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Abstract—Electric vehicles (EVs), as promising components
of the sustainable and eco-friendly transportation systems,
are being widely adopted to reduce the consumption of fossil
fuel and pollution of environments. EVs are usually equipped
with wireless modules to support the vehicle to vehicle com-
munications, by which an electric vehicular network (EVN)
is formed. In EVN, some EVs are with insufficient battery
energy and may exhaust the battery energy before arriving
at their destinations, and these EVs are referred to as IEVs.
More seriously, IEVs probably cannot find any fixed charging
facilities nearby. With the development of mobile charging
technology, some movable charging stations (MCSs) are de-
ployed into EVN, and MCSs can actively navigate to charge
IEVs. In this paper, an assignment rescheduling mechanism
of movable charging stations (ARMM) is proposed, where the
MCS assignments are dynamically rescheduled. In ARMM, in
order to reduce the charging expenses of IEVs and enhance
the proportion of charged IEVs, the assigned IEVs of some
MCSs could be switched to other MCSs, while the charging
positions of MCSs are selected by minimizing the charging
expenses of IEVs and are dynamically altered. Besides, the
incentives of assigned IEVs to reduce the charging expenses of
unassigned IEVs are proven. Simulation results demonstrate
the preferable performance of ARMM, i.e. ARMM can reduce
the charging expenses of IEVs and enhance the proportion of
charged IEVs effectively.

Index Terms—Electric vehicle network; movable charging
station; assignment rescheduling; charging-expense minimiza-
tion.

I. INTRODUCTION

Recently, electric vehicles (EVs) refueled by electricity
have received considerable attention, along with the in-
creasing concerns over the environments and ever stringent
emission regulations [1], [2]. Vehicle manufacturers have
equipped EVs with wireless modules to support the vehicle
to vehicle communications provided by IEEE 802.11p stan-
dard, and thus EVs constitute an electric vehicular network
(EVN) [3].

In EVN, an EV usually suffers from a limited battery
capacity, especially when it takes a long-distance travel, and
it must be charged before the exhaustion of battery energy.
EVs with insufficient battery energy are referred to as IEVs
and can be charged by some charging infrastructures, such
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as the fixed charging stations deployed roadside. However,
to the best of our knowledge, quite a few countries/cities
have constructed a mature system of fixed charging stations
due to the expensive cost. Fortunately, with the rapid devel-
opment of mobile charging technology, movable charging
stations (MCSs) [4], [5], [6], [7] (as shown in Fig. 1) have
emerged. Especially, MCSs are much easier to be deployed,
and IEVs are charged by MCSs more conveniently, since
MCSs can actively navigate to charge IEVs.

Fig. 1: A movable charging station.

Similar to gasoline vehicles, EVs turn into IEVs when
they detect the low battery states. In the zones without
(or with few) fixed charging stations, such as suburbs
or villages, MCSs are deployed as public infrastructures.
Thus, we consider the following charging scenario: some
traveling EVs detect the low battery states, and then they
turn into IEVs. IEVs request the charging services from
neighboring MCSs. The charging positions are selected
by minimizing the charging expenses of IEVs, because
MCSs are deployed as the non-profit public transportation
facilities (e.g. railways, metros, and buses). Evidently, each
IEV wants to be successfully charged by an MCS at a small
charging expense. Therefore, in this charging scenario, the
charging expenses of IEVs need to be reduced, and the
proportion of charged IEVs needs to be increased.

Note that the characters of IEVs and EVs are varied over
time, i.e. at every time slot some EVs could detected the
low battery states and turn into IEVs, while some IEVs
could be charged by MCSs and turn into EVs. Naturally,
the charging expenses of IEVs can be reduced, if new IEVs
are allowed to be charged by neighboring MCSs which
have been assigned to charge other IEVs, and then several
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IEVs are charged by the same MCSs simultaneously. Such
mechanism can make more IEVs charged by MCSs and
promote the charging efficiency of MCSs.

Motivated by the above considerations, we propose an
assignment rescheduling mechanism of MCSs (ARMM) to
dynamically reschedule the MCS assignments, through the
negotiations among MCSs, assigned IEVs, and unassigned
IEVs. In ARMM, the assigned IEVs of some MCSs could
be switched to other MCSs, while the charging positions of
MCSs are selected by minimizing the charging expenses of
IEVs and are dynamically altered. Thus, the charging ex-
penses of IEVs are reduced, and the proportion of charged
IEVs is enhanced.

The remainder of this paper is organized as follows:
Section II briefly surveys some existing related studies.
Section III proposes a system model to describe the prob-
lem of MCS assignments. Section IV provides an analysis
framework for this problem. Section V presents the assign-
ment rescheduling mechanism of MCSs (ARMM). Section
VI covers some further analyses on ARMM, including
the computation efficiency and the incentives of assigned
IEVs to reduce the charging expenses of unassigned IEVs.
Simulation results for performance evaluation of ARMM
are reported in Section VII. Finally, Section VIII concludes
the paper.

II. RELATED WORK

In EVN with fixed charging stations, there are two critical
issues to be addressed:

(i) The optimal layout of fixed charging stations is the
prime issue. The layout of fixed charging stations should
be appropriately arranged to minimize the deployment cost
of fixed charging stations and/or the travel time of EVs.
This issue has been investigated in some literatures, such
as [3], [8], [9], [10]. In [3], a genetic programming approach
is employed to find a virtually-optimal charging station
deployment, and thus the travel time of EVs is minimized.
In [8], the optimal sites of charging stations are identified
according to the environmental factors and the service
range of charging stations. The proposed method reduces
the network loss and improves the voltage profile. Two
charging station placement cases, i.e. with and without
considering the limited battery size, are investigated in [9].
By the solutions, the electric buses are recharged with
long continuous service hours. In [10], a multi-objective,
multi-stage collaborative planning model is proposed for
the coupled charging station infrastructure to minimize the
investment and operation cost of the distribution system,
while the captured traffic flow is maximized. The above
works consider the proper placements of fixed charging
stations rather than the routes of MCSs.

(ii) With regard to the reduction of electric energy con-
sumption, the route scheduling of mobile EVs to the fast-
charging stations remains another concerned issue. To avoid
the overload of power system during the peak time, the load
management strategies are indispensable to distribute the
EV charging loads temporally and spatially [11]. However,

the reliability of the distribution networks of EVs has
not been taken into account. In [12], a VANET-enhanced
EV charging strategy is developed to improve the energy
consumption and reduce the travel cost, while averting
the overload of power system. Nevertheless, the incentive
mechanisms for motivating EVs to follow the charging
decisions are not analysed or proven. In [13], a mixed-
integer programming technique is used to facilitate an EV
classification scheme, and this scheme can reduce the cost
of energy trading of the charging stations. With regard to
the problem of minimizing the cost of charging stations,
an online centralized scheduling algorithm is proposed to
obtain a Pareto-optimal solution, as described in [14].

Some relevant research has been conducted on charg-
ing techniques or MCS assignments, such as [4], where
some key techniques regarding MCSs are validated, and
an energy storage system is provided to facilitate battery
and ultra-capacitor to be installed in MCS truck. In [15], a
special kind of MCS dedicated for urban and resort areas is
presented to charge EVs. References [4], [15] focus on the
charging techniques of MCSs, such as electric battery or
energy storage units, while the issue of MCS assignments
is not considered. A novel heterogeneous network model
is presented to improve the communications between EVs
and MCSs by using macro cells and small cells [16],
and an algorithm is designed to determine the optimal
placements of MCSs based on the charging demand and the
maintenance cost, while the incentives in the placements
of MCSs are not investigated. Reference [5] proposes a
Lyapunov-based optimization algorithm to maximize the
long-term profits of MCSs, through formulating a stochastic
optimization problem to decide the optimal strategy of
power management. However, the MCS assignments are
not dynamically rescheduled according to the time-variant
charging demand of IEVs. [17] provides a framework of
scheduling MCSs to charge EVs. The problem of schedul-
ing MCSs based on the charging demand is first formulat-
ed, and then a heuristic algorithm (SlotMCS-Allocation)
is proposed to solve this problem. In this work, MCSs
are placed at some fixed charging stations to temporarily
increase the capacity of the fixed charging stations, which
restricts the agile placements of MCSs seriously. Besides,
Wang et al. formulate a nonlinear flow-refueling location
model to optimize the MCS locations based on the network
designed by Nguyen and Dupuis [18]. The scale of charging
facilities’ deployment is not verified, and the travel routes
of MCSs and EVs are not scheduled.

The solutions of some problems motivate us, although
these problems seem different from the problem of MCS
assignments. In [19], a multi-objective iterated local search
algorithm with adaptive neighborhood selection (MOILS-
ANS) is given to solve the multitrip pickup and delivery
problem. In this problem, the delivery nodes can be mapped
into the charging positions of MCSs. Likewise, [20] pro-
poses a multi-objective bike repositioning approach, and
an artificial bee colony (ABC) algorithm is modified to
find the optimal solutions. The positions of bike stations
in this approach can be mapped into the charging positions
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of MCSs as well.
In the problem of MCS assignments, the characters

of IEVs and EVs are varied over time, i.e. EVs having
detected low battery states turn into IEVs, and IEVs having
been charged by MCSs turn into EVs, which implies that
the charging demand of IEVs is varied over time. This
fact is neglected in the above works. Thus, to reduce the
charging expenses of IEVs and enhance the proportion of
charged IEVs, the MCS assignments should be dynamically
rescheduled to cope with the time-variant charging demand
of IEVs.

The purpose of this work is to investigate the assignment
rescheduling of MCSs. To this end, four cases of available
assignment schemes are discussed, and then we propose
ARMM, where the assigned IEVs of some MCSs could be
switched to other MCSs. Besides, the charging positions of
MCSs are selected by minimizing the charging expenses
of IEVs and are dynamically altered. Specially, we prove
that ARMM can endow the assigned IEVs with incentives
to reduce the charging expenses of unassigned IEVs. The
contributions of this work are summarized as follows:

• In our proposed ARMM, according to the time-variant
charging demand of IEVs, MCSs which have been
assigned to charge some IEVs can be dynamical-
ly rescheduled, and some assigned IEVs could be
switched to other MCSs.

• The charging expenses of IEVs are effectively reduced
through the negotiations (regarding the charging ex-
penses and/or charging profits of IEVs) among MCSs,
assigned IEVs, and unassigned IEVs.

• The incentives of assigned IEVs to reduce the charging
expenses of unassigned IEVs are proven to verify the
feasibility of our proposed ARMM.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the problem of MCS assignments is for-
mulated. The explanations of main notations are provided
in TABLE I.

A. System Model

Some definitions are first given as follows:

Definition 1. Road lattice. A road lattice L(m,n) is
constructed with segments parallel to the x and y axes
for notation convenience, as shown in Fig. 2. There are
(m+1) · (n+1) road intersections in the road lattice. The
set of road intersections is denoted by I. The set of road
segments is denoted by S, and each road segment is of the
same length l.

Definition 2. Electric vehicles. There are N EVs, and
the set of EVs is denoted by E . Each EV is with the
same communication range R. The departure position and
the destination of an EV vi are denoted by si and di,
respectively, where si, di ∈ I. At the t-th time slot, the
battery energy and position of vi are denoted by e

(t)
i and

p(vi)
(t), respectively. vi travels at a speed of ms(vi), and

TABLE I: Description of main notations

Parameter Description
I Set of road intersections
S Set of road segments
E Set of EVs
M Set of MCSs
l Length of each road segment
ms(vi) Traveling speed of EV vi
R Communication range of each EV
e
(t)
i Battery energy of EV vi at the t-th time slot
p(vi)

(t) Current position of EV vi at the t-th time slot

cp(ψj)
(t) Charging position of MCS ψj at the t-th time

slot
Em(vi) Extra travel of IEV vi
∆Em(vi) Increased extra travel of IEV vi
V(ψj) Set of IEVs assigned to MCS ψj
tw(vi, cp(ψj)

(t)) Waiting duration of IEV vi at cp(ψj)(t)

tw(vi) Cumulative waiting duration of IEV vi
Q(vi) Charging expense of IEV vi
q(vi, ψj) Charging expense of IEV vi paid to MCS ψj
q(vi, vk) Charging expense of IEV vi paid to IEV vk
G(vk) Charging profit of IEV vk

r0
Price of unit electricity transferred from an
MCS to an IEV

rm Maximum price of increased extra travel

Fig. 2: A road lattice.

c unit of battery energy is consumed for traveling through
a road segment.

Definition 3. Movable charging stations. There are M
MCSs, and the set of M MCSs is denoted by M. With
regard to an MCS ψj , the set of IEVs which are assigned
to ψj is denoted by V(ψj), and the charging position at
the t-th time slot is denoted by cp(ψj)(t).

Definition 4. Rule of EV travels. If an EV vi has enough
battery energy to travel from si to di (i.e. there is e(0)i ≥ c ·
|si − di|), and then vi travels along the shortest Manhattan
path [28], [29]; Otherwise, when vi detects the low battery
state (e(t)i ≤ e

(0)
i

γ , where γ > 1) at the t-th time slot, vi
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turns into an IEV. Suppose vi is assigned to an MCS ψj to
be charged at the position p̃, and the extra travel undertaken
by vi is computed by:

Em(vi) =
∣∣∣p(vi)(t) − p̃∣∣∣+ |p̃− di| − ∣∣∣p(vi)(t) − di∣∣∣ , (1)

where | · | denotes the number of road segments on a
Manhattan path, and thus

∣∣p(vi)(t) − p̃
∣∣+ |p̃− di| denotes

the future travel distance of vi via the charging position p̃,
as illustrated in Fig. 3.

Fig. 3: Extra travel of an IEV.

Definition 5. An MCS charges an IEV. Suppose an IEV
vi is assigned to an MCS ψj and is charged at p̃, the
quantity of electricity transferred from ψj to vi is expressed
as:

△ei = c · {|si − di|+ Em(vi)} − e(0)i , (2)

where △ei is calculated as the insufficient electricity of vi.
Besides, the waiting duration of vi is calculated as:

tw(vi, p̃) =

 0, if
|p(vi)(t)−p̃|
ms(vi)

≥ |p(ψj)
(t)−p̃|

ms(ψj)
,

|p(ψj)
(t)−p̃|

ms(ψj)
− |p(vi)

(t)−p̃|
ms(vi)

, otherwise.
(3)

The cumulative waiting duration of each IEV should not
be larger than a waiting duration threshold T to avoid a
long-term waiting, i.e. there should be tw(vi) ≤ T . Note
that T can be set according to the requirements of EV
drivers, because the value of T measures the charging
experience of charged IEVs. Typically, a smaller T gives
rise to a better charging experience of charged IEVs.

B. Problem Objective

In order to reduce the charging expenses of IEVs and
enhance the proportion of charged IEVs, the problem
objective is formally presented as follows:{

min
∑N

i=1 Q(vi)

N
,

max Nc
N

I
,

(4)

where Nc, NI
, and N denote the number of charged IEVs,

the number of IEVs, and the number of EVs, respectively.
Q(vi) denotes the charging expense of IEV vi. Specially,
if vi is not an IEV, and there is Q(vi) = 0.

There are two constraints for an MCS charging an
IEV: (i) The IEV has enough residual battery energy to
travel to the charging position; (ii) The cumulative waiting
duration of each IEV is not longer than the waiting duration
threshold T .

IV. ANALYSIS FRAMEWORK

As aforementioned above, the characters of IEVs and
EVs are varied over time. Hence, the MCS assignments
should be dynamically rescheduled to reduce the charging
expenses of IEVs and charge more IEVs.

Moreover, the number of MCSs is typically smaller than
that of IEVs, and thus an MCS should charge several
IEVs simultaneously, which is practical because an MCS
has multiple charging interfaces (as illustrated in Fig. 1).
With regard to an MCS with some assigned IEVs, before
it arrives at the charging position, some unassigned IEVs
could be assigned to it. The unassigned IEVs must be
admitted by the IEVs which have been assigned to the
MCS, and the charging position could be accordingly
altered, which leads to the increased extra travels of these
assigned IEVs.

Suppose an EV vi detects the low energy state at the
t-th time slot, and then vi turns into an IEV. After that, vi
requests the neighboring MCSs in the communication range
R for the possible charge. Suppose ψj is a neighboring
MCS (the distance is smaller than R, i.e. d(vi, ψj) ≤ R),
and an available assignment scheme should satisfy one of
the following cases:

Case 1: V(ψj) = ∅ (MCS ψj does not have any assigned
IEVs), and the charging position cp(ψj)(t) is selected by:

cp(ψj)
(t) =

argmin
p̃∈I

{
Em(vi)| e(t)i ≥ c ·

∣∣∣p(vi)(t) − p̃∣∣∣ and tw(vi, p̃) ≤ T
}
,

(5)

which indicates that cp(ψj)(t) is selected by minimizing the
extra travel of vi. After vi is charged by ψj at the position
cp(ψj)

(t), the expense q(vi, ψj) is paid to ψj :

q(vi, ψj) = r0 · △ei = r0 ·
{
c · [|si − di|+ Em(vi)]− e(0)i

}
,

(6)

where r0 denotes the price of unit electricity transferred
from an MCS to an IEV. Under Case 1, we have
Q(vi) = q(vi, ψj).

Case 2: V(ψj) ̸= ∅, and vi is assigned to MCS ψj , as
shown in Fig. 4(a). The new charging position cp(ψj)(t) is
determined by:

cp(ψj)
(t) =

argmin
p̃∈I

{
Q(vi)| e(t)i ≥ c ·

∣∣∣p(vi)(t) − p̃∣∣∣ and tw(vi, p̃) ≤ T
}
,

∀vk ∈ V(ψj), s.t.

{
e
(t)
k ≥ c ·

∣∣∣p(vk)(t) − p̃∣∣∣ ,
tw(vk) + tw(vk, p̃) ≤ T,

(7)
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where vk is an assigned IEV of ψj , and tw(vk) denotes
the waiting duration having been spent by vk. Equation (7)
implies that each assigned IEV of ψj has enough electric
energy to travel to the new charging position cp(ψj)

(t),
and the cumulative waiting duration of each assigned IEV
is still not longer than the waiting duration threshold T .

(a) An IEV assigned to an MCS

(b) An assigned IEV switched to another MCS

Fig. 4: Two available assignment schemes (Case 2 and Case
3).

The charging expense of vi is comprised of two parts:
(i) The expense paid to ψj ; (ii) The expenses paid to the
assigned IEVs of ψj . Thus, Q(vi) is expressed as:

Q(vi) = q(vi, ψj) +
∑

∀vk∈V(ψj)

q(vi, vk), (8)

where q(vi, ψj) is obtained by (6), and q(vi, vk) is ex-
pressed as:

q(vi, vk) =

{
0, if ∆Em(vk) ≤ 0,
rk ·∆Em(vk), otherwise,

(9)

where rk denotes the price of increased extra travel of vk.
The price of different assigned IEVs may be different due
to their different travel intentions and travel emergencies.

In (9), ∆Em(vk) denotes the increased extra travel of
vk, which is caused by the charging position alteration:

∆Em(vk) =
∣∣∣p(vk)(t) − cp(ψj)(t)∣∣∣+ ∣∣∣cp(ψj)(t) − dk∣∣∣

−
∣∣∣p(vk)(t) − cp(ψj)(t−1)

∣∣∣− ∣∣∣cp(ψj)(t−1) − dk
∣∣∣ .
(10)

Besides, when ∆Em(vk) > 0, the expense c · r0 ·
∆Em(vk) is paid for the increased electricity consumption
of vk, and hence the charging profit of vk is calculated by:

G(rk) =

{
−c · r0 ·∆Em(vk), if ∆Em(vk) ≤ 0,
(rk − c · r0) ·∆Em(vk), otherwise.

(11)

Case 3: V(ψj) ̸= ∅, and a new charging position cannot
be found by (7) when vi is assigned to ψj . There is another
MCS ψj′ around ψj , and vi can be charged by ψj when
one or several assigned IEVs of ψj are switched to ψj′ ,
as shown in Fig. 4(b). The new charging position of ψj is
selected by minimizing the charging expense of vi:

cp(ψj)
(t) =

argmin
p̃∈I

{
Q(vi)| e(t)i ≥ c ·

∣∣∣p(vi)(t) − p̃∣∣∣ and tw(vi, p̃) ≤ T
}
,

∀vk ∈ V(ψj) \ V(ψj , ψj′), s.t.

{
e
(t)
k ≥ c ·

∣∣∣p(vk)(t) − p̃∣∣∣ ,
tw(vk) + tw(vk, p̃) ≤ T,

(12)

where V(ψj , ψj′) denotes the set of assigned IEVs switched
to ψj′ . Likewise, cp(ψj′)(t) should be updated.

Besides, Q(vi) is calculated by:

Q(vi) =q(vi, ψj) +
∑

∀vk∈V(ψj)\V(ψj ,ψj′ )

q(vi, vk)

+
∑

∀vk′∈V(ψj′ )
∪

V(ψj ,ψj′ )

q(vi, vk′).
(13)

Because some assigned IEVs of ψj are switched to ψj′ ,
and the charging position of ψj′ could be altered, which
leads to the increased extra travels of IEVs in the set
V(ψj′)

∪
V(ψj , ψj′).

Thus, (13) indicates that the charging expense of vi is
comprised of three parts: (i) The expense paid to ψj ; (ii)
The expenses paid to the assigned IEVs of ψj ; (iii) The
expenses paid to the assigned IEVs of ψj′ .

Case 4: V(ψj) ̸= ∅, and there are several MCSs around
ψj . Some assigned IEVs of ψj could be switched to several
different MCSs. Then, vi can be charged by ψj . Similar to
Case 3, the new charging position of ψj is selected by
minimizing the charging expense of vi. Case 4 is taken as
a derivative of Case 3.

V. ASSIGNMENT RESCHEDULING MECHANISM OF
MCSS

To reduce the charging expenses of IEVs and enhance
the proportion of charged IEVs, we propose an assignment
rescheduling mechanism of MCSs (ARMM) to dynamically
reschedule the MCS assignments. ARMM is a completely
distributed mechanism, and the global computations and
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message interactions are not needed. In ARMM, the dedi-
cated short range communications (DSRC) can be applied
to realize the vehicle to vehicle communications, and the
maximum communication range specified in DSRC stan-
dard [30] is up to several thousand meters.

The operation of ARMM is described in terms of
eight stages: initialization, IEVs request for charges, MCS
receives request from IEVs, MCS negotiates with assigned
IEVs, MCS negotiates with neighboring MCSs, IEVs select
optimal assignment schemes, MCS and IEVs reschedule
routes, and MCS charges IEVs, as illustrated in Fig. 5,
where the symbol (t−1)+ denotes some (small) time after
the end of the (t− 1)-th time slot, and (t)− denotes some
(small) time before the start of the t-th time slot, such that
there is (t− 1)+ < (t)− < (t) < (t)+ < (t+ τ).

Fig. 5: The stages of ARMM.

A. Stages of ARMM

The detailed stages of ARMM are provided as follows:

Stage 1. Initialization. With regard to each EV vi, when
e
(t)
i ≤ e

(0)
i

γ , vi should determines whether it is an IEV by
the following inequality:⌊

e
(0)
i

c

⌋
< |si − di| . (14)

When (14) is satisfied, vi is an IEV; Otherwise, vi is
not an IEV, and it can travel to the destination without any
charges.

Stage 2. IEVs Request for Charges. Suppose at the t-th
time slot, vi turns into an IEV, and then vi broadcasts
a charging request request msg in the communication
range R. The structure of request msg is depicted in
Fig. 6.

Stage 3. MCS Receives Request from IEVs. With regard
to each MCS ψj which receives the request msg from vi,
if there are not any IEVs assigned to ψj , i.e. V(ψj) = ∅,
and then the assignment scheme including cp(ψj)

(t) and
q(vi, ψj) is calculated by Case 1. A response msg
including cp(ψj)

(t) and q(vi, ψj) is sent to vi. If there is
an IEV or some IEVs having been assigned to ψj , i.e.
V(ψj) ̸= ∅, and then Stage 4 is carried out.

Stage 4. MCS Negotiates with Assigned IEVs. ψj sends
an inquire msg to the assigned IEVs. After receiving the
inquire msg from ψj , each assigned IEV replies with
a reply msg to ψj . A reply msg includes the current
position, residual battery energy, cumulative waiting
duration, and price of increased extra travel, as shown in
Fig. 6. These reply msgs are forwarded to vi. Then, the
assignment scheme including the new charging position
and the charging expense is calculated by Case 2.

Stage 5. MCS Negotiates with Neighboring MCSs. If
there are some neighboring MCSs around ψj , and then all
the reply msgs sent from the assigned IEVs of ψj and the
neighboring MCSs are forwarded to vi. The assignment
schemes (the new charging positions and the charging
expenses) are calculated by vi according to Case 3 and
Case 4.

Stage 6. IEVs Select Optimal Assignment Schemes. Upon
receiving the assignment schemes, the assignment scheme
with the minimum charging expense is selected by vi, and
then the selected assignment scheme is encapsulated into
an assign msg and notified to MCS ψj , IEVs in V(ψj)
and neighboring MCSs. After that, the set of assigned IEVs
of ψj is updated by:

V(ψj)← V(ψj)
∪
vi \

∪
ψj′

V(ψj , ψj′), (15)

where
∪
ψj′

V(ψj , ψj′) denotes the set of assigned IEVs
switched to neighboring MCSs.

Stage 7. MCS and IEVs Reschedule Routes. ψj and
assigned IEVs compute the shortest Manhattan paths to
the new charging position and adjust their travel routes.
Besides, the extra travels of the assigned IEVs are updated,
e.g. the extra travel of vk is updated by:

Em(vk)← Em(vk) + ∆Em(vk), (16)
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Fig. 6: Structures of messages in ARMM.

where ∆Em(vk) is obtained by (10).

Stage 8. MCS Charges IEVs. When ψj and the assigned
IEVs arrive at the charging position, and then ψj charges
these IEVs. Then, the charged IEV vi pays the expense
Q(vi), which could be comprised of: the expense paid to
ψj for the electricity transferred from ψj ; the expenses
paid to the early assigned IEVs which admit the charge
of vi, for their increased extra travels due to the charging
position alterations and/or the MCS switches.

Note that some new IEVs are assigned to MCSs every
time slot, and thus the process from Stage 2 to Stage
7 is repeated, i.e. the MCS assignments are dynamically
rescheduled every time slot. A sequential diagram concern-
ing the message interactions in ARMM is given in Fig. 7,
and the pseudo-code of ARMM is depicted in Algorithm
1.

Fig. 7: Sequential diagram of ARMM.

Algorithm 1 Pseudo-code of ARMM
1: t← 1;
2: while The t-th time slot falls into an observation period do
3: Each EV determines whether it is an IEV;
4: for Each EV vi turning into an IEV at the t-th time slot

do
5: vi broadcasts a charging request;
6: for Each MCS ψj which receives the charging request

from vi do
7: if V(ψj) = ∅ then
8: The assignment scheme is calculated by Case 1.
9: end if

10: if V(ψj) ̸= ∅ then
11: ψj negotiates with the assigned IEVs in the set

V(ψj), and the assignment scheme is calculated
by Case 2.

12: ψj negotiates with neighboring MCSs, and the
assignment schemes are calculated by Case 3 and
Case 4.

13: end if
14: The available assignment schemes are forwarded to

vi.
15: end for
16: The assignment scheme with the minimum expense is

selected by vi and notified to MCS.
17: The routes of vi, MCS, and some assigned IEVs are

rescheduled.
18: vi and MCS move towards the charging position.
19: end for
20: t← t+ 1;
21: end while

B. Conflicts in MCS Assignments

The conflicts in MCS assignments happen when several
IEVs select an MCS as the optimal MCS simultaneously.
However, this MCS cannot be assigned to charge all of
these IEVs. In ARMM, the IEV with the minimum charging
expense can preferentially select this MCS, and other IEVs
should select their sub-optimal MCSs.

VI. MECHANISM ANALYSIS

A. Computation Efficiency

The computation efficiency of ARMM is analysed in
terms of the computation complexity in Case 1 to Case
4:

• In Case 1, the number of computations is at most (m+
1) · (n + 1) (m,n << N ), and thus the computation
complexity is O(1);
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• In Case 2, the computation complexity is O(1) as well;
• In Case 3, the number of assigned IEVs of ψj is

denoted by |V(ψj)|, and then the number of potential
sets of switched IEVs is written as 2|V(ψj)|−1, which
implies that the computation complexity is expressed
as (m+ 1) · (n+ 1) ·

(
2|V(ψj)| − 1

)
;

• In Case 4, suppose there are ξ (ξ < M−1) neighboring
MCSs around ψj , and the computation complexity of
obtaining the optimal assignment scheme is (m+1) ·
(n+ 1) ·

∑|V(ψj)|
κ=1

{(|V(ψj)|
κ

)
· ξκ

}
.

Typically, the number of IEVs and the number of MCSs
are much smaller than the number of EVs, i.e. there are
|V(ψj)| << N and M << N . Therefore, the computation
complexity of ARMM is O(1).

B. Incentives in ARMM

In this subsection, the incentives of assigned IEVs to
reduce the charging expenses of unassigned IEVs are
analysed.

Suppose there are K available assignment schemes,
where two assigned IEVs vk and vk′ are involved in two
available assignment schemes AS1 and AS2, respectively.
When ∆Em(vk) = ∆Em(vk′), the probability of AS1

outperforming AS2 is expressed as:

Pr (q(vi, vk) ≤ q(vi, vk′)) = 1− Pr (q(vi, vk′) < q(vi, vk))

= 1− Pr (rk′ < rk) = 1−F (rk) ,
(17)

where F (·) denotes the probability distribution function of
Pr(·).

By (11), when ∆Em(vk) > 0, the charging profit of vk
is written as:

G (rk) = q(vi, vk)− c · r0 ·∆Em(vk). (18)

Because EVs are considered to be selfish, the charging
profit of each assigned IEV is expected to be maximized:

max
vi∈E\vk

{
G (rk) ·

∏
[1−F (rk)]

}
= max
vi∈E\vk

{
[q(vi, vk)− r0 · c ·∆Em(vk)] · [1−F (rk)]

K−1
}
,

(19)

and there is at least one internal solution in (19), implying
that the first order of G (rk) ·

∏
[1−F (rk)] with respect

to q(vi, vk) is equal to 0:{
[1−F (rk)]

K−1 − (K − 1) · [1−F (rk)]
K−2

·f(rk) · [q(vi, vk)− c · r0 ·∆Em(vk)] · drk
dq(vi,vk)

}
= 0,

(20)

where f(·) denotes the probability density function of F (·).
Without loss of generality, suppose F(·) obeys a uniform

distribution U(c · r0, rm), and the following equations can

be obtained by (20):

q(vi, vk) = c · r0 ·∆Em(vk) +

∫ rm
rk

[1−F (x)]K−1 dx

[1−F (rk)]
K−1

= c · r0 ·∆Em(vk) +

∫ rm
rk

(
1− x−c·r0

rm−c·r0

)K−1

dx(
1− rk−c·r0

rm−c·r0

)K−1

= c · r0 ·∆Em(vk) +
rm − rk
K

,

(21)

which indicates that a smaller price of increased extra travel
gives rise to a larger charging profit. Especially, when K
is large enough, the price of increased extra travel is very
close to the price of unit electricity transferred from an
MCS to an IEV (r0 ). Likewise, when rk = rk′ , a larger
increased extra travel leads to a smaller charging profit.

Therefore, the incentives in ARMM can motivate the
assigned IEVs to reduce their prices to increase their
charging profits, and the assignment schemes (where the
assigned IEVs are with smaller increased extra travels) are
prone to be selected. Therefore, the incentives in ARMM
can reduce the charging expenses of IEVs.

VII. PERFORMANCE EVALUATION

In this section, we provide a thorough performance eval-
uation of our proposed ARMM, along with comparisons
with other algorithms (Lyapunov-based optimization [5],
SlotMCS-Allocation [17], MOILS-ANS [19], ABC algo-
rithm [20], and optimal centralized solution). Specially, the
optimal centralized solution assumes the future charging
demand of IEVs is completely foreknown, and thus the
optimal MCS assignments can be decided.

The price of increased extra travel of each IEV is
randomly selected from a price interval [c · r0 , rm]. In real
charging scenarios, the price interval is determined by the
electricity trading market. The initial battery energy of each
EV obeys a normal distribution N (µ, δ2), where the value
of µ indicates the average initial battery energy of EVs,
and the value of δ indicates the deviation of initial battery
energy among EVs. The normal distribution N (µ, δ2) re-
flects the battery diversity of the electric vehicles which
are produced by different manufacturers. We develop a
simulator using C++ language, and the simulation results
are averaged over 500 runs.

The main parameter settings are shown in TABLE II.
Note that the parameter values given in TABLE II are
taken as the default values, i.e. the default values of
parameters are adopted in the following simulations when
the parameter values are not explicitly varied. Besides, the
simulation results are obtained on the premise that several
neighboring MCSs can provide their available assignment
schemes to an IEV simultaneously, and the assignment
scheme with the minimum charging expense is selected.

A. Number of IEVs and Proportion of Charged IEVs

We first observe the number of IEVs and the number of
charged IEVs. Fig. 8 illustrates the impacts of N and M
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TABLE II: Simulation Parameters

Parameter Description Value

N Number of EVs 800
M Number of MCSs 45
m× n Size of road lattice 60× 60
l Length of each road segment 0.4 km
T Waiting duration threshold 200 s
R Communication range of each EV 1.0 km
ms Travel speed of each EV and each MCS 16.7 m/s
µ Average battery energy of EVs 90 kwh
δ Standard deviation of battery energy 15 kwh

c
Energy consumption of traveling through
a road segment 0.5 kwh

γ Low battery parameter 3

r0
Price of unit electricity transferred from an
MCS to an IEV 2.4/kwh

rm Maximum price of increased extra travel 12.5/km

on the number of IEVs and the number of charged IEVs,
respectively.

Three observations are obtained as follows: (i) Both the
number of IEVs and the number of charged IEVs raise
with the increase of N . This is because when more EVs
are traveling in the road lattice, more IEVs exist and are
charged by MCSs. (ii) When N is fixed, a larger M leads
to a larger number of charged IEVs, since more MCSs can
charge more IEVs. (iii) With the increase of N , the bars
of the number of IEVs ascend more rapidly than those of
the number of charged IEVs, which implies that when the
number of IEVs becomes very large, MCSs cannot charge
all of these IEVs, and some IEVs fail to be charged.

200 400 600 800 1000 1200 1400
0

5

10

15

20

25

30

N
um

be
r o

f I
EV

s 
(c

ha
rg

ed
 IE

Vs
)

Number of EVs

 Number of IEVs
 Number of Charged IEVs, M=30
 Number of Charged IEVs, M=45
 Number of Charged IEVs, M=60

Fig. 8: Number of IEVs (charged IEVs) vs. N and M

Furthermore, the proportion of charged IEVs under dif-
ferent µ is observed in Fig. 9. In Fig. 9, the curves decrease
with the increase of N , which is attributed to the fact that
more IEVs cannot be charged when the number of IEVs
has exceeded a maximum workload of MCSs, and thus the
proportion of charged IEVs is decreased. Besides, the curve
with a larger µ is higher than that with a smaller µ. The
reason is that µ is related with the initial battery energy of
EVs, and a larger µ indicates that more EVs have enough
battery energy to complete their travels and do not turn into
IEVs. Thereby, IEVs can be charged by MCSs more easily.
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Fig. 9: Proportion of charged IEVs vs. N and µ.

B. Average Extra Travel Distance and Average Waiting
Duration

As shown in Fig. 10(a), the average extra travel distance
of IEVs is reduced by increasing the number of MCSs, and
this is because some nearer MCSs can be found to charge
IEVs, when more MCSs are deployed into the road lattice.
Besides, the curve with a smaller µ is much higher than
that with a larger µ, due to the fact that with a smaller µ
more IEVs exist and could be assigned to the same MCSs,
thus enlarging the extra travel distance of IEVs.

In Fig. 10(b), the curves of average waiting duration for
charges rise up with the increase of N . The reason is that
some IEVs are possible to wait other IEVs (assigned to
the same MCSs) for longer durations, when more IEVs are
assigned to the same MCSs. Moreover, the curve with a
larger R is much higher than that with a smaller R, and
this is because IEVs with a larger communication range
can request the charging services from farther MCSs, and
then more IEVs can be charged by MCSs, although some
IEVs wait for longer durations.

C. Average Charging Expense and Average Charging Profit

As depicted in Fig. 11, both the average charging expense
and the average charging profit of IEVs are reduced with
the increase of M or µ, which is attributed to the fact
that a larger M or a larger µ indicates fewer IEVs are
assigned to the same MCSs. Thus, the extra travel distance
of IEVs is decreased (in Fig. 10(a)), which reduces the
average charging expense of IEVs accordingly.

When M = 70 and µ = 100, the average charging
expense and average charging profit are 11.375 and 6.497,
respectively. Note that the average charging profit is always
smaller than the average charging expense, because some
charging expenses should be additionally paid for the
increased extra travels of some early assigned IEVs.

D. Algorithm Comparisons

To further analyse the merits of ARMM, we com-
pare ARMM with Lyapunov-based optimization, SlotMCS-
Allocation, MOILS-ANS, ABC algorithm, and optimal
centralized solution. In Lyapunov-based optimization, the
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Fig. 10: Average extra travel distance and average waiting
duration.

renewable power and the traditional power are not differen-
tiated, and the IEVs assigned to an MCS are considered to
fall into the same charging queue. In SlotMCS-Allocation,
the obtained placements of MCSs are mapped into the
charging positions of MCSs.

The simulations are conducted on a real dataset com-
prised of taxis’ trajectories [31] in Chengdu city, China.
In this dataset, there are about 10,000 taxis, and their
trajectories were produced during the period from Oct. 1,
2018 to Oct. 31, 2018. Each trajectory point is represented
by a set of time stamp, latitude, longitude, and taxi ID. The
total number of trajectory points in the dataset is about 11
million. The trajectories of N taxis are randomly selected
to simulate the movements of EVs.

These algorithms are compared in terms of the proportion
of charged IEVs, average extra travel distance of IEVs, av-
erage charging expense of IEVs, and average computation
time for charging an IEV. The simulation results are given
in Fig. 12 and Fig. 13, which suggest that ARMM out-
performs other algorithms by an obvious margin except the
average computation time. The reason for these phenomena
is that ARMM attempts to charge IEVs as much as possible
through the dynamic assignments of MCSs. In order to
charge more IEVs, the assigned IEVs of some MCSs can
be switched to other MCSs, and thus the proportion of
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Fig. 11: Average charging expense and average charging
profit.

charged IEVs is larger than other algorithms. To reduce
the charging expenses of IEVs, the charging positions are
selected by minimizing the charging expenses of IEVs and
are dynamically altered. Thus, ARMM reduces the extra
travel distance and charging expenses of IEVs. Fig. 13(b)
illustrates that the mechanism of dynamic assignments
of MCSs prolongs the average computation time slightly.
However, the average computation time of ARMM falls into
a small numerical interval [5.269, 5.373], which is tolerable
in real charging scenarios.

Fig. 12 and Fig. 13 indicate that the gaps between the
results of ARMM and the results of the optimal centralized
solution are not very large, especially in terms of the
average charging expense of IEVs and average extra travel
distance of IEVs. Besides, the average computation time of
the optimal centralized solution is much longer than other
algorithms because of its complex computation (all poten-
tial cases are traversed to find the optimal assignments).
Note that the optimal centralized solution is not available in
real charging scenarios, due to the strong assumption that
the future charging demand of IEVs must be completely
foreknown.
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Fig. 12: Algorithm comparisons in terms of proportion of
charged IEVs, and average extra travel distance.

VIII. CONCLUSION

We have studied the problem of MCS assignments in
EVN, and an assignment rescheduling mechanism of M-
CSs (ARMM) has been introduced. In ARMM, the MCS
assignments are dynamically rescheduled. Especially, the
assigned IEVs of some MCSs could be switched to other
MCSs, while the charging positions of MCSs are selected
by minimizing the charging expenses of IEVs and are
dynamically altered. Therefore, ARMM can reduce the
charging expenses of IEVs and enhance the proportion of
charged IEVs effectively.

In this work, the idle MCSs (which do not have any
assigned IEVs) are considered to stop and wait at the cur-
rent positions, and the placements of idle MCSs according
to real-time traffic flows will be investigated in future to
improve the IEV charges. Besides, the charging positions
cannot be selected from any positions in a practical road
network, and the selections of charging positions should be
restricted by a set of designated charging positions where
MCSs are allowed to charge IEVs, such as some charging
parks. Furthermore, MCSs can carry some batteries which
have been fully charged, and thus they can charge IEVs by
swapping the batteries. The battery swapping manner (such
as [32]) can be adopted in ARMM to shorten the charging
durations significantly.
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Fig. 13: Algorithm comparisons in terms of average charg-
ing expense, and average computation time.
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