighbor
i, respectively. When any bid θi is submitted to the platform
via an agent j, the platform needs to decide whether to
buy the service of social neighbor i, and if so, at what price
pi before i departs. Then the platform notifies the winners
via agents. The winners perform the tasks and submit the
results to the platform via the agents before their departure.
Finally, each winner/agent obtains the payment/reward.
The whole process is illustrated by Fig. 3.
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We consider the real cost ci for performing Γi, the
real arrival time rai, and departure time rdi are private
information. Each social neighbor can behave strategically
by submitting the dishonest reserve price, or dishonest
arrival/departure time to maximize its utility. Note that a
social neighbor cannot announce an earlier arrival time or a
later departure time than its true arrival/departure time, i.e.,
rai ≤ ai ≤ di ≤ rdi. This is justified since the presence can
be directly verified by the platform. We also consider that
each registered user can behave strategically by submitting
the dishonest reserve price to maximize its utility.

3.3 Full-online Model of Two-tiered Social Crowdsourc-
ing

In this subsection, we consider the full-online model, which
is closer to the real-world mobile crowdsourcing. Differently
from the semi-online model, we consider that the registered
users are not always ready to participate in crowdsourcing.
This is a pervasive observation because most contributors of
crowdsourcing are not professional workers, and have their
own available time.

Since the registered users are profit-driven, the platform
needs to select the agents before selecting winners. How-
ever, the registered users arrive at the platform in an asyn-
chronous way. We cannot apply any offline auction to select
the agents. To address this issue, we present the workflow
of mobile crowdsourcing in the full-online model, which
is illustrated by Fig. 4. Again, we focus on the differences
between the semi-online model and the full-online model.
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Fig. 4. Full-online two-tiered social crowdsourcing system

The platform first selects at most γ agents from all
registered users and determines the reward to the agents,
where γ depends on the total reward R and the mean of the
diffusion cost. The diffusion cost can be estimated through
the history or making a customer survey. There are many
public sources that can help to estimate the cost [50, 51].

Then the platform publicizes the tasks. We consider the
agents arrive at the platform in an asynchronous way. Each
agent j ∈ A has an arrival time aj and a departure time
dj , max {e1, e2..., em} ≥ dj ≥ aj ≥ 0. Note that the agents
cannot state an early arrival time or late departure time in
practice. Once any agent j is online, it will send a message
MSG = (Γ j , aj , dj), where Γ j is the set of unexpired tasks
when j arrives, to the platform. After confirmed by the
platform, the agent j sends the same message to its social
circle in order to diffuse the tasks.

TABLE 1
Frequently used notations

Notation Description

Γ, τk, ek task set, task k, end time of task τk
m,n number of tasks, number of registered users
J,A, S registered user set, agent set, winner set
B,B′, R budget, stage budget, total reward
Bj ,B budget of agent j, budget profile of agents
SN, SNj social neighbor set, social neighbor set of registered

user j
Θ, θi bid profile of social neighbors, bid of social neigh-

bor i
bi, ci reserve price of social neighbor i, cost of social

neighbor i
b, bj bid profile of registered users, reserve price of

registered user j
Γi task set of social neighbor i
Γ j set of unexpired tasks when agent j arrives
ai, di arrival time and departure time of social neighbor

i
aj , dj arrival time and departure time of agent j
rai, rdi real arrival time and real departure time of social

neighbor i
p, pi payment vector, payment to social neighbor i
r, rj reward vector, reward to agnet j
V (S) value to the platform over winner set S
vi, v

j value of social neighbor i, value of agent j
ui utility of social neighbor i
Jac(·) jaccard similarity coefficient
I(·), Imax influence function, maximum influence
Infji influence of registered user j to social neighbor i ∈

SNj

Infj , Inf(A) influence of registered user j, influence over agent
set A

T, T ′,t deadline, end time step of each stage, time step
O,O′ online social neighbor set, unselected online social

neighbor set
δ unit influence threshold
γ maximum number of agents selected in full-online

model

Each social neighbor i ∈ SN j submits a bid θi =
(ai, di, Γi, bi, j) to the platform via agent j when it is online.
We consider dj ≥ di ≥ ai ≥ aj since a social neighbor needs
to submit its bid and receive the notice of determination via
agent. The platform selects the winners and determines the
payment to the social neighbors. Then the platform notifies
the winners via agents. The winners perform the tasks and
submit the results to the platform via the agents before their
departure. Finally, each winner obtains the payment.

We list the frequently used notations in TABLE 1.

3.4 Desirable Properties

Our objective is to design the incentive mechanisms satisfy-
ing the following four desirable properties:

• Computational efficiency: An incentive mechanism
is computationally efficient if the agent set A, the
winner set S, the reward r, and the payment p can
be computed in polynomial time.

• Individual Rationality: Each social neighbor will
have a non-negative utility while reporting the true
cost, and the true arrival/departure time, i.e., ui ≥
0,∀i ∈ SN .
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• Budget Feasibility: The mechanism is budget fea-
sible if the total payment to the social neighbors is
smaller or equal to the budget B, i.e.,

∑
i∈S pi ≤ B.

• Truthfulness: A mechanism is cost truthful and time
truthful (or simply called truthful) if no social neigh-
bor can improve its utility by submitting false cost or
false arrival/departure time, no matter what others
submit. We say the incentive mechanism is univer-
sally truthful if it takes a random distribution over
deterministic truthful incentive mechanisms.

• Approximation: The objective function is maximiz-
ing the value over the winner set S. We attempt to
find optimal solution or approximation algorithm
with low approximation ratio when there is no op-
timal solution computed in polynomial time. For the
latter, the approximation ratio, O(g(n)), is the maxi-
mum ratio between optimal solution and approxima-
tion solution. Specifically, we call the solution is with
constant approximation ratio if the maximum ratio
between the optimal solution and the approximation
solution is within a constant.

The importance of the first three properties is obvious
because they together assure the feasibility of the incentive
mechanism. Truthfulness is indispensable for guaranteeing
the compatibility. Being truthful, the incentive mechanism
can eliminate the fear of market manipulation and the over-
head of strategizing over others for the users. The last prop-
erty measures the performance of incentive mechanism.

4 INCENTIVE MECHANISM UNDER OFFLINE
MODEL

In this section, we present an Incentive Mechanism for the
Two-tiered Social Crowdsourcing System under Offline Model
(MTSO). Considering the desirable property of truthfulness,
our problem falls into the research on Budget Feasible Sub-
modular Maximization Mechanism Design, which has been
extensively studied [52, 53, 54].

The basic idea of MTSO is performing a budget feasible
offline auction after collecting the bids from social neigh-
bors. Rather than the deterministic algorithm [52] using a
single criterion with approximation ratio of 112, we apply
the random mechanism proposed by Chen [53], which has
been proved to achieve properties of individual rationality,
budget feasibility, truthfulness, and 5-approximation of the
optimum [54], to select winners and determine the payment.
The random mechanism selects the social neighbor who has
the maximum value with reserve price no more than the
budget as the winner with probability 2/5. With probability
3/5, the random mechanism selects the social neighbor
according to the ratio of marginal value to the reserve price
iteratively until its reserve price is large enough. By setting
the specific probabilities, we will show that the random
algorithm is 5-approximation. Then, we select all registered
users with winning social neighbors as the agents, and
allocate the reward based on the contribution to the value
obtained by the platform.

The whole process is illustrated in Algorithm 1. Let S∗

be the set of social neighbors whose reserve price is no more

Algorithm 1 : MTSO
Input: task set Γ , bid profile Θ = (θ1, θ2, ..., θ|SN |), budget
B, total reward R

1: (S,A,p, r)← (∅, ∅, 0, 0); S∗ ← {i|bi ≤ B};
2: for each j ∈ J do
3: vj = 0;
4: end for
5: i∗ ← arg maxi∈S∗vi;
6: ζ ← random[0, 5];
7: if ζ < 2 then
8: S ← {i∗}; pi ← B;A← {ji∗}; rji∗ ← R;
9: else

//winner selection
10: i← arg maxi′∈S∗

Vi′ (S)
bi′

;

11: while bi ≤ B∗Vi(S)
2V (S∪{i}) do

12: vji ← vji + Vi(S);
13: S ← S ∪ {i};
14: A← A ∪ {ji}; //agent selection
15: i← arg maxi′∈S∗\S

Vi′ (S)
bi′

;
16: end while

//payment determination
17: for each i ∈ S do
18: S∗

′ ← S∗ \ {i}; S′ ← ∅;
19: i′ ← arg maxi′′∈S∗′

Vi′′ (S
′)

bi′′
;

20: while bi ≤ B×Vi′ (S
′)

2V (S′∪{i′}) do

21: i′ ← arg maxi′′∈S∗′\S′
Vi′′ (S

′)
bi′′

;

22: pi ← max

{
pi,min

{
B×Vi(S′)

2V (S′∪{i}) ,
Vi(S′)×bi′
Vi′ (S

′)

}}
;

23: S′ ← S′ ∪ {i′};
24: end while
25: end for

//reward determination
26: for each j ∈ A do
27: rj ← R vj∑

j′∈A v
j′ ;

28: end for
29: end if
30: return (S,A,p, r);

than the budget (Line 1). With probability 2
5 (Lines 7-9), we

select the social neighbor i∗ with maximum value in set S∗

as the winner, and the payment is equal to the budget. The
corresponding registered user ji∗ of i∗ is select as the agent.
We allocate the total reward to ji∗ . With probability 3

5 (Lines
9-29), MTSO consists of winner selection and agent selection
phase (Lines 10-16), payment determination phase (Lines
17-25), and reward selection phase (Lines 26-28).

In winner selection and agent selection phase, we pro-
cess each social neighbor i ∈ S∗ \ S iteratively according its
marginal density Vi(S)

bi
, where Vi(S) is the marginal value

over set S of selected winners, i.e., Vi(S) = V (S ∪ {i}) −
V (S) (Lines 10). In each iteration, to achieve the budget
feasibility, if the reserve price is no more than B×Vi(S)

2V (S∪{i}) ,
the social neighbor i is included in the winner set, and the
corresponding registered user ji is included in the agent
set (Lines 11-16). We set any agent j’s value vj as the total
marginal value of j’s winning social neighbors (Line 12).

In payment determination phase, the payment to each
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winner should be determined to achieve the properties of
individual rationality and truthfulness. For each winner
i ∈ S, we execute the winner selection phase over S∗ \ {i},
and denote the winner set as S′ (Lines 20-24). We apply the
modified proportional share allocation rule [52] to achieve the
critical value of payment. The payment to any winner i is

pi = maxi′∈S′

{
min

{
B × Vi(S′i′−1)

2V (S′i′−1 ∪ {i})
,
Vi(S

′
i′−1)× bi′

Vi′(S′i′−1)

}}
(3)

where S′i′ is the winner set before we include i
′

into S′.
In reward determination phase (lines 26-28), we allocate

the reward according to the value proportion of each agent.
Lemma 1. MTSO is computationally efficient.

Proof: It suffices to analysis the time complexity of the
second branch (Lines 9-29) of random mechanism since it
dominates the running time of MTSO. Finding the user with
maximum marginal density takes O(|SN |m) time, where
computing the value of Vi(S) takes O(m) time. Since there
are m tasks and each winner should contribute at least one
new task to be selected, the number of winners is at most m.
Hence, the while-loop (Lines 11-16) thus takes O(|SN |m2)
time. In each iteration of the for-loop (Lines 17-25), a pro-
cess similar to Lines 11-16 is executed. Hence the payment
determination takes O(|SN |m3). The reward determination
(Lines 26-28) takes O(n) time. Since n < |SN |, the running
time of MTSO is dominated by the payment determination
phase, which is bounded by O(|SN |m3).

We futher have the following theorem.
Theorem 1. MTSO is computationally efficient, individu-

ally rational, budget feasible, universally truthful, and has approx-
imation ratio of 5.

Proof: The computational efficiency is analyzed in
Lemma 1. The individual rationality, budget feasibility and
universal truthfulness have been proved by [52]. next, we
show that MTSO has approximation ratio of 5. Let Sopt be
the optimum. Let l−1 be the last social neighbor selected by
Lines 11-16 of Algorithm 1, and the corresponding winner
set is denoted as Sl−1. Based on the monotonicity and
submodularity of value function, we have:

v (Sopt)− v (Sl−1) ≤ v (Sopt ∪ Sl−1)− v (Sl−1)

≤
∑

i∈Sopt\Sl−1

Vi (Sl−1) =
∑

i∈Sopt\Sl−1

Vi (Sl−1)

bi
bi

(4)

Due to the fact of l = argmaxi∈SN\Sl−1

Vi(Sl−1)
bi

, we have
Vi(Sl−1)

bi
≤ Vl(Sl−1)

bl
. Since l is not a winner, we have

bk
Vl(Sl−1) >

B
2v(Sl)

. Thus:

∑
i∈Sopt\Sl−1

Vi (Sl−1)

bi
bi ≤

∑
i∈Sopt\Sl−1

bi
Vl (Sl−1)

bl

< B ∗ 2 ∗ v (Sl)

B
= 2v (Sl)

(5)

By using submodularity, we have:

2v (Sl) ≤ 2 (v (Sl−1) + v (l)) ≤ 2 (v (Sl−1) + v (i∗)) (6)

By putting all the above together, we have:

v (Sopt) ≤ 3v (Sl−1) + 2v (i∗) (7)

Based on the Algorithm 1, the mechanism chooses Sl−1 with
probability 3/5 and i∗ with probability 2/5. So we have:

5E (v (S)) = 3v (Sl−1) + 2v (i∗) ≥ v (Sopt) (8)

5 INCENTIVE MECHANISM UNDER SEMI-ONLINE
MODEL

In this section, we present an Incentive Mechanism for the Two-
tiered Social Crowdsourcing System under Semi-online Model
(MTSS). In this case, we execute the offline budget feasible
auction and online budget feasible auction for selecting
agents and winners, respectively.

5.1 Offline Budget Feasible Auction for Agent Selec-
tion
Since all social neighbors arrive in a random order, we
cannot select the agents according to the value of their social
neighbors. However, we consider that the crowdsourcing
platform rides on an online community, the social neighbor
of each registered user can be extracted from the personal
profile of online community.

We expect to select the agents with social neighbors who
are interested in performing tasks. The influence of any
registered user depends on the matching degree of task
types and its social neighbors’ interests. Let Inf(A) be the
influence of all agents in A. The objective of our offline
budget feasible auction is maximizing the total influence of
agents under the reward constraint R, i.e.,

max Inf(A) (9)

s.t.
∑
j∈A

rj ≤ R (10)

Next, we characterize the influence of registered users.
The ideal situation is that the types of tasks and the inter-
ests of social neighbor are exactly same. In this case, the
social neighbor can complete all tasks theoretically, and the
probability of completing all tasks is high. Otherwise, if the
interests of social neighbor cannot cover the types of tasks,
then the social neighbor must not complete all tasks. If the
types of tasks cannot cover the interests of social neighbor,
the social neighbor would not perform some of tasks, and
the social neighbor probably cannot complete all tasks as
well. So, we measure the similarity as the proportion of
common interests (types) to all possible interests (types),
i.e., Jaccard Similarity Coefficient [55], which is widely used
to measure the set similarity [56]. Other set similarity mea-
surements such as Dice Coefficient, Simpson Coefficient and
Ochiai Coefficient cannot capture this characteristic well.

We use the Jaccard Similarity Coefficient Jac(Γ, i) to mea-
sure how well the types of Γ match the interests of any
social neighbor i ∈ SN :

Jac(Γ, i) =
|Type(Γ ) ∩ Interest(i)|
|Type(Γ ) ∪ Interest(i)|

(11)

where Type(Γ ) = {tk|τk ∈ Γ, k = 1, 2, ...,m} is the set
of types of tasks in Γ , Interest(i) is the interests of social
neighbor i, which can be extracted from the personal profile
of the online community.
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Considering the social neighbor’s diminishing return on
the influence of registered user, we introduce the influence
function originated from task influence maximization [46]
to measure the increase of influencing probability:

I(Z, Imax) = (Imax − 1)
√

1− (1− Z)2 + 1 (12)

where Z is the input probability and Imax is the maxi-
mum influence, Imax > 1. Then we have I(0, Imax) =

1, I(1, Imax) = Imax,
∂I(Z,Imax)

∂Z > 0 and ∂2I(Z,Imax)
∂Z2 < 0

for Z ∈ (0, 1).
We set the input probability as the Jaccard Similarity

Coefficient given by (9), then the influence of any registered
user j to any social neighbor i ∈ SN j is defined as

Inf ji = I(Jac(Γ, i), Imax), i ∈ SN j (13)

We use Inf ji to measure the possibility of i bidding for
performing any task in Γ when any registered user j ∈ J
diffuses the task set Γ to any social neighbor i ∈ SN j . Then
the influence of any registered user j ∈ J is calculated as

Inf j =
∑
i∈SNj

Inf ji (14)

The influence calculated by (11)-(14) represents the abil-
ity of registered user to influence its social neighbors such
that they will participate in the crowdsourcing, i.e., bidding
for tasks. The calculated influence is irrelevant to either the
number of publicized tasks or the number of tasks the social
neighbors can perform. In other words, we aim to maximize
the number of influenced and interested social neighbors
rather than the task accomplish in agent selection stage. This
is because it is difficult to estimate which and how many
tasks the social neighbors can perform exactly. Therefore, as
shown in semi-online model, we model the winner selection
as an online budget feasible reverse auction, where the task
subset of the bidders is determined by the submitted bids.

For the agent set A, the influence of all agents in A can
be calculated as

Inf(A) =
∑
j∈A

Inf j (15)

Since Inf(A) is an additive function, the above prob-
lem is the budget feasible mechanism design problem for
maximizing additive valuations essentially. We introduce
the random mechanism with approximation ratio of 2 (the
best approximation ratio we know), proposed by Gravin
[57]. The random mechanism selects the agents with large
ratio of influence to the reserve price, and a random reward
mechanism is employed. Illustrated in Algorithm 2, our
reverse auction consists of agent selection phase and reward
determination phase.

In the agent selection phase, we initialize the density
threshold β = 1

Rmaxj∈JInf
j (Line 9). For each registered

user j ∈ J , we put it into the candidate set S(β) if its unit
influence Infj

bj is no less than the density threshold (Line 9).
Then we continuously increase the value of density thresh-
old (Lines 10-16) until β×R ≥ Inf(S(β))−maxj∈S(β)Inf

j .
In each iteration, if any candidate’s unit influence is no
more than the density threshold, we remove it from the
candidate set (Lines 13-15). By this way, each registered user
in candidate set is with the unit influence, which is more

Algorithm 2 : Agent Selection of MTSS

Input: bid profile b = (b1, b2, ..., bn), total reward R,
registered users J, task set Γ

1: A← ∅; r← 0;
//agent selection

2: for each j ∈ J do
3: Inf j ← 0;
4: for each i ∈ SN j do
5: Calculate Inf ji based on formula (13);
6: Inf j ← Inf ji + Inf j ;
7: end for
8: end for
9: β = 1

Rmaxj∈JInf
j ; S(β)← {j|j ∈ J, Inf

j

bj ≥ β};
10: while β ∗R < Inf(S(β))−maxj∈S(β))Inf

j do
11: k ← arg minj∈S(β)

Infj

bj ;

12: β ← min{ Inf(S(β))−maxj∈S(β))Inf
j

R , Inf
k

bk
};

13: if Infk

bk
≤ β then

14: S(β)← S(β) \ {k};
15: end if
16: end while
17: A← S(β);

//reward determination
18: j∗ ← arg maxj∈S(β)Inf

j ; S(β)∗ ← S(β) \ {j∗};
19: q ← 1

2 ×
Inf(S(β))−β×R

min{Infj∗ ,Inf(S(β)∗)} ;

20: if Inf j
∗ ≤ Inf(S(β)∗) then qj

∗ ← 1
2 − q; qT ← 1

2
;

21: else
22: qj

∗ ← 1
2 ; qT ← 1

2
− q;

23: end if
24: with probability qj

∗
: rj

∗ ← Infj
∗

β ;

25: with probability qT : rj
∗ ← R− Inf(S(β)∗)

β ;
26: with probability q : rj

∗ ∼ Uniform[R −
Inf(S(β)∗)

β , Inf
j∗

β ];
27: for each j ∈ S(β)∗ do
28: rj ← Infj

Inf(S(β)∗) (R− rj∗);
29: end for
30: return (A, r);

than the density threshold, and we put it into final agent set
A (Line 17).

In payment determination phase, we execute different
reward rules to the agent j∗ with maximum influence and
other agents, respectively. A random mechanism is applied
to determine the reward of j∗ (Lines 24-26). We set the
specific probabilities of j∗’s reward (Lines 19-23) to obtain
the best approximation ratio. For other agents, the reward is
allocated in proportion to the influence (Lines 27-29).

Lemma 2. The agent selection of MTSS is computationally
efficient.

Proof: Computing the influence for all registered users
(Lines 2-8) takes O(n × maxj∈J |SN j × m2|) time, where
computing the Jaccard Similarity Coefficient (Line 5) takes
O(m2) time since there are at most m tasks. Computing
β and S(β) (Line 9) takes O(n) time. The running time
of while-loop (Lines 10-16) depends on the value of β. In
each iteration of the while-loop, there are two possible value

of β. If β =
Inf(S(β))−maxj∈S(β)Inf

j

R , this must be the last

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on March 26,2022 at 03:58:51 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3162108, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 8, AUGUST 2015 10

iteration of the while-loop. Otherwise, if β = Infk

bk
, the

registered user k will be removed from S(β). Since there
are at most n registered users in S(β), the while-loop thus
takes O(n) time. The running time of for-loop (Lines 27-29)
takes O(n) time. Thus, the running time of Algorithm 2 is
bounded by O(n×maxj∈J |SN j ×m2|) 1.

Based on Lemma 2 and Theorem 5.2 in [57], we have the
following Lemma.

Lemma 3. The agent selection of MTSS is computationally
efficient, individually rational, budget feasible, universally truth-
ful, and has approximation ratio of 2.

5.2 Online Budget Feasible Auction for Winner Selec-
tion
After agent selection, any social neighbor i ∈ SN can
bid for performing tasks. Since the social neighbors arrive
in random order, we introduce the online budget feasible
auction proposed by Zhao [10] to select the winners and
determine the payment. The basic idea is dividing the time
into multiple stages, and each stage has a fixed budget. Then
the multiple-stage sampling accepting process is applied,
where all departure social neighbors are samples. At the
end of each stage, the density threshold is updated as the
criterion of winner selection.

Illustrated in Algorithm 3, let T = max {e1, e2, ..., em}
be the deadline of whole crowdsourcing. The
deadline is divided into blog2T c + 1 stages:
{1, 2, ..., blog2T c, blog2T c+ 1}. The stage l ends at time
step T ′ = b2l−1T/2blog2Tcc. Correspondingly, the stage
budget for l-th stage is allocated as B′ = 2l−1B/2blog2Bc.
We initialize the density threshold ρ as a small constant
ε. At every time step t, we add all new social neighbors
arriving at step t to a set of online social neighbors O (Lines
3-5). Let O′ be the set of unselected online social neighbors.
We make a decision on whether to select unselected online
social neighbors one by one in the order of their marginal
values (Line 7). If the marginal density is not less than the
current density threshold, and the allocated budget of this
step has not been exhausted (Line 8), the social neighbor
will be selected as a winner, and obtain the payment
Vi(S)/ρ (Line 9). If any social neighbor departs at time step
t or any its bidding task expires at time step t, we remove
it from O, and add it to the sample set S′ (Lines 15-17).

If time step t is an end time of a stage (Line 18), the
density threshold will be updated by calling the function
DensityThreshold according to the stage budget B′ and the
sample set S′ (Line 19). Afterwards, we make a decision on
whether to select online social neighbors base on the similar
process shown in Lines 6-14, no matter whether they have
ever been selected as the winners or not (lines 21-30). If the
social neighbor can obtain a higher payment than before,
according to the updated density threshold (Line 23), it will
be selected as a winner with the new payment (Line 24).

Next, we give the DensityThreshold function, which is
performed when the time step t is an end time of a stage.
We adopt the modified proportional share allocation rule [52]
according to stage budget B′ and the sample set S′. The key
operation is selecting a winner set G based on the greedy

1. The running time of Algorithm 2 is very conservative since the
number of agents is much less than n in practice

Algorithm 3 : Winner Selection of MTSS
Input: task set Γ , bid profile Θ, budget B, deadline T

1: (t, T ′, ρ, S, S′, B′)← (1, T
2blog2Tc

, ε, ∅, ∅, B
2blog2Bc

);
2: while t ≤ T do
3: if ai = t, for all i ∈ SN then
4: O← O ∪ {i}; O′ ← O \ S;
5: end if
6: repeat
7: i← arg maxi′∈O′Vi′(S);
8: if bi ≤ Vi(S)

ρ ≤ B′ −
∑
i′∈S pi′ then

9: pi = Vi(S)
ρ ; S = S ∪ {i};

10: else
11: pi ← 0;
12: end if
13: O′ ← O′ \ {i};
14: until O′ = ∅;
15: if di = t for all i ∈ SN then
16: O← O \ {i}; S′ ← S′ ∪ {i};
17: end if
18: if t = bT ′c then
19: ρ← DensityThreshold(B′, S′);
20: T ′ ← 2T ′; B′ ← 2B′; O′ ← O;
21: repeat
22: i← arg maxi′∈O′Vi′(S \ {i′});
23: if bi ≤ Vi(S\{i})

ρ ≤ B′ −
∑
i′∈S pi′ + pi and

Vi(S\{i})
ρ ≥ pi then

24: pi = Vi(S\{i})
ρ ;

25: if i /∈ S then
26: S = S ∪ {i};
27: end if
28: end if
29: O′ ← O′ \ {i};
30: until O′ = ∅;
31: end if
32: t ← t + 1;
33: end while

approach. As illustrated in Algorithm 4, the social neighbors
in the sample set are sorted according to their marginal
densities (Line 1). In this sorting, the i-th social neighbor
is the social neighbor i′ such that V

′
i (Gi−1)
b′i

is maximum over
all i′ ∈ S′ \Gi−1 (Line 4), where Gi−1 = {1, 2, . . . , i−1} and
G0 = ∅. Considering the submodularity of value function V,
this sorting implies that

V1(G0)

b1
≥ V2(G1)

b2
≥ ... ≥

V|S′|(G|S′|−1)

b|S′|
(16)

The set of winners is G = {1, 2, . . . , L}, where L ≤ |S′|
is the largest index such that its reserve price is no more than
Vi(G)B′

V (G∪{i}) . Finally, we set the density threshold as V (G)/B′.
Based on Theorem 2 in [10], we have the following

lemma.
Lemma 4. The winner selection of MTSS is computationally

efficient, individually rational, budget feasible, truthful (cost-
truthful and time-truthful), and constant competitiveness.

The lemma 2, Lemma 3 and Lemma 4 together prove the
following theorem.
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Algorithm 4 :DensityThreshold
Input: stage budget B’, sample set S’

1: G← ∅; i← arg maxi′∈S′
V ′i (G)
b′i

;

2: while bi ≤ Vi(G)B′

V (G∪{i}) do
3: G← G ∪ {i};
4: i← arg maxi′∈S′\G

V ′i (G)
b′i

;
5: end while
6: return V (G)/B′;

Theorem 2. MTSS is computationally efficient, individu-
ally rational, budget feasible, cost-truthful, and time-truthful.

6 INCENTIVE MECHANISM UNDER FULL-ONLINE
MODEL

In this section, we present an Incentive Mechanism for the Two-
tiered Social Crowdsourcing System under Full-online Model
(MTSF). MTSF also consists of two steps: agent selection
and winner selection.

6.1 Agent Selection under Full-online Model
Differently from semi-online model, both of agents and
social neighbors arrive in a random order. Note that the
goal of agent selection is attracting more users from the
social network to perform the tasks. To achieve the goal,
we present the objective and constraint of agent selection:

• Objective: Since the agents arrive at platform dy-
namically, the cumulative online durations of the
selected agents are desirable to cover the period of all
the tasks [1, max{e1, e2, ..., em}] as much as possible.

• Constraint: The selected agents are expected to re-
cruit the social neighbors who are interested in per-
forming tasks.

The above objective of agent selection under full-online
model is important. First, it will help to complete tasks as
many as possible since the tasks are with different end time.
Moreover, the dispersed online durations of agents prompt
the social neighbors to bid for different unfinished tasks,
especially the difficult tasks.

To optimize the objective, we define the coverage of any
registered user Hj , j ∈ J , as the overlaps of the prediction
of its online duration in [1, max{e1, e2, ..., em}]. We use
Two-order Polynomial Fitting to predict the registered users’
arrival time and departure time based on their history data.

Further, the marginal coverage of any registered user j
is defined as the overlap durations of Hj and H , denoted
as Hj ∩H , where H is the uncovered time durations in the
effective period of all tasks [1, max{e1, e2, ..., em}]. We tend
to select the agents with large marginal coverage in order to
achieve the objective.

To satisfy the constraint, we use the Jaccard Similarity
Coefficient Jac(Γ j , i), which has been given in subsection 5.1.
Based on formula (13) and formula (14), we can calculate
Inf ji and Inf j , respectively. Let |Hj | be the number of time
units in Hj . Then the unit influence of any registered user j
can be calculated as Inf j/|Hj |. We tend to select the agents
with large unit influence to satisfy the constraint.

Now, we propose our agent selection algorithm of MTSF,
which follows a greedy approach. The basic idea of agent
selection algorithm of MTSF is to select the registered
users with maximum marginal coverage as the agents it-
eratively. Illustrated in Algorithm 5, we first calculate Inf ji
for ∀j ∈ J,∀i ∈ SN j according to formula (13) (Lines 2-
8). Then the registered users are sorted according to the
marginal coverage (Line 11). In each iteration of agent
selection, we select the registered user with the maximum
marginal coverage over the uncovered time durations in
[1, max{e1, e2, ..., em}], and check whether the marginal
coverage is positive and the unit influence is larger than
the threshold δ (Lines 10-16). If so, add it into the agent
set A (Line 13). δ is a predefined parameter determined by
the platform. It reflects the desirable unit influence of the
platform. The iteration terminates when the whole effective
period of all tasks has been covered or γ agents have been
selected or all registered users have been processed (Line
10). Finally, we allocate a budget Bj to every selected agent
j in proportion to the influence over agent set A (Line 18).
Essentially, the budget is allocated based on the expected
number of bidders influenced by agents. The similar alloca-
tion rule is applied to reward determination (Line 19).

Algorithm 5 : Agent Selection of MTSF
Input: registered users J, task set Γ , max number of
agents γ, the budget B, total reward R

1: A← ∅; γ′ ← γ; J ′ ← J ;
2: for all j ∈ J ′ do
3: Inf j ← 0;
4: for all i ∈ SN j do
5: Calculate Inf ji based on formula (13);
6: Inf j ← Inf ji + Inf j ;
7: end for
8: end for
9: H ←[1, max{e1, e2, ...em}];

10: while H 6= ∅ and γ′ 6= 0 and J ′ 6= ∅ do
11: j ← arg maxh∈J′\A(Hh ∩H);
12: if Hj ∩H 6= ∅ and Inf j/|Hj | > δ then
13: A← A ∪ {j}; H ← H −Hj ; γ′ ← γ′ − 1;
14: end if
15: J ′ ← J ′ \ {j};
16: end while
17: for all j ∈ A do
18: Bj = (Inf j/

∑
i∈A Inf

i)×B;
19: rj = (Inf j/

∑
i∈A Inf

i)×R;
20: end for
21: return (A,B, r);

6.2 Winner Selection under Full-online Model
After agent selection, the agent will send a message, in-
cluding the departure time, to the platform once it is on-
line. The platform confirms the message. Specifically, if the
agent’s departure time is the same as some arrived agent’s
departure time, the platform will not select the agent as the
winning agent. Then the winning agents will send the set
of unexpired tasks to their social circles when they arrive at
the platform. The influenced social neighbors then bid for
the tasks through an online reverse auction.
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In this subsection, we design the winner selection algo-
rithm of MTSF based on multiple-stage sampling accepting
process. When any agent departs, a new stage begins, and
the density threshold ρ will be updated. Thus there are at
most γ stages.

Illustrated in Algorithm 6, we initialize the density
threshold as a small constant ε. For any step t ≤
max {e1, e2, ..., em}, if no agent departs at time step t, the
density threshold remains unchanged. Differently from the
winner selection of MTSS, we should select winners for
each agent. We process each agent j ∈ A. In each iteration,
all new social neighbors of agent j are added to a set of
online social neighbor Oj (Lines 7-9). Then the similar online
decision process in Algorithm 3 is used to select winners
from unselected online social neighbor set O′j for each agent
j (Lines 10-18). If the marginal density is not less than
the current density threshold, and the allocated budget of
agent j has not been exhausted, the social neighbor will
be selected as a winner (Lines 12-13). Finally, if any social
neighbor departs at time step t or any of its bidding task
expires at time step t, we remove it from Oj , and add it
to the sample set S′. Meanwhile, the determination notices
will be triggered (Lines 19-22).

If there is any agent k, who departs at time step t, the
density threshold will be updated (Line 26). Note that there
is at most one such agent since any two agents have different
departing times through the winning agent confirmation by
the platform. The density threshold is computed by calling
the function DensityThreshold (Algorithm 4) according to the
lapsed budget B′ and the sample set S′. The rest of the
algorithm is same as Algorithm 3.
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Fig. 5. An example illustrating how the winner selection algorithm of
MTSF works, where the solid line represents the task with maximum
time, the dotted lines represent the agent, the filled rectangles represent
the social neighbors of agent 1, the hollow rectangle represents the
social neighbor of agent 2. The numbers at both ends of the solid line
represent the start time and end time of the task, respectively. The
numbers at both ends of the dotted lines represent the arrival time and
departure time of agents, respectively. The numbers above the dotted
lines represent the allocated budgets of agents. The numbers beside
the rectangles represent the IDs of social neighbors. The numbers at
both ends of the rectangles represent the arrival time and departure
time of social neighbors. The numbers below the rectangles represent
the reserve price of social neighbors.

We use the example in Fig. 5 to show how the winner
selection of MTSF works. In this example, the maximum
time duration of all tasks is [0, 8].A = {1, 2}, (a1, d1,B1)=(0,
7, 2), (a2, d2,B2)=(6, 8, 4) , SN1 = {1, 2, 3}, SN2 = {4},
(a1, d1, b1)=(0, 1, 1), (a2, d2, b2)=(2, 3, 2), (a3, d3, b3)=(4, 5, 3),
(a4, d4, b4)=(6, 8, 1). Γi, i ∈ {1, 2, 3, 4}, can be omitted by
assuming that each social neighbor has the same marginal
value 1/2 when he is under consideration. For the sake of
brevity, we consider that all tasks in Γi will end after the

Algorithm 6 : Winner Selection of MTSF
Input: task set Γ , bid profile Θ, budget profile B, agent set A

1: (t, ρ, S, S′,B′)← (1, ε, ∅, ∅, 0);
2: for all j ∈ A do
3: (Sj ,Oj ,O′j)← (∅, ∅, ∅);
4: end for
5: while t ≤ max{e1, e2, ..., em} do
6: for all j ∈ A do
7: if ai = t for all i ∈ SN j then
8: Oj ← Oj ∪ {i}; O′j ← Oj \ Sj ;
9: end if

10: repeat
11: i← arg maxi′∈O′jVi′(S

j);
12: if bi ≤ Vi(S

j)
ρ ≤ Bj −

∑
i′∈Sj pi′ then

13: pi = Vi(S
j)

ρ ; Sj ← Sj ∪ {i}; S ← S ∪ {i};
14: else
15: pi ← 0;
16: end if
17: O′j ← O′j \ {i};
18: until O′j = ∅;
19: if di = t or ek = t for all k ∈ Γi, i ∈ SN j then
20: Oj ← Oj \ {i}; S′ ← S′ ∪ {i};
21: Notify i of the determination via agent j;
22: end if
23: end for
24: if dk = t for all k ∈ A then
25: B′ ← B′ + Bk;
26: ρ← DensityThreshold(B′, S′);
27: for all Oj 6= ∅, j ∈ A do
28: O′j ← Oj ;
29: repeat
30: i← arg maxi′∈O′jVi′(S

j \ {i′});
31: if bi ≤ Vi(S

j\{i})
ρ ≤ Bj −

∑
i′∈Sj pi′ + pi

and Vi(S
j\{i})
ρ ≥ pi then

32: pi = Vi(S
j\{i})
ρ ;

33: if i /∈ Sj then
34: Sj = Sj ∪ {i}; S = S ∪ {i};
35: end if
36: end if
37: O′j ← O′j \ {i};
38: until O′ = ∅;
39: end for
40: end if
41: t ← t + 1;
42: end while

time step di. We set ε = 1/2. Then the winner selection
algorithm of MTSF works as follows.

• t = 0: S1 = ∅, ρ = 1/2, b1 = 1 ≤ V1(S1)
ρ = 1 ≤

B1 = 2, thus p1 = 1, S = 1.

• t = 2: S1 = {1}, ρ = 1/2, b2 = 2 > V2(S1)
ρ = 1, thus

p2 = 0.

• t = 4: S1 = {1}, ρ = 1/2, b3 = 3 > V3(S1)
ρ = 1, thus

p3 = 0.

• t = 6: S2 = ∅, ρ = 1/2, b4 = 1 ≤ V4(S2)
ρ = 1 ≤

B2 = 4, thus p4 = 1, S = {1, 4}.
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• t = 7: d2 = t, S′ = 1, 2, 3, B1 = 2, update ρ = 1/4.

b4 = 1 ≤ V4(S2\{4})
ρ = 2 ≤ B2 − p4 + p4 = 4, and

V4(S2\{4})
ρ = 2 > p4 = 1, thus increase p4 to 2.

Note that the payment to social neighbor 4 is increased
from 1 to 2 by updating the density threshold when agent 1
departs.

6.3 Mechanism Analysis

In the following, we present the theoretical analysis, demon-
strating that MTSF can achieve the desirable properties.

Lemma 5. MTSF is computationally efficient.
Proof: It suffices to prove that both Algorithm 5 and

Algorithm 6 are computationally efficient.
In Algorithm 5, computing the influence for all regis-

tered users (Lines 2-8) takes O(n × maxj∈J |SN j | × m2)
time, where computing the Jaccard Similarity Coefficient (Line
5) takes O(m2) time since there are at most m tasks. Finding
the users with maximum marginal coverage takes O(n)
time. Since there are at most n registered uses, the number of
agents is at most n. Hence, the while-loop (Lines 10-16) takes
O(n2) time. Therefore, the running time of agent selection
is bounded by O(max{maxj∈J |SN j |nm2, n2})2.

In Algorithm 6, since the auction runs online, we only
need to focus on the time complexity at each time step. The
running time of the for-loop (Lines 6-23) is dominated by
finding the social neighbor with maximum marginal value
(Line 11). The time complexity of computing the marginal
value is O(maxj∈A|SN j | × |Γi|), where |Γi| is at most m.
Since there are m tasks and each selected social neighbor
should contribute at least one new task, the number of
winners is at most m. Thus, the for-loop (Lines 6-23) takes
O(maxj∈A|SN j |m2) time. Next, we analyze the time com-
plexity of the function DensityThreshold (Algorithm 4).
Finding the social neighbor with the maximum marginal
density takes O(m|S′|) time, where |S′| is at most |SN |.
Since there are m tasks and each selected social neighbor
should contribute at least one new task, the number of
winners is at most m. Thus, the running time of Algorithm 4
is O(|SN |m2). Finally, according to the similar analysis, the
time complexity of selecting new winners from all online so-
cial neighbors (Lines 27-39) is O(maxj∈A|SN j |m2). Hence,
the running time of Algorithm 6 is bounded by (O|SN |m2).

Lemma 6. MTSF is individually rational.
Proof: From the lines 12-16 and lines 31-32 of Algo-

rithm 6, we can see that pi ≥ bi if any social neighbor i is
selected as a winner, otherwise pi = 0.

Lemma 7. MTSF is budget feasible.
Proof: MTSF allocates pro-rata budget Bj of total

budget B to each agent j ∈ A according to the influence
(Line 18 of Algorithm 5). From the lines 12-16 and lines
31-32 of Algorithm 6, we can see that it is guaranteed that
the current total payment does not exceed its budget Bj .
Therefore, each agent is budget feasible, and when the agent
j departs, the total payment to the social neighbors of agent
j does not exceed Bj .

2. The running time of Algorithm 5 is very conservative since the
number of agents is much less than n in practice

Lemma 8. MTSF is truthful (cost-truthful and time-
truthful).

Proof: Consider any social neighbor i with a true
bid is θi = (rai, rdi, Γi, ci, j) and the strategy bid θ̂i =
(ai, di, Γi, ci, j). According to Algorithm 6, at each time
step t ∈ [ai, di], there may be a new decision on whether
to accept social neighbor i, and at what price. We use
dkt , Bjt , ρt , and Sjt to represent the closest time step for
updating density threshold (when agent k departs), the
residual budget of agent j, the current density threshold,
and the selected social neighbors of agent j, respectively,
at time step t before making decision on social neighbor
i. Let θ̂−i be the strategy bid profile of all social neighbors
excluding i.

We first prove that for fixed bi and θ̂−i, reporting true
arrival/departure time is a weakly dominant strategy for
social neighbor i. According to Algorithm 6, social neighbor
i is paid for a price equal to the maximum price during
[ai, di]. Considering rai ≤ ai ≤ di ≤ rdi, reporting [ai, di]
would not help to obtain a higher payment for i.

Next, we prove that for fixed [rai, rdi], reporting the true
cost is a weakly dominant strategy for social neighbor i.
We first consider i is selected as winner by reporting the
true cost at time step t = rai. In this case, there must be
ci ≤ Vi(S

j
t)/ρt ≤ B

j
t , and pi = Vi(S

j
t)/ρt . If i reports bi ≤

Vi(S
j
t)/ρt , considering both Vi(S

j
t) and B

j
t are independent

of bi in this case, i wins still at time step t = rai with same
payment. If i reports bi > Vi(S

j
t)/ρt , he will lose at time

step t = rai, and pi = 0.
Then, we consider the payment for i in time duration

(t, dkt) (determined by lines 10-18 of Algorithm 6). For
any time step t′ ∈ (t, dkt), considering the submodularity
of V (S), there must be Vi(S

j
t′) ≤ Vi(S

j
t). Note that the

density threshold doesn’t update in this case, i.e., ρt = ρt′ .
Therefore we have pi = Vi(S

j
t′)/ρt′ ≤ Vi(S

j
t)/ρt if i

is selected at t′. Otherwise, pi = 0. Therefore, a social
neighbor cannot improve his payment by reporting false
cost in time duration [rai, d

k
t).

Next, we consider the payment for i in time duration
[dkt, rdi] if rdi ≥ dkt . For any time step t′ ∈

[
dkt, rdi

]
, if i

reports bi ≤ Vi
(
Sjt′
)
/ρt′ ≤ B

j
t′ , he is still accepted with

payment Vi
(
Sjt′
)
/ρt′ . If i reports bi > Vi

(
Sjt′
)
/ρt′ , he

would not be selected at time step t′. In this case, there
may be other social neighbors to be selected at time step t′,
and the budget for agent j will be diminished. Therefore,
social neighbor i cannot obtain higher payment in rest of
time duration (t′, rdi].

So far, we have proved that for fixed [rai, rdi], report-
ing the true cost is a weakly dominant strategy for social
neighbor i when he is selected as winner at time step
t = rai. Next, we consider the case when social neighbor
i is not a winner by reporting the true cost at time step
t = rai. In this case, there must be ci > Vi

(
Sjt

)
/ρt

or Vi
(
Sjt

)
/ρt > B

j
t . In case ci > Vi

(
Sjt

)
/ρt , if social

neighbor i reports bi > Vi
(
Sjt

)
/ρt , then nothing changed.

If social neighbor i reports bi ≤ Vi
(
Sjt

)
/ρt , he would

win with payment Vi
(
Sjt

)
/ρt at time step t. However, his
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utility will be negative. In addition, Bj
t′ remains unchanged

in both above cases, and thus social neighbor i’s payment
at time t′ > t is not affected. In case Vi

(
Sjt

)
/ρt > B

j
t ,

reporting a false cost does not affect the outcome at time step
t or the residual budget B

j
t′ at time step t′ > t. To sum

up, reporting a false cost cannot improve social neighbor i’s
payment.

Theorem 3. MTSF is computationally efficient, individu-
ally rational, budget feasible, cost-truthful, and time-truthful.

7 PERFORMANCE EVALUATION

We have conducted thorough simulations to investigate the
performance of MTSO, MTSS, and MTSF. We implemented
three benchmark mechanisms:

• Approximate optimal (offline): the approximate op-
timal offline solution with full knowledge about
agents and social neighbors. The problem is es-
sentially a budgeted maximum coverage problem,
which is a well-known NP-hard problem. It is known
that a greedy algorithm provides ( e

e−1 ) approxima-
tion solution [58]. Note that the approximate optimal
mechanism is untruthful.

• Intersection (full-online): The coverage of regis-
tered users is defined as the overlaps of his online
durations in the recent past. As illustrated in Fig.
6, Consider that the online durations in the past
three days of any registered user j are ([9:00, 13:00],
[15:00, 19:00], [20:00, 23:00]), ([10:00, 14:00], [15:00,
18:00], [19:30, 23:00]), ([9:30, 12:30], [14:30, 17:30],
[20:30, 22:30]), respectively. Then the coverage of j
is the common durations among the three days, i.e.,
Hj=([10:00, 12:30], [15:00, 17:30], [20:30, 22:30]).

• Intermediaries (offline) [35]: the offline mechanism
that minimizes the intermediaries’ total bid price
with constraint of the number of data needed. For
comparison with our mechanisms, we modify the
constraint as the budget, i.e., selecting the users until
the budget is consumed.

• SocialRecruiter (offline) [56]: SocialRecruiter maxi-
mizes the task completion with the limited budget
by using the SIR epidemic model to model the task
propagating and completing process.

���� ����� ����� ����� ����� ����� ����� �����

	
����

	
����

	
����

����
���

Fig. 6. Illustration for the coverage of any registered user j through
intersection.

We first measure the efficiency of agent selection phase.
Then we measure the value with different number of agents,
number of tasks, budgets and initial density threshold (ε).
Moreover, we measure the running time of MSTF and verify
the truthfulness of MSTF. All the simulations were run on a

Windows 10 machine with Intel(R) Core(TM) i5-8300H CPU
and 8 GB memory. All algorithms are programed by Python
3.7. Each measurement is averaged over 100 instances.

7.1 Simulation Setup
For our simulations, we use social circle data [59] from
Facebook to simulate the relationship between agents and
the users in social network. Facebook data was collected
from survey participants using Facebook app. It includes
node features (profiles), circles, and ego networks with 4039
nodes and 88234 edges. The arrival time and departure time
of both registered users and social neighbors are derived
from dataset [60], which consists of 410 workers. As the
default setting, we choose 100 nodes from Facebook dataset
as registered users and select 30 agents (only for full-online
mechanisms) from the registered users with total reward of
100. Each task’s end time is uniformly distributed over [1,
86400]. The cost of each bid of registered users and social
neighbors is selected randomly from the auction dataset
[61], which contains 5017 bid prices for Palm Pilot M515
PDA from eBay. The default number of tasks is 100. The
budget of social neighbors is 100. The value of each task
is uniformly distributed over [5, 8]. The initial density
threshold (ε) is 1. The maximum influence (Imax) is 1.2. The
unit influence threshold (δ) is 10−4. We will vary the value of
key parameters to explore the impacts of these parameters.

7.2 Value
Fig. 7 compares the platform’s value of all algorithms. From
Fig. 7(a) and Fig. 7(b), we can see that the platform obtains
a higher value when the number of tasks or the budget
increases. As shown in Fig. 7(c), the platform’s value also
increases with the number of registered users since the
platform can find better agents, thus more social neighbors
can bid for performing crowdsourcing tasks. We can see
from Fig. 7(d) that the platform’s value of online mecha-
nisms increases at beginning and then decreases when the
initial density threshold increases. This is because when the
initial density threshold increases, the platform may find
social neighbors with lower bid and higher value. But if
the initial density threshold is too high, the social neighbors
are more difficult to be the winner and some of the tasks
cannot be finished. This is because all winners should satisfy
Vi
(
Sj
)
/bi ≥ ρ according to Algorithm 3 and Algorithm

6. The approximate optimal, Intermediaries, SocialRecruiter
and MTSO work in the offline manner, where the platform
has the full knowledge about agents and users. Thus, these
these offline mechanisms always outperform the MTSS
(51.1% of approximate optimal on average) and MTSF
(39.7% of approximate optimal on average). It is shown
that MTSO sacrifices some performance (83.4% of approx-
imate optimal on average) to achieve the cost-truthfulness
compared with the approximate optimal mechanism. The
performance of online mechanisms: MTSO, Intermediaries
and SocialRecruiter are very close. In most cases, our MTSF
obtains more value than that of intersection since the Two-
order Polynomial Fitting provides a better prediction on the
registered users’ coverage than intersection (with average
improvement of 19.2%). This is because Two-order Polyno-
mial Fitting can reveal the tendency of historical data of
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Fig. 7. Value of the platform: (a) Value versus the number of tasks. (b) Value versus budget. (c) Value versus the number of registered users. (d)
Value versus initial density threshold (ε).
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Fig. 8. Running time: (a) Running time versus the number of tasks. (b) Running time versus budget. (c) Running time versus the max number of
agents. (d) Running time versus the number of registered users .
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Fig. 9. Cost-truthfulness and time-truthfulness of MTSF : (a) c304 = 15. (b) c167 = 5. (c) ra271 = 54886. (d) rd271 = 80197.

registered users’. Therefore, Two-order Polynomial Fitting
can provide a prediction on the registered users’ coverage.
However, computing the intersection of historical coverage
cannot provide the prediction. Besides, some extreme cases
probably make the intersection method invalid, therefore
decrease the performance of intersection method. For exam-
ple, if one registered user arrives at 8:00 am and departs
at 10:00 am in the first day, and he arrives at 10:00 am
and departs at 12:00 am in the second day. If we use the
intersection method, the coverage of this registered user will
be empty. Moreover, as shown in Fig. 7(b), the value of So-
cialRecruiter increases sharply with the increase of budget.
This is because the completing probability and propagating
probability of users largely depend on the budget.

7.3 Running Time

Fig. 8 shows the running time of MTSS and MTSF with
different number of tasks, budget, agents and registered
users compared with other algorithms. It can be seen that
the running time increase with the numbers of tasks, agents
and registered users. This result is consistent with our
analysis of computation complexity. In Fig. 8(b), the running
time except the approximate optimal mechanism is stable
when the budget increases. This is because the approximate
optimal mechanism needs to compute the combinations of
social neighbors under different budget, thus the running

time increases while the budget increases. As shown in Fig.
8(c), when the number of agents increases, the number of
social neighbors will increase accordingly. It leads to the
increase of running time. The running time of MTSF and
Intersection increase dramatically first and then tend stable
when the max number of agents increases. This is because
the selected agents have covered the period of all the tasks.
From Fig. 8(a) and Fig. 8(d), we can see that when there
are 100 registered users and 100 tasks, our incentive mecha-
nisms can obtain the outcome within 2.4 seconds, which is
much faster than the approximate optimal mechanism.

7.4 Truthfulness

We verified the cost-truthfulness of MTSF by randomly
picking a winning social neighbor (ID=304) and a losing
social neighbor (ID=167) and allowing them to bid prices
that are different from their true costs. We illustrate the
results in Fig. 9. We can see that social neighbor 304 achieves
its optimal utility if it bids truthfully (b304 = c304 = 15)
in Fig. 9(a) and social neighbor 167 achieves its optimal
utility if it bids truthfully (b167 = c167 = 5) in Fig. 9(b).
Then we further verified the time-truthfulness of MSTF
by randomly picking one social neighbor (ID=271) and
allowing him to report his arrival/departure times that are
different from its true arrival/departure times. As shown
in Fig. 9(c) and Fig. 9(d), social neighbor 271 achieves its
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TABLE 2
Reward allocation rules for agent

Goal Criterion for offline model Criterion for full-online model

registered user participation online time of registered user
social neighbor participation number of selected social neighbors influence of registered user 3

task accomplish value of selected social neighbors 3 marginal coverage of registered user
comprehensive goal marginal average value of selected social

neighbors
average influence of registered user

optimal utility if it reports its true arrival and departure
times (ra271 = a271 = 54886, rd271 = d271 = 80197).

8 DISCUSSION

This study proposed a two-tiered social crowdsourcing ar-
chitecture to leverage the user influence in social network,
and attract more participants. Essentially, the two-tiered
social crowdsourcing architecture can extend the traditional
crowdsourcing system by embedding the crowdsourcing
in a social network through deep integration with social
network technique.

From the view of system model, the character of two-
tiered social crowdsourcing architecture is that there is an
additional tier of agent between the crowdsourcing platform
and participants. This poses the new challenges of incentive
mechanism design for particular semi-online model and
full-online model.

In order to enhance the applicability, we further discuss
some closely related problems here.

• Decision of budget and reward

In practice, the budget and reward depends on many fac-
tors, such as resolve of crowdsourcer, market price, amount
of funds, and crowdsouring cost. For example, the approach
proposed in [62] decides the reward through the estimation
of crowdsouring cost with different knowledge complete-
ness level, and shows how the master can design an optimal
contract by specifying different task-reward combinations
for different user types. Such method can also be applied to
our two-tiered social crowdsourcing architecture to decide
the budget and reward. The study of budget or reward
decision is out of the scope of this paper, and is an important
topic in our future work. Note that the decision of budget
and reward does not affect the desirable properties and
performance of designed incentive mechanisms.

• Reward allocation rule

Since the registered users bid in semi-online model, we
have designed the reward allocation of agent selection to
avoid the strategic behavior by submitting the dishonest
reserve. The reward allocation rule in semi-online model
is determined by Algorithm 2 to achieve budget feasibility
and universal truthfulness.

In this paper, we reward the agents based on the value of
selected social neighbors to improve the task accomplish in
offline model, and reward the agents based on the influence
of registered users to improve the participation of social
neighbors. However, since the registered users do not bid

3. criterion used in this paper

in both offline model and full-online model, we can apply
other reward rules according to different goals we want to
achieve, and the properties and performance of designed
incentive mechanisms would not be affected. This enhances
the flexibility of proposed incentive mechanisms. For exam-
ple, in offline model, if the crowdsourcing platform expects
to improve the participation of social neighbors, we can
reward the agents based on the number of selected social
neighbors. Alternatively, if the crowdsourcing platform ex-
pects to comprehensively improve the participation of social
neighbors and task accomplish, we can reward the agents
based on the marginal average value of selected social
neighbors. We have given the possible goals and reward
criterions in Table 2.

• Influence computation and diffusion

Some other types of influence computation methods
can be considered in crowdsourcing systems, for example,
history-based influence estimation [56], which explores the
historical task diffusion events to estimate the influence to
other social users.

Moreover, to reduce the knowledge required and time
complexity for computing influence, we only take the social
neighbors as the targets of task diffusion in this paper.
However, if the crowdsourcing platform can obtain the
globe knowledge of topology, interests, or diffusion history,
we can recruit crowdsourcing participants not only from the
social neighbors, but also from whole social network. Then,
the global influence of agents to other social users can be
calculated by employing some influence diffusion models.
For example, Kempe et al. [63] proposed the two most
popular influence diffusion models: independent cascade
model and linear threshold model.

• Historical information

In this paper, we consider that the historical information
is not always available, and only use the login information
of registered users to estimate the online time. However, if
the historical information is abundant and easy to obtain,
both quantity and quality of users can be improved further.
For examples, we can user the historical diffusion informa-
tion to guide agent selection. Moreover, we can evaluate the
quality of social users through the historical crowdsourcing
results, and set the value of social users based on the
quality. Thus, our incentive mechanisms are also applicable
to quality-aware mechanisms.

9 CONCLUSION

In this paper, we have presented a two-tiered social crowd-
sourcing architecture to solve the insufficient participation
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problem in online mobile crowdsourcing systems by en-
abling the selected registered users to recruit more users
from their social circles. We have presented three system
models for our two-tiered social crowdsourcing system
based on the availability of registered users and social
neighbors: offline model, semi-online model, and full-online
model, where the tasks are associated with different types
and end times. We have presented an incentive mecha-
nism for each of three system models with fixed budget
and reward for task execution and task diffusion. Through
both rigorous theoretical analysis and extensive simulations,
we have demonstrated that the proposed incentive mech-
anisms achieve computational efficiency, individual ratio-
nality, budget feasibility and truthfulness, and the incentive
mechanisms for semi-online model and full-online model
can obtain averagely 51.1% and 39.7% value of approximate
optimal untruthful offline algorithm, respectively.
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