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Abstract
Public transportation system is one of the most effective ways to conserve energy
and reduce carbon emissions. However, the traditional public transportation sys-
tem does not provide customized service and cannot guarantee the arrival time
to destination. To address these issues, we formulate the minimum shared bus
scheduling problem to minimize the number of shared buses such that all orders
can be completed under constraints of deadlines and capacity of shared bus. We
propose the approximation algorithms, S-MBSA for the shared bus with strong
endurance and E-MBSA for the large-scale order scenario, to solve the minimum
shared bus scheduling problem. We further formulate the constrained maxi-
mum revenue shared bus scheduling problem to maximize the revenue under
the limited number of shared buses, and propose an approximation algorithm,
CMRBSA, to find the shared bus route schedules. Through the extensive sim-
ulations, we demonstrate the significant superiority of S-MBSA and E-MBSA
in terms of number of shared buses. Furthermore, CMRBSA outperforms the
benchmark algorithms significantly in terms of revenue.

K E Y W O R D S

capacitated orienteering problem, scheduling, shared bus, vehicle routing problem

1 INTRODUCTION

The Paris Agreement’s long-term temperature goal is to keep the rise in mean global temperature below 2◦C. To achieve
this goal, emissions should be reduced as soon as possible and reach net-zero by the middle of the 21st century.1 A new
report “Climate Change 2021: The Physical Science Basis” issued by the Intergovernmental Panel on Climate Change
(IPCC) confirms that the current state of climate is serious and reinforces how critical it is to achieve net zero emissions
as soon as possible.2 The primary way to achieve carbon peaking and carbon neutralization is to reduce carbon emissions.
It is well known that approximately 85% of greenhouse gas emissions of transportation industry are from the surface
transportation system.3 Public transportation system is one of the most effective ways to conserve energy.3 However, the
traditional public transportation system does not support customized service and cannot guarantee the arrival time to
destination, which are the main obstacles for people to take buses.

Compared with traditional public transportation, the shared buses can provide customized services for passengers
to meet their travel demands and improve their experience through generating dynamic schedules other than the fixed
schedule.4 In most cities, the shared bus emerges as a novel kind of transportation mode, such as shared bus transfer
in Macau,5 shared bus service in Beijing,6 daily door to door shared shuttle bus from Cesky Krumlov to Salzburg in
Abbreviations: CMRBS, constrained maximum revenue shared bus scheduling; E-MBSA, endurance sensitive minimum shared bus scheduling
algorithm; MBS, minimum shared bus scheduling; S-MBSA, scale sensitive minimum shared bus scheduling algorithm.
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2 JIN et al.

Austria,7 shared airport shuttle bus transfer in Budapest,8 and so forth. Kong et al.9 proposed an approach to generate
dynamic routes for shared buses based on various crowdsourced shared bus data. Kong et al.10 provided a scheme to
schedule shared buses through heterogeneous mobile crowdsourced data. Ning et al.4 designed a bus scheduling and
route planning joint framework to jointly maximize the number of passengers, minimize the total length of routes, and
the number of required buses. However, the existing shared bus scheduling schemes cannot satisfy personalized travel
demands with nonuniform deadlines of users. For example, high-speed rail and plane have become the main traveling
ways for people. People need to arrive at the high-speed railway station or airport before the specific time, that is, people’s
travel has deadline constraint. To address this issue, we study the shared bus scheduling problem with deadline with the
following characteristics:

1. From the perspectives of efficiency and economy, the passengers on the same shared bus have same destination, for
example, airport.

2. The shared bus can carry other passengers with the same destination along the way.
3. All passengers need to arrive the destination within their deadlines.
4. The shared bus cannot be overloaded, that is, the capacity of shared bus is limited.

We provide a case study illustrated in Figure 1. The passengers all want to reach Floyd Bennett Field. There are four
travel modes, that is, traditional bus, private car, online car hailing or Taxi, and shared bus.

Table 1 shows the information and results of four travel modes. First, these passengers can take bus B3, B82, and
B6, respectively, and then transfer to bus Q35 to Floyd Bennett Field according to Google map.11 The traveling time of
passengers from location 1, 2, and 3 to destination is calculated according to Google Map.11 Average gasoline energy
consumption is 0.8 h× 30 km/h× 30 L/100 km= 7.2 L. Therefore, the average carbon emissions of traditional bus per
capita is (7.2×2.7)

60
× 3 ≈ 0.98 kg, where carbon emission of a bus or a car is equal to gasoline energy consumption multiplied

by 2.7.12

Second, total price of private car travel includes the cost of fuel and parking. The average traveling time from loca-
tion 1, 2, and 3 to destination is 0.24 h according to Google map.11 Average gasoline energy consumption is 0.24 h× 52
km/h× 10 L/100 km= 1.25 L. Therefore, the average carbon emissions per capita from location 1, 2, and 3 to destination
is (1.25×3×2.7)

12
≈ 0.85 kg. The gasoline price on October 9, 2021 is 0.95 $/L13 and the parking fee is 5 $ per hour per car.

F I G U R E 1 Illustration of scheduling for shared bus with deadline

T A B L E 1 Comparison of different travel modes

Travel
mode

Number of
passengers

Unit
price
per
capita ($)

Number
of buses
or cars

Total
price ($)

Number
of seats

Fuel
consumption
(L/100 km)

Speed
(km/h)

Average
traveling
time (h)

Average
gasoline
energy
consumption
(L)

Average
carbon
emissions
per capita
(kg)

Traditional
bus

12 2.25 6 54 30 30 30 0.8 7.2 0.98

Private car 12 6.54 3 78.47 5 10 52 0.24 1.25 0.85

Taxi 12 26.31 4 315.69 5 10 52 0.23 1.20 1.08

Shared bus 12 4.5 1 54 30 30 30 0.63 5.7 0.51
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JIN et al. 3

Then, taxi fare from location 1, 2, and 3 to destination are calculated by booking on Welcome Pickups.14 The aver-
age gasoline energy consumption and carbon emissions per capita are 0.23 h× 52 km/h× 10 L/100 km= 1.20 L and
(1.20×4×2.7)

12
≈ 1.08 kg, respectively.

Moreover, we assume that there is one shared bus located at the parking lot s. The passengers at location 1, 2, and
3 submit orders to the shared bus. We find the shortest path {s → 2 → 3 → 1 → t} as the shared bus path to serve all
the orders, where the length of the path is 19 km. Since, the traveling time of shared bus is 0.63 h. The gasoline energy
consumption and carbon emissions per capita of shared bus travel are 19 km× 30 L/100 km= 5.7 L and (5.7×2.7)

30
≈ 0.51 kg,

respectively. Specially, shared bus can satisfy travel demands with deadline when the deadlines of orders is no less than
0.63 h.

We can see that shared bus travel can save 21.25% of traveling time with extra 59.38% of carbon emissions per capita
of traditional bus travel with the same total cost. The shared bus travel can save 31.19% and 82.90% of total cost, reduce
40.0% and 52.78% of carbon emissions per capita with 162.5% and 173.91% of extra traveling time of private car travel and
Taxi travel on average, respectively. Thus, shared bus is an economical public travel mode with deadline with low carbon
emission.

Unfortunately, to the best of our knowledge, there is no off-the-shelf scheduling designed for share bus with nonuni-
form deadlines in the literature. There are some challenges for share bus scheduling with nonuniform deadlines: First,
the solution for orienteering problem (OP)15 cannot be used to find a shared bus path to serve as many orders as possi-
ble straightforwardly. This is because the shared bus schedule should satisfy constraints of both deadlines of orders and
capacity of shared bus, that is, number of seats in the shared bus. Second, the solution for distance constrained vehicle
routing problem (DVRP)16 cannot be used to find our deadline constrained shared bus paths to serve all orders straightfor-
wardly because the algorithm for DVRP requires that the distance constraint should be uniform for each path. However,
the deadline of each order maybe different in our scenario, which makes the distance constraint of each path different and
it impossible to find a uniform distance standard for order partition. Moreover, it is hard to iteratively select an uncom-
pleted order set to one shared bus path satisfying the constraints of both deadlines of orders and capacity of shared bus.
This is because the uncompleted order set can be any subset of all orders, thus, the number of the uncompleted order set
is exponential.

The main contributions of this article are as follows:

• To the best of our knowledge, we are the first to study the scheduling for shared bus with nonuniform deadlines.
• We formulate the minimum shared bus scheduling (MBS) problem, and propose an (3 ln n + 5)-approximation scale

sensitive minimum shared bus scheduling algorithm (S-MBSA) for the shared bus with strong endurance, where n is
the number of orders.

• We propose an ( 3
2
⌈𝜌⌉⌈⌉ + 3⌈𝜌⌉ + 2)-approximation endurance sensitive minimum shared bus scheduling algorithm

(E-MBSA) for the large-scale orders scenario, where  is the maximum mileage of shared bus, and 𝜌 is a constant
determined by  and the distance from locations of orders to depot and corresponding destinations.

• To maximize the revenue under the limited number of shared buses, we further formulate the constrained maximum
revenue shared bus scheduling (CMRBS) problem, and present an 1 − e−

1
4+𝜖 -approximation constrained maximum

revenue shared bus scheduling algorithm (CMRBSA) to solve the CMRBS problem, where 𝜖 ∈ (0, 1) is a given constant.
• We conduct extensive simulations for the designed algorithms. The simulation results show that the designed

algorithms outperform the benchmark algorithms significantly.

The rest of this article is organized as follows. Section 2 reviews the state-of-art researches on vehicle routing problem
(VRP). We design the system model and formulate the MBS problem in Section 3. We present S-MBSA and E-MBSA to
solve the MBS problem in Sections 4 and 5, respectively. We formulate the CMRBS problem and propose the approxima-
tion algorithm CMRBSA to solve the CMRBS problem in Section 6. The simulation results are presented in Section 7. We
conclude this article in Section 8.

2 RELATED WORK

The recent researches on VRP mainly aimed to solve the route planning of shared bus,4,9,10 electric vehicle,17,18 drone,19

and shuttle.20-23 Ning et al.4 proposed an offline trip generation and assignment algorithm to effectively dispatch shared
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4 JIN et al.

buses for coping with passenger flows with similar distributions, and further designed an online arrival databased pas-
senger assignment algorithm to schedule shared buses in real time for coping with dynamic and random passenger flows.
Our research differs from the research in Reference 4 as follows: First, in our research, the deadline of each order maybe
different, we need to provide customized services for users. Second, the objectives of our article are to minimize the num-
ber of shared buses when shared buses can serve all orders and maximize the revenue of shared buses when the order
scale is larger than the total transportation capacity of shared buses. The objectives are different with that in Reference
4, of which the objective is to jointly maximize the number of passengers, minimize the total length of routes, and min-
imize the number of required buses. Kong et al.9 analyzed the resident travel behaviors to predict travel requirements,
and designed a dynamic programming algorithm to generate dynamic optimal routes for multiple operating buses. Kong
et al.10 developed the travel requirement description method, and route optimization algorithm by merging shared bus
data generation and collection to schedule shared buses. Jin et al.17 designed a unique wireless charging system for elec-
tric vehicles supported by the bus network and proposed the route scheduling algorithms for electric vehicles. Liu et al.18

proposed an assignment rescheduling mechanism of movable charging stations (MCSs), where the MCS assignments
are dynamically rescheduled. Jin et al.19 designed a wireless charging system for wireless rechargeable sensor network
through the bus network assisted drone in urban areas, and proposed a bus network assisted drone scheduling algorithm.
However, the existing scheduling algorithms cannot guarantee the arrival time to the destination.

In terms of shuttle scheduling, Cao and Ceder20 presented a decision-making method for the real-time autonomous
shuttle bus service using the deficit function-based graphical theory. Peng et al.21 proposed an optimal scheduling method
for autonomous shuttle bus by using multi-agent A* and cubic Bezier spiral path-smoothing algorithm. Liu et al.22 pro-
posed a visual analytics approach to facilitate assessment of actual, vary travel demands and plan night customized shuttle
systems. Akincilar23 proposed a method to produce a schedule for an airport shuttle service system in which it is war-
ranted that no arriving passenger waits at the airport more than 3 h under uncertain demand. However, the above research
cannot solve our problem of scheduling shared buses under constraints of nonuniform deadlines of orders and capacity
of shared bus.

Our MBS problem falls into the category of DVRP.24,25 The objective of DVRP is to find a minimum cardinality set of
tours originating at the depot that covers all vertices, such that each tour has length at most D. Laporte et al.24 gave two
exact algorithms for DVRP based on Gomory cuts and branch-and-bound. Li et al.25 studied DVRP with the objectives of
total distance and number of vehicles, and showed that any approximation guarantee for one objective implies a guarantee
with an additional loss of factor 2 for the other objective. Bansal et al.15 proposed a O(log D)-approximation algorithm for
DVRP. However, the distance constraint D in our problem is not uniform because the deadlines of orders can be different.

Our CMRBS problem is a variant of capacitated team orienteering problem (CTOP).26 The objective of CTOP is to
find service paths for multiple vehicles under the constraints on the capacity of each vehicle and the length of the route
of a vehicle, such that the profit sum of serving the nodes in the paths is maximized. Bock and Sanita26 proposed an
approximation algorithm for solving the CTOP problem. The solutions for CTOP problem cannot be used to solve CMRBS
problem straightforwardly because CTOP requires that the distance constraint should be uniform for each path. How-
ever, the deadline of each order maybe different in our scenario, which makes the distance constraints of each path
different.

Our study differs from the existing researches as follows. First, the deadline of each order maybe different, we need
to provide customized services for users. Second, we aim to find the paths for each shared bus under constraints of both
deadlines of orders and capacity of shared bus. To the best of our knowledge, the problem of shared bus scheduling with
nonuniform deadline has not been studied yet.

3 SYSTEM MODEL AND PROBLEM FORMULATION

We consider the shared buses are scheduled periodically, for example, one hour per round. We only study the schedul-
ing problem in one round, and the designed scheduling algorithm can be employed in all rounds. We consider that the
shared buses are homogeneous. Each shared bus has the same capacity 𝛾 (number of seats in shared bus), and the same
moving speed 𝛼. Let  be the maximum mileage of shared bus, which is determined by the energy or fuel of shared bus.
Without loss of generality, we assume that n orders are received within the current scheduling round. Let  be the set of
n orders. Each order oi ∈  is represented by a quadruple (ui, di, ti,Hi), where ui, di, ti, and Hi (1 ≤ |Hi| ≤ 𝛾) are location,
destination, deadline, and set of passengers of oi, respectively. Let Li be the sum of distance from the location of order oi
to the depot s and di. Here, deadline ti indicates that passengers in Hi have to arrive the destination within duration ti
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JIN et al. 5

( Li
𝛼

≤ ti ≤


𝛼

). In practice, any order oi is indivisible, that is, all the passengers in Hi should be served by the same shared
bus. Moreover, if |Hi| > 𝛾 or ti <

Li
𝛼

or ti >


𝛼

, we can simply reject this order.
From the perspectives of efficiency and economy, a shared bus only serves orders with the same destination for

saving energy and improving the experiences of passengers. Each shared bus starts from the depot s and receives pas-
sengers at the location designated by the orders. Along the trip, the shared buses can receive other passengers with
the same destination, and finally transport passengers to the destination within the minimum deadline of accepted
orders.

To complete all the orders, the shared buses should be effectively scheduled, that is, a path should be designed for
each shared bus. Let  be the scheduled path set of shared buses. For any path p ∈  , let (p) be the set of orders served
by the shared bus traveling along path p. Let |p| be the length of path p.

The objective of MBS problem is to minimize the number of shared buses, that is, number of scheduled paths, such
that all orders can be completed under constraints of deadlines and capacity of shared bus. The MBS problem can be
formulated as follows:

MBS min ||,

s.t. |p| ≤ 𝛼 min
oi∈(p)

{ti}, ∀p ∈  , (1a)

∑

oi∈(p)
|Hi| ≤ 𝛾, ∀p ∈  , (1b)

∪p∈ (p) = , (1c)

di = di′ , ∀oi, oi′ ∈ (p), oi ≠ oi′ , ∀p ∈  . (1d)

Constraint (1a) ensures that the passengers can arrive their destinations within their deadlines. Constraint (1b)
ensures that the number of passengers served by each shared bus is no more than the capacity of shared bus. Constraint
(1c) ensures that all orders can be completed. Constraint (1d) ensures that the orders served by the same shared bus have
same destination.

We summarize the frequently used notations in Table 2.

T A B L E 2 Frequently used notations

Notation Description

 Set of orders

ui Location of order oi

di Destination of order oi

ti Deadline of order oi

Hi Set of passengers of order oi

s Depot of shared buses

n Number of orders

𝛾 Capacity of shared bus

𝛼 Moving speed of shared bus

 Maximum mileage of shared bus

 Set of scheduled paths of shared buses

(p) Set of orders served by the shared bus traveling along path p


i Set of orders with same destination di

Δi Half of the maximum distance from location of order oi ∈ i to s and destination di

rj Price of passenger hj

K Maximum number of shared buses
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6 JIN et al.

4 SCALE SENSITIVE MINIMUM SHARED BUS SCHEDULING
ALGORITHM

4.1 Algorithm design

In this subsection, we present S-MBSA to solve the MBS problem. First of all, as the following theorem shows, it is NP-hard
to find the optimal solution for the MBS problem.

Theorem 1. MBS problem is NP-hard.

Proof. We consider the special case of MBS problem where every shared bus has sufficient seats, and the deadline of
any order oi ∈  is defined as ti =

D−‖(s,di)‖
𝛼

. Then the problem is simplified to find the minimum paths of shared buses
from the depot to the destinations to serve all orders under specific deadline constraints of orders. We can see that the
special case of MBS problem is equivalent to find the minimum tours of shared buses originating at the depot to serve all
orders under distance constraint D, and the last visited vertex before returning to the depot of each tour should be one of
destinations.

Next, we give an instance of DVRP16 as follows: given a set of vertices in a metric space, a specified depot, and a
distance bound D, find a minimum cardinality set of tours originating at the depot that covers all vertices, such that each
tour has length at most D.

We can see that the special case of MBS problem is harder than DVRP because the last visited vertex before returning
to the depot of each tour should be one of destinations in the special case of MBS problem. Since the DVRP problem is a
well-known NP-hard problem, the MBS problem is NP-hard. ▪

Since the MBS problem is NP-hard, it is impossible to compute the optimal solution in polynomial time unless P=NP.
We turn our attention to the approximation algorithm design.

Our MBS problem differs the original DVRP in following aspects: (1) MBS problem requires a minimum set of paths
rather than tours; (2) the orders of MBS problem have different deadlines; (3) each shared bus of MBS problem has capacity
constraint. Therefore, the existing solutions for DVRP cannot be used.

We propose the approximate algorithm, S-MBSA, for the MBS problem based on the greedy approach, where we itera-
tively select an uncompleted order set to one shared bus path maximizing the number of orders satisfying the constraints
of both deadlines and capacity. However, the uncompleted order set can be any subset of all orders, thus, the number of
the uncompleted order set is exponential.

Our solution is based on the following two facts: (1) Only the orders with same destination can be served by the same
shared bus; (2) the shared bus should arrive the destination before the tightest deadline among all accepted orders.

Dropping the capacity constraints, we can obtain n candidate order subsets based on the above facts. Specifically, we
regard the deadline ti of each order oi ∈  as the tightest deadline, then each order oi corresponds to a candidate order
subset, in which all orders have same destination di and their deadlines are no less than ti.

For each candidate order subset, we find the path maximizing the number of orders subject to the tightest deadline
of all orders in the candidate order subset. This problem is equivalent to OP15 that aims at finding a distance limited path
such that number of visited vertexes is maximized, and can be solved approximately.15 For all candidate order subsets,
we iteratively select a path with the most orders from all returns of OP solution. Finally, we partition the selected path
into multiple sub-paths to meet the capacity constraint through bin packing algorithm.27 The iteration terminates when
all orders are served.

As illustrated in Algorithm 1, we initial the uncompleted order set ′ (line 1). For each order oi ∈ ′, we
set a candidate order subset Ui including the depot and destination, in which the orders’ destinations are di and
deadlines are no less than ti (lines 4–9). Let E(Ui) be the set of edges between any two vertexes in Ui. Each
edge has a weight representing the distance between the vertexes. Then we obtain an undirected complete graph
Gi = (Ui,E(Ui)) (line 10). We find the path from s to di maximizing the number of orders with the tightest dis-
tance constraint 𝛼ti on Gi by calling function Orienteering(⋅) (line 11), which is 3-approximation for OP.15 We iter-
atively select path p′ with most orders among the obtained paths and remove the orders served by path p′ from

′ (line 13). We partition path p′ into some sub-paths by calling function Packing(⋅)27 for solving bin packing

problem, and then merge the obtained sub-paths into  (line 14). The iteration terminates when all orders in ′ are
completed.
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JIN et al. 7

Algorithm 1. S-MBSA

Input: Order set , capacity 𝛾 , moving speed 𝛼
Output: set of scheduled shared bus paths 

1:  ← ∅;′ ← ;
2: while ′ ≠ ∅ do

//obtain candidate order subsets
3: for each oi ∈ ′ do
4: Ui ← {s, di,ui};
5: for each oi′ ∈ ′ do
6: if oi′ ≠ oiςdi′ = diςti′ ≥ ti then
7: Ui ← Ui ∪ {ui′ };
8: end if
9: end for

10: Gi ← (Ui,E(Ui));
//find the path maximizing the number of orders subject to the tightest deadline

11: pi ← Orienteering(Gi, s, di, 𝛼ti);
12: end for
13: p′ ← arg max

pi∶oi∈′
|(pi)|;′ ← ′∖(p′);

//path partition
14:  ←  ∪ Packing(p′, 𝛾);
15: end while

4.2 Algorithm analysis

Theorem 2. The time complexity of S-MBSA is O(n7 log n).

Proof. S-MBSA is dominated by function Orienteering(⋅). The function Orienteering(⋅) providing 3-approximation OP solu-
tion15 takes O(n5 log n) time. There are total n orders, thus, the for-loop (lines 3–12) takes O(n6 log n) time. Since each
selected path can serve at least one order, the running time of S-MBSA is O(n7 log n). ▪

Theorem 3. S-MBSA is a (3 ln n + 5) -approximation algorithm for MBS problem.

Proof. Let OPT and OPT′ be the number of paths of optimal solution of the MBS problem with and without capacity
constraint, respectively. Note that OPT ≥ OPT′. We assume that the orders completed by shard buses in the sequence
o1, o2, … , on. Then, assuming oi, i = 1, 2, … ,n, is served by path pl, l = 1, 2, … ,OPT′. Consider the iteration in which
oi was served, the shared bus paths of optimal solution can serve the remaining orders in ′ with at most OPT′ paths.
Thus, each order is served by at most OPT′

|′|
paths, where |′| ≥ n − i + 1. Let cost(oi) be the average number of paths

serving order oi in the iteration when oi is served by path pl. Consider that pl is an 3-approximation solution (line 11),
we have

cost(oi) ≤ 3 OPT′

|′|
≤ 3 OPT′

n − i + 1
. (2)

Thus, the number of OP paths obtained by S-MBSA for serving all orders in  is equal to
∑n

i=1cost(oi). Then, we have

n∑

i=1
cost(oi) ≤

n∑

i=1
3 OPT′

n − i + 1
= 3

(
1 + 1

2
+ · · · + 1

n

)
OPT′ ≤ 3(ln n + 1)OPT′. (3)

For every OP path (line 11), it can be partitioned into some sub-paths by calling Packing(⋅), which is a 2-approximation
next-fit bin packing algorithm,27 and each sub-path serves at most 𝛾 passengers. It can also be ensured that the
number of additional sub-paths introduced in satisfying the capacity constraint is at most 2

𝛾

∑
oi∈

|Hi|. Note that
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8 JIN et al.

the capacity constraint alone imply that OPT ≥ 1
𝛾

∑
oi∈

|Hi|. So the number of paths in the final feasible solution is
at most

3(ln n + 1)OPT′ + 2
𝛾

∑

oi∈
|Hi| ≤ 3(ln n + 1)OPT + 2OPT = 3(ln n + 5)OPT. (4)

▪

5 ENDURANCE SENSITIVE MINIMUM SHARED BUS SCHEDULING
ALGORITHM

We can see that the time complexity and approximation ratio of S-MBSA are highly sensitive to the number of orders. We
propose an approximation algorithm, which is suitable for scenarios with large-scale orders.

5.1 Algorithm design

We present the E-MBSA algorithm for solving the MBS problem. The basic idea is as follows: We group all orders with
same destination based on the distance from the locations of orders to the depot and destinations. One shared bus only
accepts the orders in the same group. Since the distances from the locations of orders to the depot and destinations are
bounded in each group, we generate the minimum paths only visiting all orders. If these paths can be obtained, we can
assemble each path with depot and destinations and make sure that the assembled path satisfies the deadline constraint.
Therefore, for each group, we find a set of paths, which meet the tightest deadline constraint of orders in this group,
without depot and destinations. We expect that the scheduled paths can cover all orders in this group and the number
of paths is minimized. This problem is equivalent to the unrooted DVRP,28 which can be solved approximately. Then we
partition the above unrooted paths into some sub-paths to satisfy the capacity constraint, and assemble each sub-path
with the depot and corresponding destinations.

The whole process is illustrated in Algorithm 2. E-MBSA consists of the following phases.
Phase 1: Group orders according to distances
Leti be the set of orders whose destinations are di (lines 3–6). LetΔi be half of the maximum distance from location

of any order oi′ ∈ i to s and di (line 7):

Δi = 1
2

max
oi′ ∈i

{‖(s,ui′ )‖ + ‖(ui′ , di)‖}. (5)

For each order oi′ ∈ i, the slack between distance 𝛼ti′ andΔi is denoted by 𝛿i
i′ =

𝛼ti′

2
− Δi + 1 (line 9). Then, we remove

any order oi′ from i when 𝛿i
i′ is less than 1 to guarantee 𝛿i

i′ ≥ 1,∀oi′ ∈ i (line 10).
We define 𝜏 i

i′ as ⌈log2
𝛼ti′

2𝛿i
i′
⌉ (line 9) and 𝜏 i as the maximum value of 𝜏 i

i′ ,∀oi′ ∈ i (line 12). Then, we groupi into 𝜏 i + 1

subsets i
0,

i
1, … ,

i
𝜏

i , according to the half of distance from location of oi′ ∈ i to s and di (lines 14–20). The grouping
rule is as follows:


i
q =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

{
oi ∶

𝛼ti′

2
− 𝛿i

i′ <
1
2
(‖(s,ui′ )‖ + ‖(ui′ , di)‖) ≤ Δi

, if q = 0
}
,

{
oi ∶

𝛼ti′

2
− 2q

𝛿

i
i′ <

1
2
(‖(s,ui′ )‖ + ‖(ui′ , di)‖) ≤

𝛼ti′

2
− 2q−1

𝛿

i
i′ , if 1 ≤ q ≤ 𝜏 i − 1

}
,

{
oi ∶ 0 < 1

2
(‖(s,ui′ )‖ + ‖(ui′ , di)‖) ≤

𝛼ti′

2
− 2𝜏 i−1

𝛿

i
i′ , if q = 𝜏 i

}
.

(6)

For each subset i
q, q = 0, 1, 2, … , 𝜏

i, we execute Phase 2, 3, and 4.
Phase 2: Calculate unrooted paths
Let 𝛿i,q

min be the minimum slack of all orders in i
q (line 22). Let Ui

q be set of locations of orders in i
q, and E(Ui

q) be
the set of edges between any two locations in Ui

q. Each edge has a weight representing the distance between the vertexes.
Then we obtain an undirected complete graph Gi

q = (Ui
q,E(Ui

q)) (line 23). Then, we calculate the unrooted path sets Πi
q

satisfying the distance constraint 2q
𝛿

i,q
min − 1 by calling unrootedDVRP(⋅)28 on Gi

q (line 24).
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JIN et al. 9

Algorithm 2. E-MBSA

Input: Order set , capacity 𝛾 , moving speed 𝛼
Output: set of scheduled shared bus paths 

1:  ← ∅;′ ← ;
2: for each oi ∈ ′ do
∕∕ Phase 1: group orders according to distances

3: 
i ← {oi};

4: for each oi′ ∈ ′ do
5: if di′ = diςoi′ ≠ oi theni ← i ∪ {oi′ }; end if
6: end for
7: Δi ← 1

2
maxoi′ ∈i{‖(s,ui′ )‖ + ‖(ui′ , di)‖};

8: for each oi′ ∈ i do
9: 𝛿

i
i′ ←

𝛼ti′
2
− Δi + 1;𝜏 i

i′ ← ⌈log2
𝛼ti′
2𝛿i

i′
⌉;

10: if 𝛿i
i′<1 theni ← i∖{oi′ }; end if

11: end for
12: 𝜏

i ← maxoi′ ∈i 𝜏
i
i′ ;

13: for q = 0 to 𝜏 i doi
q ← ∅; end for

14: for each oi′ ∈ i do
15: if 𝛼ti′

2
− 𝛿i

i′<
1
2
(‖(s,ui′ )‖ + ‖(ui′ , di)‖) ≤ Δi then i

0 ← 
i
0 ∪ {oi′ }; end if

16: if 0< 1
2
(‖(s,ui′ )‖ + ‖(ui′ , di)‖) ≤

𝛼ti′
2
− 2𝜏i−1

𝛿

i
i′ then i

𝜏

i ← 
i
𝜏

i ∪ {oi′ }; end if
17: for q = 1 to 𝜏 i − 1 do
18: if 𝛼ti′

2
− 2q

𝛿

i
i′<

1
2
(‖(s,ui′ )‖ + ‖(ui′ , di)‖) ≤

𝛼ti′
2
− 2q−1

𝛿

i
i′ theni

q ← 
i
q ∪ {oi′ }; end if

19: end for
20: end for

∕∕Phase 2: calculate unrooted paths
21: for q = 0 to 𝜏 i do
22: 𝛿

i,q
min ← minoi′ ∈

i
q
{𝛿i

i′ };
23: Gi

q ← (Ui
q,E(Ui

q));
24: Πi

q ← unrootedDVRP(Gi
q, 2q

𝛿

i,q
min − 1);

25: Π′iq ← ∅;
∕∕Phase 3: partition paths based on capacity constraint

26: for each 𝜋 ∈ Πi
q doΠ′iq ← Π′iq ∪ Packing(𝜋, 𝛾); end for

∕∕Phase 4: append source and destination for each sub-path
27: for each 𝜋′ ∈ Π′iq do ←  ∪ {{s}

⨄
𝜋

′⨄{di}}; end for
28: end for
29: 

′ ← ′∖i;
30: end for

Phase 3: Partition paths based on capacity constraint
We partition each path 𝜋 ∈ Πi

q into some sub-paths by calling function Packing(⋅), and add the sub-paths into path set
Π′iq (line 26).

Phase 4: Append source and destination for each sub-path
We assemble s and di with each sub-path in Π′iq (line 27), where symbol

⨄
represents assembling the paths. Then we

merge the assembled paths into the final path set  (line 27).
Finally, we remove all orders in i from ′ (line 29). All orders are processed by above four phases. The iteration

terminates when all orders in ′ are completed.

5.2 Algorithm analysis

Theorem 4. The time complexity of E-MBSA is O(n4⌈⌉).

Proof. E-MBSA is dominated by the for-loop (lines 21–28). The function unrootedDVRP(⋅)28 (line 24) takes O(n3) time. The
function Packing(⋅) (line 26) takes O(n log n) time. We group i into 𝜏 i + 1 subsets, thus, the for-loop (lines 21–28) takes
O((𝜏 i + 1)n3) = O((maxoi′ ∈i⌈

𝛼ti′

2𝛿i
i′
⌉ + 1)n3) ≤ O(( ⌈⌉

2
+ 1)n3) time, where maxoi′ ∈i⌈

𝛼ti′

2𝛿i
i′
⌉ ≤

⌈⌉

2
. There are total n orders,

thus, the running time of E-MBSA is O(n4⌈⌉). ▪
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10 JIN et al.

Theorem 5. E-MBSA is an ( 3
2
⌈𝜌⌉⌈⌉ + 3⌈𝜌⌉ + 2)-approximation algorithm for MBS problem, where  is the maximum

mileage of shared bus and 𝜌 is a constant determined by  and the distance from locations of orders to depot and
corresponding destinations.

Proof. We first show that all the paths in  calculated by E-MBSA algorithm satisfy the deadline constraints. The total
length of edge (s,ui′ ) and (ui′ , di) of any order oi′ ∈ i

0 is at most 2Δi. Then, the path calculated by unrootedDVRP(⋅) (line
24) is at most 𝛿i,0

min − 1. Thus, a shared bus path (line 27) has length at most

2Δi + 𝛿i,0
min − 1 = 𝛼ti′ − 2𝛿i

i′ + 𝛿
i,0
min + 1 < 𝛼ti′ − 𝛿i

i′ + 1 ≤ 𝛼ti′ . (7)

Now consider the shared bus paths corresponding to order sets i
q, q = 1, 2, … , 𝜏

i. Each path 𝜋 ∈ Πi
q has length at

most 2q
𝛿

i,q
min − 1. The total length of edge (s,ui′ ) and (ui′ , di) of order oi′ ∈ i

q is at most 2( 𝛼ti′

2
− 2q−1

𝛿

i
i′ ). So each path (line

27) has length at most

2
(
𝛼ti′

2
− 2q−1

𝛿

i
i′

)
+ 2q

𝛿

i,q
min − 1 = 𝛼ti′ − 2q

𝛿

i
i′ + 2q

𝛿

i,q
min − 1 = 𝛼ti′ − 2q(𝛿i

i′ + 𝛿
i,q
min) − 1 < 𝛼ti′ . (8)

Therefore, E-MBSA outputs a feasible solution satisfying the deadline constraint alone of the MBS problem.
We now prove the performance guarantee of this algorithm. Let OPT and OPT′ be the number of paths of optimal

solution of the MBS problem with and without capacity constraint, respectively. Note that OPT ≥ OPT′. We assume that
is grouped into m subsets1

,
2
, … ,

m when E-MBSA terminates. Note that ∪m
i=1

i =  andi ∩ i′ = ø, i ≠ i′,∀i, i′ =
1, 2, … ,m. Let Γi be the paths that complete all orders ofi in the optimal solution of the MBS problem without capacity
constraint. Let OPT′i be the number of paths of Γi. Note that

∑m
i=1OPT′i = OPT′.

For any path 𝜎i ∈ Γi, let 𝜎i
q denote the path assembled by source s, destination di, and order intersection of (𝜎i) and


i
q. The length of 𝜎i

q is at most 𝛼ti′ − 2( 𝛼ti′

2
− 2q

𝛿

i
i′ + 1) = 2q+1

𝛿

i
i′ − 2. The distance constraint oni

q in E-MBSA is 2q
𝛿

i,q
min − 1.

So, we have

2q+1
𝛿

i
i′ − 2

2q
𝛿

i,q
min − 1

<

2(2q
𝛿

i,q
max − 1)

2q
𝛿

i,q
min − 1

, (9)

where 𝛿i,q
max = maxoi′ ∈i

q
{𝛿i

i′ }.
According to line 18 and definition of 𝛿i

i′ , we have

𝛿

i
i′ + Δ

i − 2q
𝛿

i
i′ − 1 < 1

2
(‖(s,ui′ )‖ + ‖(ui′ , di)‖)

≤ 𝛿
i
i′ + Δ

i − 2q−1
𝛿

i
i′ − 1. (10)

Based on the inequality (10), we have 𝛿i
i′ >

1
2
(‖(s,ui′ )‖+‖(ui′ ,di)‖)−Δi+1

1−2q and 𝛿i
i′ ≤

1
2
(‖(s,ui′ )‖+‖(ui′ ,di)‖)−Δi+1

1−2q−1 , respectively. Thus,
we have

𝛿

i,q
min =

Δi − 1
2
(‖(s,ui′ )‖ + ‖(ui′ , di)‖) − 1

2q − 1
, (11)

𝛿

i,q
max =

Δi − 1
2
(‖(s,ui′ )‖ + ‖(ui′ , di)‖) − 1

2q−1 − 1
. (12)

For convenience, we define 𝜇i as Δi − 1
2
(‖(s,ui′ )‖ + ‖(ui′ , di)‖) − 1 and have 𝜇i ≥ 2q − 1. Then, we have 𝛿i,q

min =
𝜇i

2q−1
and 𝛿i,q

max =
𝜇i

2q−1−1
.

From Equations (9), (11), and (12), we have

2q+1
𝛿

i
i′ − 2

2q
𝛿

i,q
min − 1

<

2
(

2q

2q−1−1
𝜇i − 2

)

2q

2q−1
𝜇i − 1

. (13)
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JIN et al. 11

Let z(q) be 2q, we have
2q+1

𝛿

i
i′
−2

2q
𝛿

i,q
min−1

<

(4𝜇iz+2z−4)(z−1)
(𝜇iz+z−1)(z−2)

. Next, we define function f (z) as ((2𝜇i+1)z−2)(z−1)
((𝜇i+1)z−1)(z−2)

. Note that z ∈
(

2, 2𝜏 i−1
]
.

Moreover, we define function Q(z) as ((2𝜇i + 1)z − 2)(z − 1), S(z) as ((𝜇i + 1)z − 1)(z − 2), and g(z) as Q(z)
S(z)

. Thus, we can
obtain the following equations.

d(Q(z))
dz

= (4𝜇i + 2)z − (2𝜇i + 3), (14)

d(S(z))
dz

= 2(𝜇i + 1)z − (2𝜇i + 3), (15)

d2(Q(z))
dz2 = 4𝜇i + 2, (16)

d2(S(z))
dz2 = 2(𝜇i + 1). (17)

From Equations (14) and (15), we have the first-order derivative of g(z) as follows.

d(g(z))
dz

=

(
d(Q(z))

dz
S(z) − Q(z) d(S(z))

dz

)

(S(z))2

= 𝜇iz(4 − (2𝜇i + 3)z)
(S(z))2

. (18)

From Equations (16) and (17), we have the second-order derivative of g(z) as follows:

d2(g(z))
dz2 =

((
d2(Q(z))

dz2 S(z) − Q(z) d2(S(z))
dz2

)
S(z) − 2 d(S(z))

dz

(
d(Q(z))

dz
S(z) − Q(z) d(S(z))

dz

))

(S(z))3

= 2𝜇i((𝜇i + 1)(2𝜇i + 3)z3 − 6(𝜇i + 1)z2 + 4)
(S(z))3

. (19)

Clearly, the second-order derivative of g(z) is larger than 0 on domain (2, 2𝜏 i−1]. Thus, the function g(z) is a concave
function, and the function f (z) is also a concave function. So, the maximal value of function f (z) is f (2𝜏 i−1) and we have
f (2𝜏 i−1) ≤ f (2

1
2
⌈⌉−1) = f ( 1

2

√
2
⌈⌉

). Let Δ be max
oi∈

{‖(s,ui)‖ + ‖(ui, di)‖}. Then, we have

f
(

1
2

√
2
⌈⌉

)

= 2

(

(2𝜇i + 1) 1
2

√
2
⌈⌉

− 2
)(

1
2

√
2
⌈⌉

− 1
)

(

(𝜇i + 1) 1
2

√
2
⌈⌉

− 1
)(

1
2

√
2
⌈⌉

− 2)
) = 2

(

(2𝜇i + 1)
√

2
⌈⌉

− 4)(
√

2
⌈⌉

− 2
)

(

(𝜇i + 1)
√

2
⌈⌉

− 2)(
√

2
⌈⌉

− 4)
) . (20)

Therefore, we have

2q+1
𝛿

i
i′ − 2

2q
𝛿

i,q
min − 1

< 2

(

(2𝜇i + 1)
√

2
⌈⌉

− 4
)(√

2
⌈⌉

− 2
)

(

(𝜇i + 1)
√

2
⌈⌉

− 2
)(√

2
⌈⌉

− 4
))

≤ max
oi∈i

⎧
⎪
⎪
⎨
⎪
⎪
⎩

2
((2𝜇i + 1)

√
2
⌈⌉

− 4)(
√

2
⌈⌉

− 2)

((𝜇i + 1)
√

2
⌈⌉

− 2)
(√

2
⌈⌉

− 4
))

⎫
⎪
⎪
⎬
⎪
⎪
⎭
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12 JIN et al.

= max
oi∈i

⎧
⎪
⎪
⎨
⎪
⎪
⎩

2

(

2Δi − (‖(s,ui′ )‖ + ‖(ui′ , di)‖ − 1)
√

2
⌈⌉

− 4
)(√

2
⌈⌉

− 2
)

((

Δi − 1
2
(‖(s,ui′ )‖ + ‖(ui′ , di)‖)

√
2
⌈⌉

− 2
)(√

2
⌈⌉

− 4
)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

≤ max
oi∈

⎧
⎪
⎪
⎨
⎪
⎪
⎩

4

(√
2
⌈⌉

− 2
)(√

2
⌈⌉

(2Δ − (‖(s,ui)‖ + ‖(ui, di)‖) − 1) − 4
)

(√
2
⌈⌉

− 4
)(√

2
⌈⌉

(Δ − (‖(s,ui)‖ + ‖(ui, di)‖)) − 4
)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

. (21)

For convenience, we define 𝜌 = max
oi∈

{

4 (
√

2
⌈⌉
−2)(

√
2
⌈⌉
(2Δ−(‖(s,ui)‖+‖(ui,di)‖)−1)−4)

(
√

2
⌈⌉
−4)(

√
2
⌈⌉
(Δ−(‖(s,ui)‖+‖(ui,di)‖))−4)

}

. So the path 𝜎i
q can be split into ⌈𝜌⌉

unrooted paths, whose length is at most 2q
𝜎

i,q
min − 1. Splitting each tour in Γi in this manner gives us a set Θ of at

most ⌈𝜌⌉|Γi| = ⌈𝜌⌉OPT′i unrooted paths over i
q, that together cover all orders in i

q. So Θ is a feasible solution to
the unrooted DVRP instance on i

q with length bound 2q
𝜎

i,q
min − 1. Using the 3-approximation to unrooted DVRP, we

get |Πi
q| ≤ 3⌈𝜌⌉OPT′i , for all q = 0, 1, … , 𝜏i. Thus, the total number of paths completing all orders in i is at most

∑
𝜏

i

q=0|Π
i
q| ≤ 3⌈𝜌⌉(𝜏 i + 1)OPT′i . Therefore, the number of paths completing all orders in  is at most

∑m
i=13⌈𝜌⌉(𝜏 i +

1)OPT′i ≤ 3⌈𝜌⌉( ⌈⌉
2
+ 1)OPT′.

Similar to Theorem 3, for every unrooted DVRP path (line 24), it can be partitioned into some sub-paths by calling
Packing(⋅). So the number of paths in the final feasible solution is at most

3⌈𝜌⌉
(
⌈⌉

2
+ 1

)

OPT′ + 2
𝛾

∑

oi∈
|Hi| ≤ 3⌈𝜌⌉

(
⌈⌉

2
+ 1

)

OPT + 2OPT

=
(3

2
⌈𝜌⌉⌈⌉ + 3⌈𝜌⌉ + 2

)
OPT. (22)

▪

Remark. We can see that the time complexity and approximation ratio of S-MBSA are sensitive to the number of orders,
while the approximation ratio of E-MBSA is sensitive to the endurance of shared bus. Therefore, S-MBSA is more suitable
for the shared bus with strong endurance, and E-MBSA is more suitable for scenarios with large-scale orders.

6 CONSTRAINED MAXIMUM REVENUE SCHEDULING

When the order scale is larger than the total transportation capacity of shared buses, it is impossible to serve all
orders. In this section, we study the scheduling of shared buses to maximize the revenue under the limited num-
ber of shared buses, formulate the CMRBS problem, and present the approximation algorithm to solve the CMRBS
problem.

6.1 Problem formulation

Let rj be the price of each passenger hj ∈ Hi, where rj is determined by the distance from the location of order oi to the
destination di. We consider that the number of shared buses is limited by K. We define the revenue of any path p ∈  as
R(p) =

∑
oi∈(p)

∑
hj∈Hi

rj. Then, the revenue of all scheduled shared buses can be calculated by:

R() =
∑

p∈
R(p). (23)

The objective of CMRBS problem is maximizing the revenue of K shared buses under both constraints of deadlines of
orders and capacity of shared bus.
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JIN et al. 13

CMRBS max R(),
s.t. |p| ≤ 𝛼 min

oi∈(p)
{ti}, ∀p ∈  , (24a)

∑

oi∈(p)
|Hi| ≤ 𝛾, ∀p ∈  , (24b)

(p) ∩ (p′) = ø, p ≠ p′, ∀p, p′ ∈  , (24c)

|| ≤ K, (24d)

di = di′ , ∀oi, oi′ ∈ (p), oi ≠ oi′ ,∀p ∈  . (24e)

Constraint (24a) ensures that the passengers served by any shared bus can arrive their destinations within their dead-
lines. Constraint (24b) ensures that the number of passengers of each shared bus is no more than the capacity of shared
bus. Constraint (24c) ensures that any order can only be served by at most one shared bus. Constraint (24d) ensures that
the number of shared buses is no more than K. Constraint (24e) ensures that only the orders with same destination can
be served by the same shared bus.

6.2 Algorithm design

In this subsection, we present the CMRBSA to solve the CMRBS problem. First of all, as the following theorem shows, it
is NP-hard to find the optimal solution for the CMRBS problem.

Theorem 6. CMRBS problem is NP-hard.

Proof. Consider the special case of CMRBS where deadlines and destinations of all orders are the same, that is, ti = ti′ = t,
di = di′ = d for any two orders oi, oi′ ∈ . Then the problem is simplified to schedule at most K shared bus paths from
the depot s to the destination d with length at most 𝛼t to maximize the total revenue under the constraint of capacity.
This simplified problem is equivalent to CTOP problem,26 which is a well-known NP-hard problem. Since CTOP is a
well-known NP-hard problem, the CMRBS problem is NP-hard. ▪

We propose the approximate algorithm, CMRBSA, for the CMRBS problem based on the greedy approach with K-stage
covering framework.29 Basically, we iteratively select an uncompleted order set to one shared bus path maximizing the
revenue under the constraints of both deadlines and capacity. However, finding the uncompleted order set is NP-hard
because the number of the possible uncompleted order set is exponential. Similar to Algorithm 1, we generate a candidate
order subset Ui for each order oi, in which all orders have same destination di and their deadlines are no less than ti.
For each candidate order subset, we find a path from depot to corresponding destination maximizing the revenue under
constraints of deadline ti and capacity 𝛾 by solving capacitated orienteering problem (COP).26 We iteratively select the
path with maximum revenue from the paths of all candidate order subset. The iteration terminates when the number of
paths reaches K.

The whole process is illustrated in Algorithm 3. For each order oi, we set a candidate order subset Ui, in which the
orders’ destinations are the same to di and deadlines are no less than ti (lines 4–7). Then we obtain an undirected complete
graph Gi = (Ui,E(Ui)) (line 8). Then, we find path pi from s to di maximizing the revenue with length at most 𝛼ti and
number of passengers at most 𝛾 by calling function C Orienteering(⋅) (line 9). Moreover, we select the path p̃k from the
above obtained paths (line 11), and remove the orders completed by p̃k from′ (line 13). The above process is iterated by
K times.

6.3 Algorithm analysis

Theorem 7. The time complexity of CMRBSA is O(Kn max{
∑⌊

3+𝜖
𝜖

⌋

x=1 Cx
n,n7 log n}, where 𝜖 ∈ (0, 1) is a given constant.
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14 JIN et al.

Algorithm 3. CMRBSA

Input: Order set , capacity 𝛾 , moving speed 𝛼, price rj of each passenger hj, number of shared buses K, 𝜖 ∈ (0, 1)
Output: set of scheduled shared bus paths 

1:  ← ∅;′ ← ;k ← 0;
2: while k<K do
3: for each oi ∈ ′ do
4: Ui ← {s, di,ui};
5: for each oi′ ∈ ′ do
6: if oi′ ≠ oiςdi′ = diςti′ ≥ ti then Ui ← Ui ∪ {ui′ }; end if
7: end for
8: Gi ← (Ui,E(Ui));
9: pi ← C_Orienteering(Gi, s, di, 𝛼ti, 𝜖);

10: end for
11: p̃k ← arg max

pi∶oi∈′
R(pi);

12:  ←  ∪ {p̃k};k ← k + 1;
13: 

′ ← ′∖(p̃k);
14: end while

Proof. CMRBSA is dominated by function C Orienteering(⋅) (line 9), which takes O(max{
∑⌊

3+𝜖
𝜖

⌋

x=1 Cx
n,n7 log n} time,15,26

where 𝜖 ∈ (0, 1) is a given constant. Since there are n orders and K shared bus, the running time of CMRBSA is

O(Kn max{
∑⌊

3+𝜖
𝜖

⌋

x=1 Cx
n,n7 log n}. ▪

Theorem 8. CMRBSA is a (1 − e−
1

4+𝜖 )-approximation algorithm for the CMRBS problem, where 𝜖 ∈ (0, 1) is a given constant.

Proof. Let p∗i be the path of optimal solution satisfying constraints of both deadline ti for any order oi ∈  and capacity
𝛾 . First, we can find the path pi with 1

4+𝜖
R(p∗i ) revenue by calling C Orienteering(⋅) to solve COP (line 9), where 𝜖 ∈ (0, 1)

is a given constant. Second, we select path p̃k with the maximum revenue from all the above obtained paths (line 11).
Thus, path p̃k can obtain at least 1

4+𝜖
R(p∗i ) revenue. Moreover, let ∗(K) be {p̃∗1, p̃

∗
2, … , p̃∗K} be the paths of optimal solu-

tion of CMRBS problem, and (k) be {p̃1, p̃2, … , p̃k} are the solution constructed up to the end of the k-th while loop
of CMRBSA, where k ∈ [1,K]. At least R(∗(K)) − R((k)) revenue of orders uncompleted by (k) are completed by

∗(K). Thus, one of the K paths in ∗(K) can obtain at least 1

K
(R(∗(K)) − R((k − 1))) revenue of these orders accord-

ing to pigeonhole principle. Because each path in (k) is a (4 + 𝜖)-approximation to the maximum revenue path, we have
R(p̃k) ≥

1
4+𝜖
(R(∗(K)) − R((k − 1))) for k = 1, … ,K. Furthermore, we have R((1)) = R(p̃1) ≥

1
4+𝜖

R(∗(1)) when k = 1
and the following equation from the induction on k when k > 1.

R((k + 1))
= R((k)) + R(p̃k+1)

≥ R((k)) + 1
4 + 𝜖

(R(∗(K)) − R((k)))

=
(

1 − 1
(4 + 𝜖)K

)

R((k)) + R(∗(K))
(4 + 𝜖)K

≥

(

1 − 1
(4 + 𝜖)K

)(

1 −
(

1 − 1
(4 + 𝜖)K

)k
)

R(∗(K)) + 1
(4 + 𝜖)K

R(∗(K))

=

(

1 −
(

1 − 1
(4 + 𝜖)K

)k+1
)

R(∗(K)). (25)

Thus, we have R((k)) ≥ (1 − (1 − 1
(4+𝜖)K

)K)R(∗(K)). Since 1 − (1 − 1
(4+𝜖)K

)K > 1 − e−
1

4+𝜖 , CMRBSA provides a (1 −

e−
1

4+𝜖 )-approximate solution to the CMRBS problem. ▪
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JIN et al. 15

From the perspective of economy, maximizing the revenue is the most rational optimization objective of shared bus.
However, over the long term, only pursuing revenue may result that the passengers in remote areas or far away from the
starting point will not be served, thus decreasing the shared bus service experience of users. Therefore, maximizing the
number of orders or passengers is an effective way to improve user satisfaction and fairness.

If there are large-scale local activities (such as ball games, concerts, etc.), we may face the constrained shared bus
scheduling problem because of the limited number of shared buses. There may be a business cooperation relationship
between the activity organizer and the shared bus operator. Maximizing the number of orders or passengers may bring
more benefits to the shared bus operator.

The framework of CMRBSA can be used to solve the above problems, that is, constrained maximum orders shared
bus scheduling problem and constrained maximum passengers shared bus scheduling problem, and the performance can
still be guaranteed.

7 NUMERICAL EXPERIMENTS

In this section, we conduct extensive simulations to verify the performance of proposed algorithms with different number
of orders n, endurance, number of shared buses K, capacity 𝛾 , speed 𝛼, number of passengers, deadlines, and value of 𝜖.

7.1 Simulation setup

For our simulations, we use the bus lines in Brooklyn, New York City, where the data are from “New York City Bus Data”.30

This dataset is from the NYC MTA bus data stream service, and is recorded from the MTA SIRI Real Time data feed
and the MTA GTFS Schedule data. In roughly 10 min increments the bus location, route, bus stop and more is included
in each row. The scheduled arrival time from the bus schedule is also included, to give an indication of where the bus
should be (how much behind schedule, or on time, or even ahead of schedule). There are 103 bus lines in Brooklyn.
Table 3 gives the schedules of some bus lines in transportation network including Bus ID, number of bus stops, and route
length. To compare the proposed algorithms with the benchmarks, we select some bus lines which have the same staring
station as an instance. In the instance, we randomly choose n bus stops from the bus lines as the locations of orders, and
select a starting station of buses as the depot and destinations of buses as the destinations. The deadline and number
of passengers of each order follow the Normal distribution with 𝜇1 = 2.1, 𝜎1 = 0.1, and 𝜇2 = 10, 𝜎2 = 1, respectively. We
provide an example illustrated in Figure 2, which shows 1 depot, 10 destinations, and 61 locations of orders. We compute
the distance between any two nodes through Google map.11 The default parameter settings of our simulations are listed
in Table 4. All the simulations were run on a cloud server ECS31 with 12 core Intel Xeon Platinum 8269CY and 24 GB
memory. Each measurement is averaged over 100 instances.

7.2 Performance evaluation for MBS problem

In this subsection, we compare S-MBSA and E-MBSA with following three benchmark algorithms:

T A B L E 3 Schedules of bus lines in transportation network

Bus ID Number of bus stops Route length (km)

B6 82 12.42

B12 34 5.82

B15 69 12.81

B35 46 9.85

B41 47 12.02

B45 7 4.21

B69 34 8.04
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16 JIN et al.

F I G U R E 2 Example of a transportation network. The red node represents depot, the green nodes represent locations of orders, and the
yellow nodes represent the specified destinations.

T A B L E 4 Parameter settings in our experiments

Parameter Value in small-scale network Value in large-scale network

n 10 200

𝛾 30 30

𝛼 30 km/h 30 km/h

K 2 10

 41 km 41 km

Price 4.5 $/km 4.5 $/km

𝜖 0.5 0.5

• OPT: The optimal solution for MBS problem. Enumerate all the feasible paths of MBS problem, and select the minimum
path set, which can complete all orders and has no intersection.

• Greedy passenger (GP): Select the orders with the most passengers greedily under the constraints of deadlines and
capacity in each iteration, and then remove the orders served by scheduled paths. The iteration terminates when all
orders are served.

• Capacitated orienteering (CO): Group all orders in based on the destination. For each order group, CO finds the path
maximizing the number of orders subject to the tightest deadline of all orders in the group by solving COP (calling
C Orienteering(⋅)), and then remove the orders served by scheduled paths. The iteration terminates when all orders are
served.
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JIN et al. 17

F I G U R E 3 Number of shared buses in small-scale network. (A) Number of shared buses versus capacity. (B) Number of shared buses
versus number of orders

T A B L E 5 Running time of S-MBSA, E-MBSA, and OPT with number of orders

Number of orders S-MBSA (ms) E-MBSA (ms) OPT (ms)

6 59.32 191.05 385.60

7 66.40 240.10 2310.56

8 79.24 252.18 19,342.24

9 216.18 344.52 222,445.57

10 294.17 385.43 2,125,725.83

To compare with OPT, we first conduct the small-scale simulations. We vary the capacity of shared bus from 15 to 30,
and the number of orders from 6 to 10, respectively, and measure the number of shared buses. Figure 3 shows that the
number of shared buses of S-MBSA and E-MBSA increases by 43.72% and 54.55% of that of OPT on average, respectively.
The performance gaps between S-MBSA, E-MBSA, and OPT are bounded since S-MBSA and E-MBSA can output the
solutions with guaranteed performance.

Next, we vary the number of orders from 6 to 10 and the endurance of shared bus from 23 to 41 km, respectively,
and measure the running time of designed algorithms. Tables 5 and 6 show that the running time of S-MBSA, E-MBSA,
and OPT. We can see from Table 5 that the running time of all three algorithms increases sharply when the number
of orders increases. When there are 10 orders, S-MBSA and E-MBSA can complete the scheduling in 294.17 and 385.43
ms, respectively, which are much faster than OPT. As shown in Table 6, the running time of E-MBSA increases with
increasing endurance. This is consistent with our time complexity analysis of E-MBSA given in Theorem 4. On the other
hand, the running time of S-MBSA is insensitivity to the endurance of shared bus because the running time of S-MBSA
only depends on the number of orders. Overall, we can see from Figure 3 and Tables 5 and 6, the number of shared buses
and running time of S-MBSA is 21.78% and 41.74% lower than E-MBSA on average. This indicates that S-MBSA is more
suitable for the scenarios with small-scale orders or with strong endurance.

Then, we conduct the large-scale simulations to evaluate the expansibility of proposed algorithms. We increase the
deadlines by varying 𝜇1 of distribution from 1.4 to 2.3. As shown in Figure 4A–C, the number of shared buses of S-MBSA,
CO and GP decreases at first when the speed, deadline or endurance increases since the shared bus can serve more orders
with longer distance constraint, and then keeps stable because of the capacity constraint of each shared bus. The num-
ber of shared buses of E-MBSA almost does not change with the increasing speed and deadline, and increases with the
increasing endurance. This is because the performance of E-MBSA mainly depends on the performance of the approxi-
mation solution of unrooted DVRP problem (insensitive to speed and deadline) and the number of subsets of each order
group with same destination (determined by endurance). This is consistent with our performance analysis of E-MBSA
given in Theorem 5. Figure 4D shows that the number of shared buses of all four algorithms decreases accordingly with
the increasing capacity. This is because the larger capacity is, the less shared buses are needed. We increase the number
of passengers by varying 𝜇2 of distribution from 4 to 13. Figure 4E,F shows that the number of shared buses of all four
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18 JIN et al.

T A B L E 6 Running time of S-MBSA, E-MBSA, and OPT with endurance

Number of orders S-MBSA (ms) E-MBSA (ms) OPT (ms)

23 285.75 290.45 2,082,951.25

26 291.69 295.87 2,092,257.34

29 292.65 327.43 2,104,503.06

32 293.09 336.87 2,114,359.57

35 292.50 350.66 2,124,643.48

38 293.45 367.82 2,124,456.71

41 292.17 385.43 2,127,153.32

F I G U R E 4 Number of shared buses in large-scale network. (A) Number of shared buses versus speed. (B) Number of shared buses
versus deadline. (C) Number of shared buses versus endurance. (D) Number of shared buses versus capacity. (E) Number of shared buses
versus number of passengers. (F) Number of shared buses versus number of orders

algorithms increases accordingly with the increasing number of passengers and orders. This is because the more
passengers or orders there are, the more scheduled shared buses are needed.

The solutions of S-MBSA and E-MBSA are always better than those of CO and GP. On average, the number of shared
buses of S-MBSA and E-MBSA reduces by 20.23% and 33.27% of that of CO, and reduces by 17.98% and 31.27% of that of
GP, respectively. Therefore, the proposed algorithms significantly outperforms the benchmark algorithms. This is because
GP always choose the order with most passengers, ignoring the distance to the location of next order. CO always choose
the order by solving COP with the tightest deadline of all orders in the group. However, the scheduled path with tightest
deadline can only serve small number of orders. Actually, the orders with tight deadlines may be served by the shared bus
serving for orders with large deadlines.

In addition, we can see from Figure 4 that E-MBSA reduces by 16.82% of number of shared buses of S-MBSA on
average. This indicates that E-MBSA is more suitable for scenarios with large-scale orders.
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JIN et al. 19

7.3 Performance evaluation for CMRBS problem

In this subsection, we evaluate the performance of CMRBSA with following three benchmark algorithms:

• COPT: The optimal solution for CMRBS problem. Enumerate all the feasible paths of CMRBS problem, and select the
path set with maximum total revenue, where the path set has no intersection, and the number of paths is no more than
K.

• Greedy efficiency (GE): Select the orders with the maximum ratio of revenue to the number of passengers greedily
under the constraints of deadlines and capacity in each iteration. The iteration terminates when the number of paths
reaches K.

• Greedy revnue (GR): Select the orders with the maximum revenue greedily under the constraints of deadlines and
capacity in each iteration. The iteration terminates when the number of paths reaches K.

Similarly, we first conduct the small-scale simulations. We vary the number of shared buses from 1 to 5, and the
number of orders from 6 to 10, respectively. Figure 5 shows that CMRBSA can obtain 52.70% revenue of COPT on average.
The performance gap between CMRBSA and COPT is small since CMRBSA can output the solutions with guaranteed
performance.

Next, we measure the running time of designed algorithm with different number of orders, maximum number of
buses and value of 𝜖. We can see from Tables 7 and 8 that the running time of both CMRBSA and COPT increases sharply
when the number of orders and number of shared buses increase. When there are 10 orders with at most 5 shared buses,
CMRBSA can complete the scheduling in 1233.13 ms, which is much faster than COPT. As shown in Table 9, the running
time of CMRBSA increases accordingly with the increasing value of 𝜖. This is consistent with our time complexity analysis
of CMRBSA given in Theorem 7.

Then, we conduct the large-scale simulations. As shown in Figure 6A,B, the revenue of CMRBSA, GE, and GR
increases at first when the speed and deadline increases since the shared buses can serve more orders, and then keeps sta-
ble because of the capacity constraint. Figure 6C–E shows that the revenue of all three algorithms increases accordingly
with the increasing number of orders, capacity, and number of shared buses, respectively. As shown in Figure 6F, the

F I G U R E 5 Revenue in small-scale network. (A) Revenue versus number of shared buses. (B) Revenue versus number of orders

T A B L E 7 Running time of CMRBSA and COPT with number of orders

Number of orders CMRBSA (ms) COPT (ms)

6 126.14 262.30

7 215.36 1495.45

8 377.90 14,023.56

9 692.08 151,659.21

10 735.25 1,963,956.80
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20 JIN et al.

T A B L E 8 Running time of CMRBSA and COPT with number of shared buses

Number of orders CMRBSA (ms) COPT (ms)

1 223.56 1,617,873.05

2 735.25 1,963,956.80

3 835.37 2,376,637.43

4 1013.66 3,815,923.67

5 1233.13 4,659,314.81

T A B L E 9 Running time of CMRBSA and COPT with 𝜖

Number of orders CMRBSA (ms) COPT (ms)

0.5 735.25 1,963,956.8

0.6 890.82 1,963,956.8

0.7 1121.36 1,963,956.8

0.8 1379.57 1,963,956.8

0.9 1413.61 1,963,956.8

F I G U R E 6 Revenue in large-scale network: (A) Revenue versus speed. (B) Revenue versus deadline. (C) Revenue versus number of
orders. (D) Revenue versus capacity. (E) Revenue versus number of shared buses. (F) Revenue versus 𝜖

revenue of CMRBSA decreases accordingly with the increasing value of 𝜖. This is because the performance of CMRBSA
relies on the performance of the approximation solution of COP, which depends on the value of parameter 𝜖. This is
consistent with our performance analysis of E-MBSA given in Theorem 8.

The performance of CMRBSA is always better than that of GE and GR. We can see from Figure 6 that CMRBSA
increases 36.52% and 24.46% of revenue of GE and GR on average, respectively. Therefore, the proposed algorithm sig-
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JIN et al. 21

nificantly outperforms the benchmark algorithms. This is because GE and GR always choose the order with maximum
efficiency and maximum revenue, respectively, ignoring the distance to the location of next order.

7.4 Summary

Overall, S-MBSA and E-MBSA can largely decrease the number of shared buses compared with benchmark algorithms on
average. S-MBSA is more suitable for the shared bus with strong endurance, and E-MBSA is more suitable for scenarios
with large-scale orders. Moreover, CMRBSA show significant superiority in terms of revenue.

8 CONCLUSIONS AND FUTURE WORK

In this article, we have studied the shared bus scheduling problem with nonuniform deadlines. We have formulated MBS
problem to minimize the number of shared buses, that is, number of scheduled paths, such that all orders can be com-
pleted under constraints of deadlines and capacity of shared bus. We have proposed the approximation algorithm S-MBSA
based on greedy approach and approximation solution of OP problem. We also have proposed the second approxima-
tion algorithm E-MBSA based on order partition and approximation solution of unrooted DVRP problem. To maximize
the revenue under the limited number of shared buses, we have further formulated CMRBS problem and proposed an
approximation algorithm CMRBSA based on the greedy approach with K-stage covering framework. The efficiency of the
proposed algorithms has been confirmed by both of the theoretical analysis and numerical simulations. The simulation
results show that our algorithms can outperform the benchmark algorithms significantly.

In the future, we plan to consider our MBS and CMRBS problem where the shared buses have different capacity.
Moreover, the price of passenger is closely related to the traveling cost of passenger and the revenue of shared buses, the
pricing mechanism design is important to improve the market efficiency of shared bus scheduling.
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