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Abstract—The multi-hop wireless charging technology can largely extend the charging service range of chargers, thus has promising
prospect in sustainable energy replenishment for wireless rechargeable sensor network. This paper proposes a new cost criterion,
termed comprehensive cost consisting of energy cost and deployment cost, to measure the actual expenditure of wireless charging.
We present a multi-hop wireless charging model and formulate the problem of minimizing the comprehensive cost such that the energy
demand of all sensor nodes can be fulfilled by the energy capacitated chargers. We propose a (lnn+ 1)-approximation algorithm for
the optimization problem, where n is the number of sensor nodes. Then, we propose a straightforward cost sharing mechanism, which
ensures that no subset of sensor nodes can benefit by breaking away from the current charging tree for any fixed charger position, to
realize the paid charging service of multi-hop wireless charging. Furthermore, to keep the magnetic fields of transmitters from the
interfering, the conflict avoidance schemes are proposed in both central and distributed situations. Finally, we discuss the distributed
scheme for minimizing the comprehensive cost without support of central server. Through extensive simulations, we demonstrate the
significant superiority of the proposed algorithms in terms of comprehensive cost.

Index Terms—wireless rechargeable sensor network, multi-hop wireless charging, magnetic resonance, charger deployment.

F

1 INTRODUCTION

W ITH the development of wireless charging technol-
ogy, Wireless Rechargeable Sensor Network (WRSN)

has been widely applied in various fields, such as auto-
mobile, military target tracking and surveillance, natural
disaster relief, biomedical health monitoring, and hazardous
environment exploration [1]. The wireless charging technol-
ogy largely determines the cost and efficiency of power
transfer. So far, there have been many wireless charging
technologies, such as magnetic resonance [2, 3], inductive
coupling [4, 5], RF [6, 7], and microwave [8], which have
different properties and are applicable for various scenarios.

Among these wireless charging technologies, magnetic
resonance has quite good properties. Different from low
power charging such as RF, magnetic resonance has high
charging efficiency and can be easily realized by using
copper coils with low costs. As shown in [2], when the dis-
tance is 1m, the charging efficiency of magnetic resonance
is 0.78, which is much higher than that of RF. The charging
efficiency of magnetic resonance depends on the physical
properties of coils. If the radii of the coils increase further,
better charging efficiency can be obtained. This also makes
multi-hop charging possible. Even after several hops, the
charging efficiency is still considerable.
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Fig. 1. Illustration of multi-hop wireless charging. The numbers on the
edges represent the charging efficiency.

Multi-hop wireless charging [2, 9, 10] is a new charging
model and is different from the traditional single-hop wire-
less charging [6-8, 11, 12]. In single-hop wireless charging,
the sensor nodes only receive energy from the charger.
While in multi-hop wireless charging, the sensor nodes
not only receive energy from the charger, but also transfer
energy to other sensor nodes.

Compared with single-hop wireless charging, multi-
hop wireless charging has some promising advantages: (1)
Multi-hop wireless charging can improve the charging ef-
ficiency [2]. The charging efficiency decreases dramatically
with the charging distance no matter what charging technol-
ogy is adopted. Multi-hop wireless can reduce the charging
distance through adding the energy relays. As illustrated in
Fig. 1, the charging efficiency from sensor node 1 to sensor
node 3 is 0.5 if the energy is transferred directly. If the energy
is transferred via sensor node 2, the charging efficiency is
0.8*0.8=0.64. Thus, the charging efficiency increases through
multi-hop wireless charging. (2) In some situations, it is
difficult to use single-hop wireless charging. For example,
in the scenarios of building structure monitoring or disaster
relief, the chargers cannot be placed in the desired positions
due to the environmental limitation. Nevertheless, the en-
ergy can be transferred through multi-hop relays. (3) Multi-
hop wireless charging is a flexible extension of single-hop
wireless charging, and can provide better performance for
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the optimization, such as cost minimization. In other words,
single-hop wireless charging is a special case of multi-hop
wireless charging. (4) In the case of mobile charging, multi-
hop wireless charging can reduce the moving cost or the
number of mobile chargers because the sensor nodes can
relay the energy through multi-hop wireless charging.

A practical application of multi-hop wireless charging
is called WiTricity [13], which develops the wireless charg-
ing technology based on magnetic resonance. To extend
the wireless charging range, resonant repeaters are placed
between the source and receiver, and are designed to allow
power to hop over greater distances.

There have been some studies for optimizing multi-hop
wireless charging [2, 14, 15]. These works optimize the
single objective, such as the number of chargers, moving
cost, or energy consumption. For example, Wang et al. [2]
optimized the energy cost of multi-hop wireless charging in
mobile charging scenario. Rault et al. [14] aimed to find the
least chargers that can fulfill the energy demands of all sen-
sor nodes. However, the single objective cannot represent
the actual expenditure of wireless charging.

There are three modes of multi-hop wireless charging
technology: store and forward, direct flow, and hybrid [9]. In
store and forward mode, the sensor node accepts and stores
energy first, and then forwards it to the sensor nodes of next
hop. In direct flow mode, there is no storage in the midway,
and the energy is directly sent to the target node via multiple
hops. The hybrid mode is a mixture of the above two modes.
In this paper, we consider the store and forward mode.

In this paper, we consider that the actual cost of wireless
charging consists of energy cost and deployment cost. The
energy cost is the expenditure for energy consumption (e.g.,
the payment to energy provider), and the deployment cost is
the expenditure for deploying wireless chargers (e.g., rental
fee, depreciation allowances, or installation cost), which
depends on the number of deployed wireless chargers.
We aim to optimize the comprehensive cost, which is the
summation of energy cost and deployment cost, such that
the energy demand of all sensor nodes can be fulfilled by
energy capacitated chargers in the way of multi-hop energy
transfer. Recall that the energy forwarding of every hop will
lead to energy loss. Therefore, with the increasing number of
hops, the energy loss increases accordingly. Deploying more
chargers can help to reduce the overall energy consumption,
but will increase the deployment cost.

A special problem of magnetic resonance that needs to be
concerned is called “conflict” [2], that is, if multiple trans-
mitters charge the same receiver simultaneously, the mag-
netic fields of the transmitters will affect each other. If they
are not exactly in the same direction, there will be partial
offset, resulting in energy loss. This “conflict” phenomenon
degrades the charging efficiency and should be avoided. In
fact, the concurrent magnetic resonance charging must work
with conflict avoidance scheme. In Section 6, we propose
the conflict avoidance schemes based on the asynchronous
charging. Using the conflict avoidance scheme, “many-to-
one” asynchronous charging can be realized theoretically.
However, “many-to-one” asynchronous charging will cause
huge communication cost to conflict avoidance scheme.
More details will be presented in Section 6. Therefore, we
aim to avoid “many-to-one” charging when we optimize

the comprehensive cost. Note that “one-to-many” charging
is feasible.

The problem of optimizing the comprehensive cost for
charger deployment using magnetic resonance multi-hop
wireless energy transfer in WRSN is very challenging. First,
our problem is a variation of Facility Location problem. The
chargers and the sensor nodes can be viewed as the facilities
and clients, respectively. Thus, our problem can be viewed
as opening a set of facilities such that the total cost of
opening facilities and connecting clients to the facilities is
minimized. However, the special of our problem is that the
energy will flow to the sensor nodes via multiple hops. In
order to avoid magnetic field interference, we need to assure
that every sensor node along the energy flow is charged by
the same charger. This makes the common solutions [16]
of Facility Location problem invalid for our problem since
it assumes that any client can be connected to any facility.
Second, our problem also can be viewed as placing the
chargers to cover all sensor nodes. The classic method to
solve the covering problem is to assign the subset of sensor
nodes to chargers greedily. Following this greedy method,
we should decide on the subset of sensor nodes assigned
to any charger. However, each charger has a limited energy
capacity, and the solution needs to satisfy the energy con-
straints of deployed chargers.

The main contributions of this paper are as follows:

• We present a novel multi-hop wireless charging
model and formulate the Capacitated Comprehensive
Cost Optimization (C3O) problem. To the best of our
knowledge, we are the first to optimize the compre-
hensive cost and design the cost sharing mechanism
for multi-hop wireless charging.

• We propose a (lnn + 1) -approximation algorithm
for the C3O problem, where n is the number of
sensor nodes. We show that the designed algorithm
can be extended to deal with the situation where the
chargers can be placed anywhere.

• We propose a straightforward cost sharing mecha-
nism, which can sustain cooperation among all sen-
sor nodes served by the same charger in an econom-
ically stable manner. We show that the proposed cost
sharing mechanism can satisfy the properties of local
budget balance and local core.

• We propose the conflict avoidance schemes in both
central and distributed situations through charging
scheduling.

• Through extensive simulations, we demonstrate the
significant superiority of the proposed algorithms in
terms of comprehensive cost and strong adaptivity
for parameter variations.

The rest of the paper is organized as follows. Section
2 presents a brief review on the previous works. Section 3
presents the system model and problem formulation. Sec-
tion 4 presents the details of our solution. Section 5 presents
the cost sharing mechanism. Section 6 presents the conflict
avoidance schemes. We give the performance evaluation in
Section 7. In Section 8, we discuss the distributed solution.
We conclude this paper in Section 9.
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2 RELATED WORK

In this section, we briefly review the related work on single-
hop wireless charging and multi-hop wireless charging.

2.1 Single-hop Wireless Charging
As the traditional charging mode, single-hop wireless charg-
ing has been widely studied. Dai et al. [6] studied the
problem of charging task scheduling for directional wireless
charger networks. They scheduled the orientations of charg-
ers with time in centralized offline and distributed online
fashions to maximize the overall charging utility for all
tasks. Ma et al. [17] investigated the use of a mobile charger
to charge multiple sensors simultaneously in WRSNs under
the energy capacity constraint on the mobile charger. They
aimed to minimize the sensor energy expiration time by
formulating a novel charging utility maximization problem,
where the amount of utility gain by charging a sensor
was proportional to the amount of energy received by the
sensor. In [18], a greedy algorithm is designed to find a
recharge sequence that maximizes network lifetime using
mobile chargers. In [19], an optimization problem is studied
to maximize the ratio between charging vehicle’s idling
and working time. Although these articles solved their own
goals, they did not consider the cost or just took the cost as
a constraint instead of optimizing it.

Wang et al. [7] aimed to find the optimal trajectory
planning for the mobile charger with objective of energy
minimization. They designed an algorithm to find the trade-
off between charging efficiency and trajectory distance.
Zhou et al. [20] combined wireless charging technology with
multi-source energy acquisition technology to build a self-
sustainable network. They proposed a three-step solution to
optimize this new framework. They first solved the Sensor
Composition Problem (SCP) to derive the percentage of dif-
ferent types of sensors. Then they enabled self-sustainability
by bringing energy harvesting storage to the field for charg-
ing the Mobile Charger (MC). Next, they proposed a 3-factor
approximation algorithm to schedule sensor charging and
energy replenishment of MC. Although they considered the
cost of charger deployment, they did not consider the charg-
ing cost and traveling cost. In [21], the authors proposed
a hybrid framework that combined the wireless charging
with solar energy harvesting. They divided the network into
three hierarchical levels and carried out the cost optimiza-
tion in each level. However, the charging range of single-hop
wireless charging is limited, thus, the moving cost of mobile
charger is high. In [11], the authors presented a wireless
charging service model from the perspective of coopera-
tive charging economics, and formulated the Cooperative
Charging Scheduling (CCS) problem for joint optimization
of rechargeable devices’ charging cost and moving cost. But
the the number of chargers was determined in advance,
which actually avoided considering the cost of this part.

2.2 Multi-hop Wireless Charging
There are some researches on charger deployment in multi-
hop wireless charging. Rault et al. [14] aimed to place the
chargers on sensor nodes. They proposed an optimization
model of minimizing the number of chargers, which trans-
ferred energy to sensor nodes in the multi-hop wireless

charging scenario. Wu et al. [15] proposed the repeater
deployment method to realize full multi-hop wireless charg-
ing coverage of WRSN such that the number of resonant
repeaters is minimized. They designed the rules to remove
redundant repeaters and optimized the positions of neces-
sary repeaters to improve the charging efficiency. However,
neither [14] nor [15] took into consideration the energy cost.

In [2] and [22], the researchers considered the multi-hop
wireless charging in a mobile charging scenario. With the
multi-hop wireless charging technology, it is not necessary
to visit all sensor nodes in the network. Wang et al. [2] car-
ried out the regional partition through set cover algorithm,
and then designed an algorithm to schedule the mobile
chargers. Li et al. [22] proposed an energy efficient mobile
multi-hop charging strategy. By introducing the optimal
central point-based polling point selection algorithm, they
constructed the best arrest point of each partition for the
mobile charger. In each partition, the multi-hop wireless
charging was adopted to replenish energy for these nodes.
However, the distribution of charging areas will influence
the energy consumption of mobile chargers. If the number of
charging areas increases, more energy is needed in traveling.
These papers also did not optimize the energy consumption
and deployment cost jointly.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the system model and formulate
the C3O problem.

3.1 System Model

We consider that there is a WRSN consisting of a set
V = {1, 2, ..., n} of n sensor nodes, which can transfer
energy to other sensor nodes. Each sensor node j ∈ V has
an energy demand Dj ≥ 0. We denote the energy demand
profile of all sensor nodes as D = (D1, D2, ..., Dn). The
chargers are deployed at the positions of sensor nodes since
the charger deployment can be viewed as installing high
capacity battery to some sensor nodes. Thus, we reuse the
notation V to represent the candidate positions of charger
deployment. If the chargers may not be deployed on all sen-
sor nodes, we simply remove the unviable positions from
the candidate positions of charger deployment. We assume
that the chargers are homogeneous, and each charger has
the same energy capacity DMAX, DMAX � Dj for all j ∈ V .
The sensor nodes also have the same energy capacityDMAX.
Note that the chargers can be deployed in any position
of the whole square area, and the comprehensive cost can
be reduced further. We will extend the C3O problem by
allowing the chargers to be deployed anywhere later.

If a sensor node does not receive energy from the
prodromic sensor node, it cannot transfer energy to other
sensor nodes. Even if the sensor node receives the energy,
it will not forward the energy unless its energy demand is
satisfied. If the distance between two sensor nodes exceeds
the maximal charging range r, they cannot transfer energy
to each other. We consider that all sensor nodes have same
maximal charging range.

If the distance of any two sensor nodes a, b ∈ V is within
the maximal charging range r, we use πab to denote the
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charging efficiency between them, 0 < πab ≤ 1. Based on
[2], the charging efficiency is determined by the efficiency of
both energy transmission and energy storage in the battery.
Thus, the charging efficiency can stand for the practical
losses of energy. According to [14], the charging efficiency
is symmetrical, i.e., πab = πba for any two sensor nodes
a, b ∈ V . Specifically, πab = 1 iff a = b. The charging
efficiency depends on the circuitry design of magnetic res-
onance, the distance between the two sensor nodes [3] and
and the energy storage efficiency.

We define the charging network as follows:
Definition 1 (Charging Network). The charging network

is an undigraph G(V,E), where V is the set of sensor nodes, E
is the set of edges connecting the sensor nodes with distance less
than the maximal charging range. Each edge (a, b) ∈ E is with a
charging efficiency πab ∈ (0, 1].

For any two sensor nodes i, j ∈ V , (i, j) /∈ E, the initial
charging efficiency between i and j is zero. However, if j
obtains energy from i via a path Pij from i to j on G(V,E),
the charging efficiency between i and j can be calculated as:

πij =
∏

(a,b)∈EPij

πab (1)

where EPij
is the set of edges in path Pij .

Note that a sensor node cannot be charged by multiple
chargers simultaneously due to the conflict of magnetic res-
onance wireless charging. Thus, if sensor node j is charged
via path Pij by charger i, then all sensor nodes in the
path must be charged by charger i. This is because if any
senor node on the path is charged by another charger, the
senor node will not receive energy from charger i, and
the sensor node must not belong to charging path Pij . A
paradox happens. In order to satisfy the energy demand of
all nodes in path Pij , the energy of charger i should be at
least

∑
j′∈VPij

Dj′

πij′
, where VPij is the set of sensor nodes in

path Pij . Any charger i can charge multiple sensor nodes
via different paths. The paths with same source i together
construct a charging tree.

Definition 2 (Charging Tree). The charging tree is a
subgraph of charging network G(V,E). The charger locates in
the root of charging tree, and the sensor nodes in charging tree
(including the sensor node located in the root) are charged by the
charger via the path of charging tree.

We denote the charging tree with root i ∈ V by Ti. The
energy cost of charging tree Ti is α

∑
j∈Vi

Dj

πij
, where α is the

unit energy cost and Vi is the set of sensor nodes in Ti. Since
a sensor node cannot be charged by multiple chargers, the
deployment of chargers will divide the charging network
into multiple disjoint charging trees, which construct a
charging forest.

Definition 3 (Charging Forest). The charging forest T =
{T1, T2, . . . , Tk} is a partition of charging network G(V,E) by
the disjoint charging trees, where k is the number of charging
trees.

Fig. 2 shows an example of the charging forest con-
sisting of two disjoint charging trees. Here is an exam-
ple of calculating the energy cost of the charging tree on
the left. There are five sensor nodes in this tree, and the

Fig. 2. Illustration of charging tree, charging forest, and energy cost.

charger locates at the position of sensor node 1. The num-
ber beside the sensor nodes are their energy demand, i.e.,
D1 = D2 = D3 = 10, D4 = 5, D5 = 15. The number
on the edges represent the charging efficiency, i.e., π11 = 1,
π12 = π24 = 0.8, π15 = π23 = 0.5. Based on Equation (1),
we have π13 = π12π23 = 0.4, π14 = π12π24 = 0.64. Thus,
the energy cost of charging tree T1 is α

∑
j∈V1

Dj

π1j
= 85.3125α.

Definition 4 (Comprehensive Cost). The comprehensive
cost F is the sum of energy cost and deployment cost:

F=α
∑
i∈V

yi
∑
j∈V

Dj

πij
xij + β

∑
i∈V

yi (2)

where β is the deployment cost of a charger. xij ∈ {0, 1} is the
binary variable to indicate whether sensor node j is charged by
charger i. yi ∈ {0, 1} is the binary variable to indicate whether a
charger is placed at position i.

3.2 Problem Formulation
The objective is to construct the charging forest with ca-
pacitated energy of chargers such that the comprehensive
cost is minimized. We refer to this problem as Capacitated
Comprehensive Cost Optimization (C3O) problem, which can
be formulated as follows:

C3O : minF=α
∑
i∈V

yi
∑
j∈V

Dj

πij
xij + β

∑
i∈V

yi (3)

s.t.
∑
i∈V

xij = 1, ∀j ∈ V (3-1)

yi
∑
j∈V

Dj

πij
xij ≤ DMAX, ∀i ∈ V (3-2)

xij′ = 1, ∀j′ ∈ VPij
, yi = 1, xij = 1 (3-3)

xij ∈ {0, 1}, ∀i, j ∈ V (3-4)

yi ∈ {0, 1}, ∀i ∈ V (3-5)

The constraint (3-1) ensures that each sensor node is
charged by exactly one charger. The constraint (3-2) ensures
that the energy consumption of a charging tree is no more
than the energy capacity of charger. The constraint (3-3)
ensures that if a sensor node is charged by a charger, then
all sensor nodes in the charging path from the charger to
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the sensor node should be charged by the same charger. The
constraints (3-4) and (3-5) state that xij and yj are binary
variables.

We list the frequently used notations in Table. I.

TABLE 1
Frequently Used Notations

Symbol Description

V, n Set of sensor nodes, Number of sensor nodes
Dj Energy demand of sensor node j
D Energy demand profile
r Maximal charging range
πij Charging efficiency between i and j

DMAX Energy capacity of charger
Dr Residual energy of charger
α, β Unit energy cost, Unit deployment cost of charger

G(V,E) Charging network
T , Ti Charging forest, Charging tree with root i
Vi, Ei Set of sensor nodes of Ti, Set of edges of Ti
Pij Charging path from i to j
VPij

Set of sensor nodes in path Pij

Vu Set of uncovered sensor nodes
Vc Possible positions of charger deployment

F (Ti) Comprehensive cost of charging tree Ti
m Number of newly covered sensor nodes
s Number of rows and columns of regional discretization

Ti(m) Charging tree after the m-th sensor node is added to Ti
Vi(m) Set of sensor nodes in Ti(m)
Ei(m) Set of edges in Ti(m)
T ∗

i Optimal capacitated extension tree of Ti
θ Maximal communication distance

costi (j) Average marginal comprehensive cost of T ∗
i when T ∗

i

covers j

4 ALGORITHM DESIGN FOR C3O PROBLEM

4.1 Hardness and Design Rationale
We give the hardness of C3O in the following theorem.

Theorem 1. The C3O problem is NP-hard.
Proof: We consider the special case of C3O problem by

removing the constraint (3-3). We first demonstrate that the
special case of C3O belongs to NP. Given an instance of
the special case of C3O, we can check whether the energy
demand of all sensor nodes is fulfilled and whether the
comprehensive cost is at most v. This process can terminate
in polynomial time.

Next, we prove the NP-hardness of the special case
of C3O problem by giving a polynomial time reduction
from the Single Source Capacitated Facility Location (SSCFL)
problem, which is a well-known NP-hard problem [16].

Instance of SSCFL (denoted by A): For a set L =
{1, 2, · · · , n} of n positions. Each position has a client and
a facility. Let V be the client set. Each client j ∈ V has a
demand Dj that should be served by one open facility. The
cost for serving one-unit demand of client j from facility i is
α/πij . Let β denote the cost of opening a facility. Let DMAX

denote the maximum demand a facility can serve. The
question is whether there exists a subset of open facilities
such that the demand of each client can be satisfied by an
open facility, and the total cost of facility opening and client
service is at most v.

We consider a corresponding instance of the special case
of C3O problem (denoted by B): For a set L = {1, 2, · · · , n}

of n positions, each position has a sensor node. The can-
didate positions for charger deployment is V . Each sensor
node j ∈ V has an energy demand Dj that should be
charged by one charger. Let α denote the unit energy cost.
Let πij denote charging efficiency for charging sensor node
j from charger i. Therefore, the cost for charging one-unit
energy of sensor node j from charger i is α/πij . Let β
denote the deployment cost of a charger. Let DMAX energy
a charger can provide. The question is whether there exists
a subset of positions for charger deployment such that the
energy demand of each sensor node is fulfilled by a charger,
and the total deployment cost and energy cost is at most v.

This reduction from A to B ends in polynomial time. We
can simply see that q is a solution to A if and only if q is a
solution to B. �

Since the C3O problem is NP-hard, it is impossible to
obtain the optimal solution in polynomial time unless P=NP.
In addition, the off-the-shelf algorithms [23, 24] for SSCFL
problem cannot be used to solve C3O problem since we
need to guarantee that the solution outputs the disjoint
charging trees.

On the other hand, the C3O problem is equivalent to
constructing a charging forest to cover all sensor nodes
under the constraint of energy capacity such that the total
comprehensive cost of all charging trees is minimized. We
refer to this problem as P1, which can be formulated as:

P1 : min
∑
Ti∈T

F (Ti) (4)

s.t. V=
⋃
Ti∈T

Vi (4-1)

Vi ∩ Vi′ = ∅, ∀i 6= i′, Ti ∈ T , Ti′ ∈ T (4-2)∑
j∈Vi

Dj

πij
≤ DMAX, ∀Ti ∈ T (4-3)

where F (Ti) is the comprehensive cost of charging tree Ti,
which can be calculated as follows:

F (Ti) =

 α
∑
j∈Vi

Dj

πij
+β, Vi 6= ∅

0, Vi = ∅
(5)

The constraint (4-1) ensures that all sensor nodes can
be covered by the charging forest. The constraint (4-2)
ensures that all charging trees in the forest are disjoint. The
constraint (4-3) ensures that the energy consumption of each
charging tree is no more than the energy capacity of charger.

To solve P1, we consider that there is an empty charg-
ing tree at each position in V initially, then we extend
these empty charging trees greedily until all sensor nodes
are covered by the charging forest. In each extension, we
tend to cover more sensor nodes with minimum marginal
comprehensive cost, i.e., finding the extended charging tree
with minimum average marginal comprehensive cost under
energy capacity. Consider that we put some uncovered
sensor nodes into a charging tree Ti (can be empty), and
the extended charging tree is T ′i, then the average marginal
comprehensive cost of extending Ti to T ′i can be calculated
as follows:

F (T ′i)− F (Ti)
|V ′i\Vi|

(6)
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i.e., the ratio of the marginal comprehensive cost to the
number of newly covered sensor nodes.

Next, we define the optimal capacitated extension tree.
Definition 5 (Optimal Capacitated Extension Tree,

OCET). Given any charging tree Ti and the uncovered sensor
node set Vu, the extended charging tree T ∗i is the OCET of Ti if
and only if its average marginal comprehensive cost is minimized
under the constraint of energy capacity, i.e.,

T ∗i= arg min
T ′i:V ′i⊃Vi,V ′i\Vi⊆Vu

F (T ′i)− F (Ti)
|V ′i\Vi|

(7)

s.t.
∑
j∈V ′i

Dj

πij
≤ DMAX

Obviously, to follow the greedy method, we need to de-
termine the OCET for each Ti in each iteration. However, Ti
can be extended by adding any subset of uncovered sensor
node set Vu. It will take exponential time to enumerate all
possible subset of Vu.

To address this issue, we present an enhanced Prim algo-
rithm to extend each Ti. At each time, the uncovered sensor
node with minimum energy consumption is merged to Ti.
We record every extended charging tree once a sensor node
is merged. Finally, the enhanced Prim algorithm will find
a minimum spanning tree under the constraint of energy
capacity. Then, we find the extended charging tree with
minimum average marginal comprehensive cost among all
recorded extended charging trees. We will show that this
extended charging tree is OCET of Ti. The above process
can be finished in polynomial time.

4.2 Algorithm Design
In this section, we propose the approximation algorithm,
termed Capacitated Comprehensive Cost Optimization Algo-
rithm (C3OA) to solve C3O problem.

As illustrated in Algorithm 1, we set an empty charging
tree for every position in V (Line 1). Then we try to extend
these charging trees to cover all sensor nodes. Let Vu and Vc
be the set of uncovered sensor nodes and the set of possible
positions of charger deployment, respectively. We set Vu =
Vc = V initially (Line 2).

For each possible position of charger deployment i ∈ Vc,
we find the OCET of Ti by calling functionEnPrim(·) (Line
5). Note that the charging tree returned by EnPrim( · ) is
an extended charging tree from either a nonempty charging
tree or an empty charging tree.

Then we find the charging tree T ∗i with the minimum
average marginal comprehensive cost among all OCETs
(Line 7). The charging tree Ti is extended to T ∗i (Line 8).
Finally, we update the set Vu and Vc (Line 8). Note that the
set Vc should contain the positions of all uncovered sensor
nodes and all deployed chargers, i.e., Vc=Vc\(Vi\{i}).

The iteration terminates when all sensor nodes are cov-
ered, i.e., Vu = ∅ (Line 3).

The function EnPrim( · ) illustrated in Algorithm 2
returns the OCET. Given the charging tree Ti, let m be the
number of newly covered sensor nodes. Let Ti(m) be the
charging tree after the m-th sensor node is added to Ti.
Let Vi(m) and Ei(m) are the set of sensor nodes and set
of edges of Ti(m), respectively. Let V ′u be the uncovered

Algorithm 1 : C3OA

Input: charging network G(V,E), energy capacity DMAX,
energy demand profile D

1: foreach i ∈ V do Ti = (Vi, Ei)← (∅, ∅);
2: Vu ← V ; Vc ← V ; T ← {T1, T2, . . . , Tn};
3: while Vu 6= ∅ do
4: foreach i ∈ Vc do
5: T ∗i ← EnPrim(Ti, Vu, G(V,E), DMAX,D);
6: end
7: i← arg min

i′∈Vc,V ∗i′\Vi′ 6=∅
F (T∗i′ )−F (Ti′ )
|V ∗i′\Vi′ |

;

8: Ti ← T ∗i; Vu ← Vu\Vi ; Vc ← Vc\(Vi\{i}) ;
9: end

10: return T ;

Algorithm 2 : EnPrim
Input: charging network G(V,E), energy capacity DMAX,

energy demand profile D, charger tree Ti, set of uncov-
ered sensor nodes Vu

1: m← 0; mMIN ← 0; Vi(m)← Vi; Ei(m)← Ei;
V ′u ← Vu; Dr ← DMAX −

∑
j∈Vi

Dj

πij
;

2: if Vi = ∅ then
3: m← m+ 1; Vi(m)← Vi(m− 1) ∪ {i};

Dr ← Dr −Di; V ′u ← V ′u\{i};
4: end
5: while Dr > 0 do
6: (ji, jo)← arg min

(j,j′)∈Ei(m):j∈Vi(m),j′∈V ′u

Dj′

πijπjj′
;

7: if Dr −
Dj0

πiji
πjijo

≥ 0 then

8: m← m+ 1; Dr ← Dr −
Dj0

πiji
πjijo

;
πijo ← πijiπjijo ; V ′u ← V ′u\{jo};
Vi(m) ← Vi(m − 1) ∪ {jo}; Ei(m) ← Ei(m − 1) ∪

{(ji, jo)};
9: else break;

10: end
11: end
12: mMIN ← arg min

m′>0

F (Ti(m
′))−F (Ti)
m′ ;

13: return Ti(mMIN);

sensor nodes in the process of tree extension. Let Dr be the
residual energy of charger i. The parameter initialization is
given in Line 1.

If the inputting charging tree Ti is empty, the sensor node
i is added to Ti first (Line 2-4). Note that the energy capacity
can always satisfy the energy demand of sensor node at
position i since DMAX � Di for all i ∈ V .

The following process is constructing a minimum span-
ning tree under the constraint of energy capacity (Line 5-
11). This can be realized by enhancing the well-known Prim
algorithm. Specifically, we find the sensor node pair (ji, jo)
with minimum energy consumption Djo

πiji
πjijo

, where ji is a
sensor node in the charging tree Ti(m). jo is a sensor node
outside Ti(m). πijiπjijo = πijo is the charging efficiency
from charger i to sensor node jo (Line 6). If the residual
energy of charger i can satisfy the energy demand of sensor
node jo, we increase the number of newly covered sensor
nodes, and the sensor node jo is added to Ti(m) (Line 7-8).
If the residual energy of charger i cannot satisfy the energy
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demand of sensor node jo, we can conclude that no sensor
node can be added to Ti(m) since jo is the sensor node with
the minimum energy consumption among all uncovered
sensor nodes, and the minimum spanning tree construction
terminates (Line 9).

Finally, we find the extended charging tree Ti(mMIN)
with the minimum average marginal comprehensive cost
among all extended charging trees (Line 12), where mMIN is
the index of OCET.

4.3 Algorithm Analysis

Theorem 2. EnPrim returns the OCET of any given charging
tree Ti.

Proof: Given any charging tree Ti, Let mMAX indi-
cate the maximum number of added sensor nodes under
the energy capacity constraint. Let mPRIM indicate the
number of added sensor nodes using EnPrim under the
energy capacity constraint. Since EnPrim adds the sensor
node with the minimum energy consumption, the number
of added sensor nodes can be maximized, i.e., we have
mMAX=mPRIM. Thus, EnPrim can enumerate all possible
values of m ∈ 1, 2, ...,mMAX.

Given any m ∈ {1, 2, ...,mMAX} and charging tree Ti,
EnPrim can return the minimum spanning tree when exactly
m sensor nodes are added through Prim algorithm, where
the cost of any sensor node j is Dj

πij
. Note that the Prim

algorithm begins with a nonempty tree since the root of
the tree is fixed, thus the deployment cost should not be
involved in the cost of sensor node. Thus, Ti(m) is a tree
minimizing

∑
j∈Vi(m)

Dj

πij
for fixed m. We have the following

equivalence transformations:

min
∑

j∈Vi(m)

Dj

πij

⇔ min

∑
j∈Vi(m)

Dj

πij

m

⇔ min

∑
j∈Vi(m)

Dj

πij
−
∑
j∈Vi

Dj

πij

m
(8)

⇔ min

(α
∑

j∈Vi(m)

Dj

πij
+ β)− (α

∑
j∈Vi

Dj

πij
+ β)

m

⇔ min
F (Ti(m))− F (Ti)

m

The first equivalence relies on that m is a fixed number.
The second equivalence is because Ti is a given charging
tree, and the value of

∑
j∈Vi

Dj

πij
is a constant. The last equiv-

alence is based on the definition of comprehensive cost of
any charging tree, which is given in Equation (5).

Since EnPrim enumerates all possible values of m under
the energy capacity constraint and find mMIN as the optimal

m such that F (Ti(m))−F (Ti)
m is minimized, we can conclude

Ti(mMIN) =T
∗
i based on Equation (7):

Ti(mMIN) = arg min
Ti(m):m∈{1,2,...,mMAX}

F (Ti(m))−F (Ti)
m

= arg min
T ′i:V ′i⊃Vi,V ′i\Vi⊆Vu

F (T ′i)−F (Ti)
|V ′i\Vi|

=T ∗i
(9)

where T ∗i is the OCET of charging tree Ti. �
Theorem 3. The time complexity of C3OA is O(n5).
Proof: The running time of C3OA is dominated by the

functionEnPrim(·) (Line 5 of Algorithm 1). The while-loop
(Line 3-9 of Algorithm 1) takes O(n) since each iteration
will cover at least one sensor node. The for-loop (Line 4-
6 of Algorithm 1) takes O(n) since there are at most n
possible positions of charger deployment. The running time
of EnPrim (Algorithm 2) is dominated by finding the sensor
node pair (ji, jo) with minimum energy consumption (Line
6 of Algorithm 2), which takes O(n2) time. Since there are
at most n − 1 sensor nodes outside the changing tree, the
running time of EnPrim is O(n3). Thus, the running time of
C3OA is O(n5). �

Theorem 4. C3OA is a (lnn+ 1)-approximation algorithm
of the C3O problem.

Proof: Number the sensor nodes of V in the order in
which they were covered by C3OA, resolving ties arbi-
trarily. Let j1, j2, ..., jn be this numbering. Assume jk, k =
1, 2, ..., n is covered by OCET T ∗i of Ti, we define the
comprehensive cost effectiveness of jk as

cost(jk) =
F (T ∗i)− F (Ti)
|V ∗i\Vi|

(10)

Let OPT be the optimal comprehensive cost of P1.
Consider the iteration in which jk was covered, the charg-
ing forest of the optimal solution can cover the remaining
sensor nodes in Vu at a comprehensive cost of at most
OPT . Therefore, among all charging trees in the optimal
charging forest, there must be one having comprehensive
cost effectiveness at most OPT/|Vc| , where |Vc| ≥ n−k+1.
Since jk was covered by T ∗i with minimum comprehensive
cost effectiveness in this iteration, it follows that

cost(jk) ≤
OPT

|Vc|
≤ OPT

n− k + 1
(11)

Since the comprehensive cost of each charging tree is
distributed among the new sensor nodes covered, the to-
tal comprehensive cost of the charging forest obtained by

C3OA is equal to
n∑
k=1

cost(jk) ≤
n∑
k=1

OPT
n−k+1 = (1+ 1

2 + ...+

1
n )OPT ≤ (lnn+ 1)OPT

Since P1 is equivalent toC3O problem,C3OA is a (lnn+
1)-approximation algorithm of the C3O problem. �

Remark: Any tie breaking rule can be adopted for Line
7 in Algorithm 1, Line 6 in Algorithm 2, and Line 12 in
Algorithm 2, and the stated approximation ratio still holds.

4.4 Extended C3OA

In this subsection, we analyze the practical scenario that
chargers can be deployed anywhere, and propose a heuristic
algorithm based on the idea of C3OA.
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Fig. 3. An example to illustrate that Shapley Value method is inappli-
cable. The numbers beside the sensor nodes are energy demand. The
numbers on the edges represent the charging efficiency.

If the chargers can be deployed in any positions of whole
region, further improvement of comprehensive cost can be
achieved. However, the possible deployment positions are
infinite. A widely adopted method is region discretization
[25], which divides the whole region into multiple sub
regions, and the positions in the same sub region are viewed
as the identical position approximatively with a small error.
However, in our problem, due to the energy capacity of
chargers, if there is an error in the calculation of energy cost,
the shapes of charging trees and the number of chargers will
change. Therefore, it is difficult to obtain the performance
gap from the optimal solution.

We proposed a heuristic algorithm based on the idea
of C3OA. First, we divide the whole region into s × s
sub regions and remove the unviable sub regions where
the chargers cannot be deployed. Each residual sub region
can be viewed as a candidate charger deployment position.
Then, we can execute C3OA for all candidate charger de-
ployment positions to solve the extended C3O problem,
and the running time is O(s2n4) according to Theorem 3.
We term the extended C3OA as EC3OA.

5 COST SHARING MECHANISM

In this section, we consider the problem of cost sharing
in multi-hop wireless charging. In section 4, we have de-
termined the charging forest, which can be viewed as a
set of coalitions of sensor nodes for cooperative charging.
Since we consider that the comprehensive cost is the actual
expenditure for wireless charging, we need a cost sharing
mechanism to share the comprehensive cost (sometimes
called cost-sharing game).

The concept of core [26], which sustains cooperation
among all users in an economically stable manner, is an
important property in cost sharing mechanism design. The
core property requires to calculate the comprehensive cost
of any possible subsets of sensor nodes. However, we state
that there is no nonempty core for our multi-hop wireless
charging. This is because there may be multiple feasible
charging trees even both the charger position and the subset
of sensor nodes are fixed. Thus, the comprehensive cost of
any fixed charger position and subset of sensor nodes is
not unique. The uncertainty makes the economically stable
cooperation of sensor nodes impossible.

If the core of a cost-sharing game is empty, the classic
Shapley Value method [27], which charges each user the
marginal cost of adding it to the serviced set, is widely
used to share the total cost to the users fairly. However,
the marginal cost may be negative in our game. We give

an example illustrated in Fig. 3 to show that the classic
Shapley Value method is also inapplicable. The charging tree
T1 has two sensor nodes in the beginning, and the charger
locates at position 1. D1 = D2 = 1, π11 = 1, π12 = 0.1.
According to Equation (5), the comprehensive cost of T1 is
F (T1) = α( D1

π11
+ D2

π12
) + β = 11α+ β. Now we add sensor

node 3 into the subset, and one of the possible charging
trees is T ′1, where D3 = 1, π13 = π23 = 0.5. We have
F (T1) = α( D1

π11
+ D3

π13
+ D2

π13π23
) + β = 7α + β. Thus, the

marginal cost of sensor node 3 is −4α.
Since the core is empty and the Shapley Value method is

inapplicable. It is hopeless to design a global cost sharing
mechanism. To address this problem, we propose a straight-
forward cost sharing mechanism for local charging tree, i.e.,
the cost sharing mechanism for the sensor nodes in each
given charging tree. For given charging tree Ti, the cost
share of any sensor node j ∈ Vi is:

Fj(Ti) = α
Dj

πij
+

β

|Vi|
(12)

i.e., the cost share of any sensor node j ∈ Vi is the sum of
its energy cost and the average deployment cost.

Despite its simplicity, we show that the designed cost
sharing mechanism can achieve some desirable properties.

Definition 6 (Local Budget Balance). Given the fixed
position of charger i ∈ V and the corresponding charging tree Ti,
the cost sharing mechanism satisfies the property of local budget
balance if

∑
j∈Vi

Fj(Ti) = F (Ti).

Definition 7 (Local Core). Given the fixed position of
charger i ∈ V and the corresponding subset Vi of sensor nodes,
the cost sharing mechanism satisfies the property of local core if∑
j∈V ′i

Fj(Ti) ≤ F (T ′i) for any V ′i ⊆ Vi.

The property of local budget balance ensures that the
summation of the individual cost share equal to the com-
prehensive cost for any charging tree. The property of local
core ensures that no subset of sensor nodes can benefit by
breaking away from the current charging tree for any fixed
charger position.

Theorem 5. The cost sharing mechanism satisfies the proper-
ties of local budget balance and local core.

Proof : Obviously, our cost sharing mechanism satisfies
the property of local budget balance. To prove the property
of local core, we consider the following two situations:

(1) T ′i ⊆ Ti, i.e., T ′i is a subtree of Ti.
For any j ∈ V ′i, we have∑
j∈V ′i

Fj(Ti)=
∑

j∈V ′i
(α

Dj

πij
+ β
|Vi| ) =

∑
j∈V ′i

α
Dj

πij
+ β|V ′i|
|Vi|

≤
∑

j∈V ′i
α
Dj

πij
+ β = F (T ′i)

(2) T ′i 6⊂ Ti, i.e., some intermediate nodes are removed
from Ti.

In this case, for any j ∈ V ′i, the charging efficiency
between sensor node j and charger i may be different
in Ti and T ′i. We denote the charging efficiency between
sensor node j and charger i in Ti and T ′i as πij and π′ij ,
respectively. Note that we are sharing the cost of charging
tree Ti obtained by C3OA. Since C3OA always outputs
the charging tree with minimum energy cost, we have
π′ij ≤ πij . For any j ∈ V ′i, we have

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on March 26,2022 at 03:57:16 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3162112, IEEE
Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Fig. 4. Illustration of conflict.

∑
j∈V ′i

Fj(Ti)=
∑

j∈V ′i
(α

Dj

πij
+ β
|Vi| ) =

∑
j∈V ′i

α
Dj

πij
+ β|V ′i|
|Vi|

≤
∑

j∈V ′i
α
Dj

π′ij
+ β = F (T ′i)

Overall, the properties of local budget balance and local
core can be satisfied. �

6 CONFLICT AVOIDANCE SCHEME

In Section 4, we have constructed the charging forest to
ensure that a receiver only obtain energy from one trans-
mitter. However, in the actual implementation, the conflict
may happen when multiple adjacent transmitters work si-
multaneously. For the example illustrated in Fig. 4, there
is a subtree, where the arrows represent the energy flows.
We consider both sensor node 2 and sensor node 3 are in
the charging range of sensor node 4. If sensor node 2 and
sensor node 3 transmit energy simultaneously, the magnetic
field of sensor node 2 will be affect by the magnetic field of
sensor node 3 at the position 4. The conflict happens.

To address this issue, we need the conflict avoidance
scheme. In this section, we propose a central conflict avoid-
ance scheme and a distributed conflict avoidance scheme to
avoid the conflict.

6.1 Central Conflict Avoidance Scheme
For convenience, we termed the non-leaf nodes in the
charging forest as transmitters. Since each transmitter needs
to discharge exactly once, we can avoid the conflict by
a well-designed schedule for the discharging tasks of all
transmitters.

We employ a central server to schedule the discharging
tasks. The basic idea is to maintain a conflict graph for the
transmitters which are ready to perform the discharge tasks,
and use the classic graph coloring algorithm [28] to select a
set of transmitters with same color to perform the discharge
tasks at each time.

First, we give the concept of conflict set.
Definition 8 (Conflict Set). The conflict set of any trans-

mitter is a set of other transmitters, which is in the maximum
charging range of any child of the transmitter.

To implement our conflict avoidance scheme, we define
two sets: working transmitter set and candidate transmitter
set. We schedule the discharging tasks as follows:

Step 1: Initially, we put all transmitters into the candidate
transmitter sets. We set working transmitter set as empty.

Step 2: We select the transmitters, which satisfy the
following two conditions, in the candidate transmitter sets:

(1) the transmitter is ready to perform the discharging
task (the energy demand of itself has been fulfilled); (2)
The transmitters in its conflict set are not in the working
transmitter set.

Step 3: We construct a conflict graph for the transmitters
selected by Step 2. For each transmitter, we add conflict
edges connecting to other selected transmitters in its conflict
set.

Step 4: We use the classic graph coloring algorithm, and
select a set of transmitters with same color to perform the
discharge tasks immediately. We move these transmitters
from the candidate transmitter set to the working transmit-
ter set. Let the transmitters in the working transmitter set
start transmitting energy.

Step 5: If the energy demand of a sensor node is met, a
acknowledgment message is returned to the central server.
When all sensor nodes in the charging tree returned the
acknowledgment messages, the charging task of the trans-
mitter is completed, and we remove the transmitter from
the working transmitter set, and add its downstream trans-
mitters into the candidate transmitter set.

Step 6: repeat Step 2 to Step 5 until the candidate trans-
mitter set becomes empty.

Remark: Any set of transmitters with same color can be
selected in Step 4. Many criterions, such as selecting the
transmitter set with most children in the charging forest,
selecting the transmitter set with most energy demand of
their children, can be applied for color selection.

6.2 Distributed Conflict Avoidance Scheme
In the distributed scenario, the central scheduling of the
discharging tasks is impossible. We employ the classic
CSMA/CD [29] as the conflict detection protocol. Since
the maximum communication range of the sensor nodes is
much larger than the maximum charging range, the conflict
set of any transmitter can be obtained by locally exchanging
the location information with its neighbors. If a transmitter
wants to discharge, it detects the working states of trans-
mitters in its conflict set. If no transmitter in its conflict
set is performing the discharging task, it starts discharging.
Otherwise, it keeps detecting. If a transmitter has detected
a conflict when it is discharging. The Binary Exponential
Backoff Policy [30] is applied to determine the waiting time
before the next detection. The process continues until the
transmitter completes the discharging task.

6.3 Communication Cost
Although the proposed conflict avoidance Schemes can
avoid conflicts, it is obvious that these methods will bring
communication cost. Take the central conflict avoidance
scheme as an example, if any sensor node is only charged
by one transmitter, each sensor node needs to return one
acknowledgment message only when its energy demand
is fulfilled. Thus the number of acknowledgment messages
(communication cost) is O(n). On the other hand, a sensor
node may obtain energy from multiple transmitters asyn-
chronously (n transmitters in the extreme case) if “many-
to-one” asynchronous charging is allowed, and each sen-
sor node needs to at most n acknowledgment messages.
Therefore, the total communication cost is O(n2) for whole
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Fig. 5. Charger deployment. The red points represent the positions of chargers. The black points represent the positions without chargers. The
sensor nodes of charging trees are connected by blue lines. (a) Minimum Energy. (b) Fewest Chargers for C3O. (c) C3OA. (d) EC3OA.

WRSN. Since message transmission is energy-intensive for
sensor nodes, we do not consider the “many-to-one” asyn-
chronous charging in this study.

7 PERFORMANCE EVALUATION

In this section, we conduct simulations to evaluate the
performance of our proposed algorithms.

7.1 Simulation Setup
We compare our solution C3OA with following two bench-
mark algorithms:

• Minimum Energy: Since the energy loss is negligible
when the charger and the sensor node are located in
the same position, Minimum energy deploys a charger
in each position of sensor nodes to minimize the
total energy consumption, which is the summation
of energy demands of all sensor nodes actually.

• Fewest Chargers for C3O [2]: We modify the charger
selection algorithm in [2] by setting the efficiency
threshold τ = 0 and adding the energy capacity
constraint such that the algorithm can deal with our
system model. Fewest Chargers for C3O selects the
charging tree with the most sensor nodes greedily us-
ing energy constrained Prim algorithm to minimize
the number of chargers approximately.

For the simulations, we uniformly distribute sensor
nodes in a 20m × 20m square area to simulate the dense
WRSN environment of precision agriculture. We deploy var-
ious sensors, such as temperature sensors, humidity sensors,
PH sensors, in a 400 square meter piece of farmland to
accurately detect the condition of the piece of farmland. We
set n = 100, r = 2m, DMAX = 50KJ , α = 0.25, β = 2.5,
s = 25 as the default setting. In our simulations, one unit of
energy is 1KJ , and the energy demand of each sensor node
is randomly selected in [0.8KJ , 1.2KJ ]. For any sensor
nodes a, b ∈ V , the charging efficiency is calculated based
on [3]:

πab =


1, a = b

QaQbγ
16(dab/

√
lalb)6

, dab ≤ r, a 6= b

0, dab > r, a 6= b

(13)

where Qa and Qb are the quality factors of two resonators.
γ is the energy storage efficiency. la and lb are the radii of
coils. dab is the distance between a and b. For our simulation,
we set all quality factors as 1200 and all coil radii as 0.12 m,

and set γ = 25/36, although our algorithm does not impose
the assumption of homogeneous sensor nodes. Moreover,
we consider dab >> la and dab >> lb to guarantee πab ≤ 1.

We will vary the values of the key parameters to explore
the impacts on designed algorithm. All the simulations
are run on a Windows machine with Intel(R) Core(TM)
i5-8300H CPU and 8 GB memory. Each measurement is
averaged over 100 instances.

7.2 Charger Deployment
We first show the charger deployment for 100 sensor nodes
of all algorithms in 20m × 20m square area. Fig. 5(a), Fig.
5(b) , Fig. 5(c), and Fig. 5(d) depict the outputs of Mini-
mum Energy, Fewest Chargers for C3O, C3OA, and EC3OA,
respectively. We can see that Minimum Energy deploys the
charger for each position of sensor nodes. Fewest Chargers
for C3O constructs a total of 56 charging trees. C3OA
constructs a total of 66 charging trees. EC3OA constructs
a total of 51 charging trees.

7.3 Impact of Number of Sensor Nodes
Then we change the number of sensor nodes from 35 to 160,
and measure the number of chargers, energy consumption,
and comprehensive cost of all algorithms. We can see from
Fig. 6(a) that the number of chargers of all algorithms
increases. This is because the energy demand increases, and
more chargers are needed to satisfy the energy demands
of all sensor nodes. The number of chargers of Minimum
Energy increases linearly since it deploys chargers for all
sensor nodes. However, Fewest Chargers for C3O, C3OA
and EC3OA output the decreasing marginal returns of the
number of chargers. This helps to reduce the increased
deployment cost. Because EC3OA has more positions to
deploy chargers, it places fewest chargers.

As shown in Fig. 6(b), the energy consumption of all al-
gorithms also increases. Minimum Energy can obtain the least
energy consumption since there is no energy loss in charg-
ing. C3OA also shows good performance in terms of energy
consumption. Although its energy consumption is higher
than that of Minimum Energy, it reduces 39.82% of energy
consumption on average comparing with Fewest Chargers for
C3O. Because EC3OA can choose more positions to deploy
chargers, its energy consumption is less than that of C3OA.
We can see from Fig. 6(c) that C3OA always performs well
in terms of comprehensive cost. It reduces 25.3% and 9.85%
of comprehensive cost on average comparing with Minimum
Energy and Fewest Chargers for C3O, respectively. Through
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Fig. 6. Impact of number of sensor nodes. (a) Number of chargers. (b) Energy consumption. (c) Comprehensive cost.
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Fig. 7. Impact of energy capacity of charger. (a) Number of chargers. (b) Energy consumption. (c) Comprehensive cost.
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Fig. 8. Impact of energy demand of sensor node. (a) Number of chargers. (b) Energy consumption. (c) Comprehensive cost.

discretization, the comprehensive cost of EC3OA is 19.93%
lower than that of C3OA on average.

7.4 Impact of Energy Capacity of Charger
We increase the energy capacity of charger from 30 to
130, and investigate the impact on different algorithms.
As shown in Fig. 7(a), the number of chargers of Fewest
Chargers for C3O and C3OA decreases with increasing
energy capacity. And we can see from Fig. 7(b) that the
energy consumption of Fewest Chargers for C3O increases
rapidly. This is because Fewest Chargers for C3O construct
larger charging trees, which consume more energy, when the
energy capacity increases. C3OA can determine the number
of chargers flexibly based on the comprehensive cost, there-
fore, the energy consumption increases slowly. EC3OA can
keep the energy consumption low while maintaining a low
number of chargers.

We can see from Fig. 7(c) that the comprehensive cost
of Fewest Chargers for C3O increases markedly. C3OA re-
duces 14.86% and 19.15% of comprehensive cost on average
comparing with Minimum Energy and Fewest Chargers for
C3O, respectively. Note that the change of energy capacity
has no impact on Minimum Energy since the number of

chargers does not change any more. Because EC3OA can
set chargers in better positions than in sensor nodes, it does
not tend to choose the charging tree, of which the consumed
energy close to energy capacity. Thus, the change of energy
capacity has little impact on it. EC3OA reduces 31.51% of
comprehensive cost on average comparing with C3OA.

7.5 Impact of Energy Demand of Sensor Nodes
We increase the energy demand of each sensor node from
[0.6, 1] to [1.1, 1.5], and investigate the impact on four
algorithms. As shown in Fig. 8(a), the number of chargers
of Minimum Energy does not change because it deploys
chargers for all sensor nodes. The numbers of chargers of
other algorithms increase slightly. This is because when the
charging demand is large, the charging trees become small,
and more chargers are needed. When the charging trees
are small enough, it is not necessary to add more charg-
ers. As shown in Fig. 8(b), the energy consumption of all
algorithms increases with increasing energy demand. This
is because the energy consumption is proportional to the
energy demand of sensor nodes. The energy consumption
of Fewest Chargers for C3O increases sharply because the
energy loss of Fewest Chargers for C3O is highest among all
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Fig. 9. Impact of unit deployment cost. (a) Number of chargers. (b) Energy consumption. (c) Comprehensive cost.
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four algorithms. This means that Fewest Chargers for C3O is
unsuitable for the large energy demand situation.

We can see from Fig. 8(c), C3OA reduces 25.9 % and
13.28 % of comprehensive cost comparing with Minimum
Energy and Fewest Chargers for C3O on average, respectively.
EC3OA reduces 22.06% of comprehensive cost on average
comparing with C3OA.

7.6 Impact of Unit Deployment Cost
Moreover, we change the unit deployment cost from 0.5 to
5.5 to simulate the possible market price relation between
energy consumption and charger deployment. We can see
from Fig. 9 that the numbers of chargers and energy con-
sumption of Minimum Energy and Fewest Chargers for C3O
do not change since Minimum Energy always places charger
for each sensor node, and Fewest Chargers for C3O always
constructs charging tree with the most sensor nodes. We can
see from Fig. 9(a) that the numbers of chargers of C3OA are
gradually approaching to that of Fewest Chargers for C3O.
This is because that C3OA will try to reduce the number
of chargers to restrain the increase of comprehensive cost
when the unit deployment cost increases. EC3OA has more
optional positions for charger placement, so the number of
chargers decreases greatly. As shown in Fig. 9(b), the energy
consumption of C3OA is still much smaller than that of
Fewest Chargers for C3O, and the energy consumption of
EC3OA is less than that of C3OA. Fig. 9(c) shows that
C3OA reduces 23.31% and 13.35% of comprehensive cost
comparing with Minimum Energy and Fewest Chargers for
C3O on average, respectively. EC3OA reduces 21.35% of
comprehensive cost on average comparing with C3OA.

7.7 Comparison with OPT for C3O

There are infinite possible positions for the extended C3O
problem, and the optimal solution of extended C3O prob-
lem can not be obtained. Therefore, we only consider the
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Fig. 11. Running time. (a) Large-scale simulations. (b) Small-scale sim-
ulations.

optimal solution for the original C3O problem. We con-
duct a small-scale simulation in a square area 6m × 6m
to compare our algorithms with optimal solution of C3O
problem. In order to make the simulations more realistic, we
change the coil radii from 0.12m to 0.08m to adapt to the
small-scale environment. We find the optimal solution by
enumerating all possible cases of charger deployment. Since
we are searching the optimal charging forest, the number
of edges will not exceed n − 1 when the number of nodes
is n. Assume that there are h edges in the graph G(V,E),
then the maximum number of edges in the charging forest
is w = min{h, n − 1}. Without considering the energy con-

straint, there are at most
∑

z=0,1,...,w

(
h
z

)
charging forests.

For a certain forest with z edges, the number of chargers
is n − z, and we choose the locations of the chargers to
minimize the energy consumption of the charging forest in
order to minimize the comprehensive cost of the charging
forest. By enumerating all cases, we discard the solutions
that do not satisfy the energy constraint and then find the
optimal one among the feasible solutions.

As shown in Fig. 10, we can see that C3OA only in-
creases 15.67% of the comprehensive cost comparing with
OPT for C3O on average. Minimum Energy and Fewest
Chargers for C3O increase 19.18% and 17.62% of the com-
prehensive cost comparing with OPT for C3O on average,
respectively.

7.8 Running Time

We conduct the large-scale simulations to compare the run-
ning time of Fewest Chargers for C3O, C3OA and EC3OA
and the small-scale simulations to compare the running time
of C3OA with that of OPT for C3O. We do not consider the
running time of Minimum Energy, because it does not need
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time to calculate. In the larger-scale simulations, we can see
from Fig. 11(a) that C3OA can output the solution in 0.085
seconds when there are 160 sensor nodes, thus shows great
expansibility. The running time of Fewest Chargers for C3O
is very close that of C3OA after n = 60. Although EC3OA
shows great performance in the previous simulations, its
running time is not ideal. When n = 160, the running time
is 29.45 seconds. We can see from Fig. 11(b) that OPT for
C3O takes 3.7 seconds even for 22 sensor nodes. Although
this time is only a few seconds, after analysis, it can be found
that if n increases from 22 to 23, the number of edges will
increase by 45 in the worst case. OPT for C3O is based on
the number of edges, which will lead to immeasurable huge
time overhead. C3OA is much faster than OPT for C3O.

8 DISCUSSION

So far, we have proposed a centralized algorithm C3OA run
on a central server to solve the C3O problem. In this section,
We discuss the distributed implement of C3OA.

The basic idea is as follows. Each sensor node i receives
neighbor information through local message exchange and
executes Algorithm 2 to calculate the local OCET . Then,
the best local OCET can be obtained through local message
exchange. The charging trees are constructed based on the
best local OCET . Repeat the above process until all sensor
nodes are covered by the charging trees.

To store the information of neighbors and itself, each
sensor node i maintains a table and a local OCET T ∗i.
Here, the neighbors are the sensor nodes within the maximal
communication range, which is larger than the maximal
charging range generally. The table contains the information
of i and its neighbors. There is a record for each sensor node
j in the table, including the energy demand, position, cov-
erage flag for indicating whether j is covered, and costi (j)
representing the average marginal comprehensive cost of
T ∗i when T ∗i covers j.

To relieve the communication cost and avoid the com-
plex communication protocol, all sensor nodes are clock-
synchronized. Therefore, the distributed algorithm can be
executed step by step. The major challenge is to avoid the
“many to one” charging in the distributed way, i.e., each
sensor node should be covered by only one charging tree.
The distributed algorithm is executed on each sensor node i
and follows the below stages.

Stage 1: Sensor node i sends its energy demand and po-
sition to its neighbors (Message 1). After receiving Message
1 from its neighbors, sensor node i initializes the table by
setting the coverage flag as ”uncovered” and costi (j) as
infinite for every j in the table. Moreover, set T ∗i = ∅.

Stage 2: According to current local OCET T ∗i, sen-
sor node i executes EnPrim to cover the uncovered sen-
sor nodes in local table, and the new local OCET is
termed OCET T ′∗i. For all j ∈ V ′∗i\V ∗i, let costi (j) =
F (T ′∗i)−F (T∗i)
|V ′∗i\V ∗i| . Send all costi (j), j ∈ V ′∗i, to its neighbors

(Message 2).
Stage 3: Sensor node i receives Message 2 from neighbors

and finds j∗ = argmin
j
costj (i). Send the root j∗ of best

OCET T ′∗j∗ covering i to its neighbors (Message 3).
Stage 4: Sensor node i receives Message 3 from neigh-

bors. If all Message 3 indicate that i is the root of best

OCET , i sends the message stating the sensor nodes in V ′∗i
have been covered to its neighbors (Message 4). If i is “un-
covered”, i marks itself as ”covered”, sets T ∗i = T ′∗i and
sends message stating i has been covered to its neighbors
(Message 5).

Stage 5: If sensor node i receives Message 4 from neigh-
bor j and i ∈ V ′∗j , i sends Message 5 and stops executing
algorithm.

Stage 6: If sensor node i receives Message 5 from neigh-
bor j, imarks j as ”covered”. If there is no uncovered sensor
node in the table or no uncovered sensor node can be added
to T ∗i, i stops executing algorithm. Otherwise, go to Stage
2.

Note that there must be at least one new local best
OCET that extends the previous local OCET in each
round, and at least one sensor node is covered by the new
local best OCET in each round. Finally, when all sensor
nodes are covered, the distributed algorithm terminates. The
final charging trees are the nonempty local OCET s stored
in the sensor nodes. Obviously, the sensor nodes that sent
Message 4 indicate the positions of chargers.

Next, we analyze the communication cost of distributed
algorithm. During initialization, each sensor node i needs
to send Message 1 once. In each iteration, if sensor node i
is not covered by another tree, i must send Message 2 and
Message 3. Only if itsOCET is determined, the sensor node
sends the Message 4. If i is covered by its neighbor, it will
send Message 5 once and stop executing algorithm. In the
worst case, i needs to send all Message 2, Mesage 3 and
Message 4 in each iteration. Since each iteration can cover
at least one new sensor node, there are at most n iterations.
Thus, i needs to send at most 3n messages in total. Message
1 and Message 5 are sent once in whole process. In summary,
the total communication cost of any sensor node is 3n+ 2.

9 CONCLUSION

In this paper, we have defined a new metric, comprehen-
sive cost, to measure the actual economic cost for charger
deployment in multi-hop wireless charging. We have pre-
sented a multi-hop wireless charging model and formu-
lated the C3O problem to minimize the comprehensive
cost with energy capacity constraints of chargers. The key
contributions of this paper are proposing a (lnn + 1) -
approximation algorithm for C3O problem, a distributed
algorithm for C3O problem, a local cost sharing mechanism
with desirable properties, two conflict avoidance schemes,
and conducting simulations for evaluation. The key techni-
cal depth of this paper is in transforming the problem into
weighted charging tree cover problem under the constraint
of energy capacity, proposing the enhanced Prim algorithm
to determine the optimal capacitated extension tree for each
charging tree in polynomial time, proving the correctness of
enhanced Prim algorithm, proving the approximation ratio
for the designed algorithm, enabling the designed algorithm
to be executed distributedly, showing the nonexistence of
global core property and the inapplicability of Shapley Value
method in cost sharing and proposing a local cost sharing
mechanism satisfying the properties of local budget balance
and local core. Our simulation results show that the pro-
posed algorithms show significant superiority in terms of
comprehensive cost.
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