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Abstract—By deploying or scheduling wireless chargers, Wire-
less Rechargeable Sensor Networks (WRSNs) can provide continu-
ous energy supply for the rechargeable devices. Recently, a novel
cooperative charging service model was proposed for WRSNs,
which provides a business framework of on-demand wireless
charging service. Based on such model, the existing work mainly
considered the spatially cooperative charging scheduling problem
but ignored the cooperation in temporal dimension. In practice,
we can find that the QoS requirement of applications often
requires an upper bound constraint on the out-of-service time for
each device, which implies the charging service cost can benefit
from the temporal cooperation of the devices. In this paper, we
focus on the device-initiated mobile cooperative charging problem
in both spatial and temporal dimensions. Our objective is to
find a spatio-temporal cooperative charging scheduling strategy to
minimize the total charging service cost, subject to the constraints
that the out-of-service time of each device does not exceed a
given upper bound. We first prove the NP-hardness of our target
problem, and then devise a greedy-based Charging Service Cost
Optimization Algorithm, which can achieve an approximation
ratio of lnn+1 in most of real situations. The extensive simulation
results reveal that our solution always outperforms the other
solutions in terms of charging service cost.

Index Terms—wireless rechargeable sensor networks, coop-
erative charging service model, charging service cost, spatio-
temporal, approximation algorithm

I. INTRODUCTION

In the past decade, Wireless Sensor Networks (WSNs) has
made a great progress in many fields, such as ecological
environment monitoring [1], natural disaster early warning [2]
and industrial production. For sensor devices, the limitation
on battery capacity and the demand for long-term operation
will require frequent battery replacement in real applications,
which will bring technical difficulties and high cost, espe-
cially for harsh environments. Fortunately, the breakthrough
of Wireless Power Transmission (WPT) technology well solves
the energy supplement problem in WSNs and makes Wireless
Rechargeable Sensor Networks (WRSNs) be possible. By de-
ploying or scheduling wireless chargers, WRSNs can provide
the sensor devices with uninterrupted electric power.

Most of the existing works on WRSNs consider either
charging utility maximization problem [3]–[8] or charging cost
minimization problem [9]–[13] under the traditional charging
network model, where all the chargers are affiliated to the user
and the charging cost manily consists of device fee, installation

fee and maintenance fee. Recently, Xu et al. [14] came up
with a novel device-initiated cooperative charging service
model, where all the chargers are deployed and maintained
by a Charging Service Provider (CSP). Specifically, the base
station will periodically initiate a charging command to all
the devices in the network, and each device will report
its current residual energy to the base station immediately
after receiving the charging command. Based on the received
residual energy information and the given parameters, the user
will promptly make a cooperative charging scheduling strategy
(including sensor-oriented scheduling strategy and charger-
oriented scheduling strategy) at the base station according
to a specific optimization objective, and then provide CSP
with the charger-oriented scheduling strategy to request the
charging service. Upon receiving the charging service request
from the user, CSP will immediately forward the charger-
oriented scheduling strategy to all the chargers to schedule
their charging service time. Meanwhile, the sensor-oriented
scheduling strategy will be distributed from the base station
to the network. By performing the sensor-oriented scheduling
strategy, each device will move to the assigned target charger
for charging. After completion of charging, each device will
return to the original deployment position to proceed with
the task monitoring. Finally, the user will pay CSP for the
provided charging service in accordance with the requested
charging service time.

Different from the traditional charging network model, the
above-mentioned cooperative charging service model empha-
sizes the concept that Charging as Service. By deploying wire-
less chargers as the infrastructure, the cooperative charging
service model provides a business framework of on-demand
wireless charging service. Based on such model, [14] studied
the spatially cooperative charging scheduling problem that how
to assign the movable devices to the appropriate chargers to
reduce the total cost. However, it ignores the cooperation in
temporal dimension and does not restrict the out-of-service
time of the device, which is defined as the duration that the
device is not in the original deployment position. In practice,
long out-of-service time of the device could affect the quality
of service for task monitoring. For example, to the applications
of event detection, such as fire detection, long out-of-service
time could result in high false negative rate or long event



detection delay, especially for the devices deployed in the areas
where the event happens frequently. To guarantee a certain
quality of service for the applications, each device is necessary
to set an upper bound constraint on the out-of-service time.

In this paper, we adopt the cooperative charging service
model and focus on the Time-sensitive and Economical Mobile
Cooperative Charging (TEMCC) problem. Specifically, our
objective is to find a spatio-temporal cooperative charging
scheduling strategy to minimize the total charging service
cost, subject to the constraints that the out-of-service time of
each device does not exceed a given upper bound. The main
contributions of this paper are outlined as follows:
• To the best of our knowledge, this is the first work to

consider the device-initiated mobile cooperative charging
problem in both spatial dimension and temporal dimen-
sion.

• Based on cooperative charging service model, we for-
mulate the Time-sensitive and Economical Mobile Coop-
erative Charging (TEMCC) problem and prove its NP-
hardness.

• For the case with single charging station, we consider
both total charging service cost optimization and average
marginal cost optimization, and propose the correspond-
ing optimal solutions in polynomial time, respectively.

• To solve TEMCC problem, we devise a greedy-based
Charging Service Cost Optimization Algorithm, which
can achieve an approximation ratio of lnn+1 in most of
real situations, where n denotes the number of the devices
in the network.

• The extensive simulation results reveal that compared
with the other solutions, our proposed solution always
has a better performance.

The rest of the paper is organized as follows: Section II
illustrates the system model and formulates the problem.
Section III presents the detailed description and performance
analysis of our proposed approximation solution. Followed by
the performance evaluation results in Section IV. Finally, our
findings are concluded in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model and Assumptions

In this paper, we let U = {u1, . . . , un} denote the set
of n rechargeable and movable low-power wireless sensor
devices that are uniformly deployed in a 2-D monitoring
field, and let S = {s1, . . . , sm} denote the set of m fixed
charging stations in the monitoring field, where each charging
station is equipped with an omnidirectional wireless charger to
provide the arrived devices with short-distance omnidirectional
wireless charging service. In order to guarantee charging
efficiency, we only allow each device to be charged by moving
from the original deployment position to the charging station,
and also assume that the fixed charging power at different
charging stations could be different. Specifically, each device
can enjoy the charging service with the fixed received charging
power Pr(sj) when arriving at any charging station sj , and

each charging station can provide the energy supply to multiple
arrived devices simultaneously due to the omnidirectional
charging technology [15]. After completion of charging, each
device will return to the original deployment position to
proceed with the task monitoring.

Let Tm(ui, sj) denote the device ui’s movement time from
its original deployment position to sj , and it is assumed that
the movement time is symmetric, i.e., the movement time that
device ui returns to the original deployment position from sj
is also equal to Tm(ui, sj). For simplicity and without loss of
generality, we ignore the energy consumption of movement for
any device, since it is relatively small and negligible compared
with that of long-term task monitoring. This implies if any
device ui decides to be fully charged at charging station sj ,
the required charging time Tc(ui, sj) should be

Tc(ui, sj) =
C(ui)− E(ui)

Pr(sj)
(1)

where C(ui) and E(ui) denote the battery capacity and the
current residual energy of device ui, respectively.

Here, we adopt the cooperative charging service model that
stated in Section I, and consider that the charging service
pricing for the charging stations {s1, . . . , sm} could be differ-
ent, since the environmental difference between geographical
locations of these charging stations could result in different
difficulties and expenses for charger installation and main-
tenance, and we denote by c̄(sj) the required payment per
unit charging service time for any charging station sj where
j ∈ {1, . . . ,m}. For the base station, when to initiate a
charging command mainly depends on the historical traffic
information in the network. By utilizing in-network historical
traffic data to dynamically predict the residual energy of each
device, the base station will periodically decide to initiate a
charging command at the time when the devices have already
depleted most of their energy but each of them still has
sufficient residual energy to move to any charging station.

In our model, we consider the instant-moving policy, where
each device will suspend task monitoring and move to the
assigned target charging station immediately after receiving
the sensor-oriented scheduling strategy. Also, we assume the
Low Power Wide Area Network (LPWAN) based single-hop
communication technology is adopted in the network. This can
naturally make the time to start performing the sensor-oriented
scheduling strategy be synchronized for all the devices, since
the single-hop broadcasting from the base station can provide
the inherent receiving-time synchronization property. Fig. 1
illustrates a simple example of the network model with m = 3
and n = 10.

B. Problem Formulation and Hardness Analysis

In our model, the user can benefit from the simultaneous
charging of multiple devices at the same charging station,
since the charging cost mainly depends on the charging service
time and multiple devices in the common charging hours can
economically share the charging cost. This implies the devices
that arrive at the charging station earlier could appropriately
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Fig. 1: Illustration of Network Model.

defer their starting time points of charging, to increase the
overlapping rate with the charging time of the devices that
arrive relatively late at the same charging station. We let the
nonnegative variable td(ui) denote the deferring time of any
device ui at the charging station, i.e., the time that the device
ui waits for charging when arriving at the charging station.

Here, we require that each device should be fully charged
at each round of charging scheduling. The sensor-oriented
scheduling strategy is to decide each device’s assigned target
charging station and the corresponding sojourn time, where
the sojourn time of any device at the charging station consists
of the deferring time and the charging time. For any device
ui, we can employ the function fst(ui, sj , td(ui)) to denote
the sojourn time of ui at the charging station sj with a given
deferring time td(ui), which can be represented by

fst(ui, sj , td(ui)) = td(ui) + Tc(ui, sj) (2)

where td(ui) ≥ 0. Note that any device will return to
the original deployment position from the charging station
immediately after the sojourn time. According to Equation 1,
the charging time of any device at any charging station is
fixed, which implies the sensor-oriented scheduling strategy
is essentially to decide each device’s assigned target charging
station and the corresponding deferring time.

For any charging station sj , we denote by Sj the set of
the devices that are assigned to sj for charging, and let
td(Sj) = {td(u)|u ∈ Sj} denote the set of deferring time
scheduling for all the devices in Sj . Suppose that the charging
station assignment Sj and the deferring time scheduling td(Sj)
are given, we let Tc(sj , Sj , td(Sj)) and C(sj , Sj , td(Sj))
respectively denote sj’s charging service time and the cor-
responding charging service cost, where Tc(sj , Sj , td(Sj)) =
max
u∈Sj

{Tm(u, sj)+fst(u, sj , td(u))}−min
u∈Sj

{Tm(u, sj)+td(u)}
and C(sj , Sj , td(Sj)) = c̄(sj)× Tc(sj , Sj , td(Sj)). Specially,
C(sj , Sj , td(Sj)) = Tc(sj , Sj , td(Sj)) = 0 if Sj = ∅.
Accordingly, we find that the charger-oriented scheduling
strategy, which is to decide each charging station’s charging
service time, can be implicitly determined by the sensor-
oriented scheduling strategy.

For any sj with any given Sj and td(Sj), note that there
could exist some break periods during the charging service
time Tc(sj , Sj , td(Sj)), where a break period is a duration
in which no device is being charged at sj . In our model,
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Fig. 2: Illustration of Charging Service Time.

however, we let sj provide a continuous charging service
during the time Tc(sj , Sj , td(Sj)) without considering the
break periods, this is because the total length of the break
periods in practice is usually very short compared with the
length of charging service time and frequently turning on/off
the charger in a short duration could also degrade the en-
ergy effciency. Fig. 2 shows two examples to illustrate the
relationship between the devices’ charging scheduling and the
charging stations’ scheduled charging service time, where t̄0
denotes the time point that any device starts moving from
the original deployment position, Sj = {u1

j , u
2
j , u

3
j , u

4
j} for

the charging station sj and the scheduled deferring time
td(u2

j ) > td(u4
j ) > td(u1

j ) > td(u3
j ) = 0.

Further, we let the function fost(ui, sj , td(ui)) denote the
device ui’s out-of-service time when it is assigned to the
charging station sj for charging with the deferring time td(ui),
namely

fost(ui, sj , td(ui)) = 2Tm(ui, sj) + fst(ui, sj , td(ui)) (3)

As mentioned above, allowing the devices to schedule the
deferring time before the charging time could increase the
overlapping rate on charging time of the devices at the same
charging station, thus reducing the total charging service cost.
However, it will explictly increase the out-of-service time
of the devices. Let Bost(u) denote the constrained upper
bound of the out-of-service time for any device u ∈ U . Note
that the upper bound constraints on the out-of-service time
could be different for all the devices, this is because different
geographical locations could have different requirements on
quality of service in real applications.

Accordingly, our objective is to address the following
Time-sensitive and Economical Mobile Cooperative Charging
(TEMCC) problem.



Problem 1 (TEMCC). Given a wireless rechargeable sensor
network that includes a set of n devices U = {u1, . . . , un}
and a set of m charging stations S = {s1, . . . , sm}, how to
find a sensor-oriented scheduling strategy to minimize the total
charging service cost that the user should pay to CSP, subject
to the constraints that the out-of-service time of each device
u ∈ U does not exceed a given upper bound Bost(u).

Due to the constraints on out-of-service time, the mobility
of each device will be constrained, that is, each device can only
move to a limited range of the candidate charging stations for
charging. We denote by Rc

j the set of the devices that are
able to reach the charging station sj for charging under the
out-of-service time constraints, specifically,

Rc
j = {u|u ∈ U & fost(u, sj , 0) ≤ Bost(u)} (4)

Based on the instant-moving policy, the objective of
TEMCC problem is essentially to find the optimal partition
S1, . . . , Sm from the device set U and the optimal scheduled
deferring time td(u1), . . . , td(un), where Sj ⊆ Rc

j for any
j ∈ {1, . . . ,m}, and any device u ∈ Sj if and only if the
device u is assigned to the charging station sj for charging.
Thus, the TEMCC problem can be formulated by follows.

min

m∑
j=1

C(sj , Sj , td(Sj))

s.t.



m⋃
j=1

Sj = U

Si

⋂
Sj = ∅, ∀i, j ∈M and i 6= j

fost(u, sj , td(u)) ≤ Bost(u), ∀j ∈M, ∀u ∈ Sj

Sj ⊆ Rc
j , td(u) ≥ 0, ∀j ∈M, ∀u ∈ U

(5)

where M = {1, . . . ,m}.
According to the optimal solution to the TEMCC problem,

i.e., S∗1 , . . . , S
∗
m and t∗d(u1), . . . , t∗d(un), we can naturally get

the optimal charger-oriented scheduling strategy. Besides, we
assume that the given upper bound parameters on out-of-
service time will make each device belong to at least one
set Rc

j where j ∈ {1, . . . ,m}, this implies there must exist a
feasible solution space for the TEMCC problem.

Further, we can show the NP-hardness of the TEMCC
problem by a polynominal-time reduction from the Weighted
Set Cover Problem, which is a well-known NP-hard problem.

Theorem 1. The TEMCC problem is NP-hard.
Proof. Given any instance I of the Weighted Set Cover
Problem, i.e., a family of subsets C={C1, . . . , Cq} of a given
universe E={e1, . . . , ep} and the associated positive weights
w(C1), . . . , w(Cq), we can construct an instance I ′ of the
TEMCC problem in polynomial-time by follows: (1) Defining
q charging stations S = {s1, . . . , sq} and p rechargeable
devices U = {u1, . . . , up}; (2) For each i ∈ {1, . . . , p} and
j ∈ {1, . . . , q}, to set C(ui), E(ui) and Pr(sj) such that
C(u1) = . . . = C(up), E(u1) = . . . = E(up) and Pr(s1) =
. . . = Pr(sq), which implies Tc(u1, s1) = . . . = Tc(up, sq)
according to Equation 1; (3) For each i ∈ {1, . . . , p} and

j ∈ {1, . . . , q}, to set Bost(ui) and Tm(ui, sj) such that 1)
Bost(u1) = . . . = Bost(up), and 2) ui ∈ Rc

j if and only if ei ∈
Cj ; (4) For each j ∈ {1, . . . , q}, to set c̄(sj) = w(Cj)/Tc,
where Tc = Tc(u1, s1) = . . . = Tc(up, sq).

By such instance construction, we can easily show that
the minimum-weight set cover solution on I can be found
in polynomial-time if and only if the minimum-cost coop-
erative charging scheduling solution on I ′ can be found in
polynomial-time, the detailed proof process is omitted here due
to the space limitation. Thus, the Weighted Set Cover Problem,
which is a well-known NP-hard problem, is polynomial-time
reducible to the TEMCC problem. The proof is completed.

III. SOLUTION

A. Charging Service Cost Optimization for Single Station
Before solving our target problem, we first investigate the

TEMCC problem for the case with single charging station,
which is called the Single Charging Station based Time-
sensitive and Economical Mobile Cooperative Charging (SCS-
TEMCC) problem.

Problem 2 (SCS-TEMCC). Given a wireless rechargeable
sensor network that includes a set of n devices U =
{u1, . . . , un} and single charging station s, how to find
a sensor-oriented scheduling strategy to minimize the total
charging service cost that the user should pay to CSP, subject
to the constraints that the out-of-service time of each device
u ∈ U does not exceed a given upper bound Bost(u).

As there is only one charging station s in the monitoring
field, it is obvious that U must be the set of the devices that
are assigned to s for charging. Accordingly, the objective of
SCS-TEMCC problem is essentially to find an optimal defer-
ring time scheduling td(U) = {td(u)|u ∈ U} to minimize
C(s, U, td(U)), on the condition that the out-of-service time
constraints for all the devices are satisfied. The SCS-TEMCC
problem can thus be formulated by follows.

minC(s, U, td(U))

s.t.

{
fost(u, s, td(u)) ≤ Bost(u), ∀u ∈ U
td(u) ≥ 0, ∀u ∈ U

(6)

where each device u ∈ U is assumed to satisfy that
fost(u, s, 0) ≤ Bost(u), it implies there must exist a feasible
solution space for the SCS-TEMCC problem.

For each device u ∈ U , let tmax
d (u) denote its allowable

maximum deferring time at the charging station s under the
out-of-service time constraint, obviously,

tmax
d (u) = Bost(u)− fost(u, s, 0) (7)

Thus, Equation 6 can be simplified as follows:

minC(s, U, td(U))

s.t. 0 ≤ td(u) ≤ tmax
d (u), ∀u ∈ U

(8)

Further, we denote by U
(s,U)
LF the set of the devices with the

latest finish time of charging under the case where td(u) = 0
for all u ∈ U , namely,

U
(s,U)
LF = arg max

u∈U
{Tm(u, s) + Tc(u, s)} (9)



For SCS-TEMCC problem, we can find that the total charg-
ing service time mainly depends on the relative distance
between the charging time at s of all the devices, our objective
is essentially to try the best to shorten their relative distance
in charging time, i.e., to increase the overlapping rate of their
charging time, by appropriately deferring the charging time
of some earlier-arrived devices to try to catch up with the
charging time of the devices in U

(s,U)
LF , and we can easily find

the following observation conclusion.

Observation 1. For SCS-TEMCC problem, the total charging
service cost will not benefit from letting td(u) > 0 for any
u ∈ U

(s,U)
LF , in other words, it should have td(u) = 0 for all

u ∈ U
(s,U)
LF from the perspective of optimal solution.

It is obvious that Observation 1 must hold, this is because
compared with the decision to let td(u) = 0 for all u ∈ U

(s,U)
LF ,

the decision to let td(u) > 0 for any u ∈ U
(s,U)
LF will increase

the ralative distance between the charging time of device u
and the other devices, which implies each of the other devices
should take more deferring time to catch up with the device u’s
charging time, and the fixed and limited allowable maximum
deferring time constraints will make the total charging service
time of optimal solution under such decision absolutely not
be shorter than that under the decision to let td(u) = 0 for all
u ∈ U

(s,U)
LF .

According to Observation 1, we will set td(u) = 0 for
all u ∈ U

(s,U)
LF . For any device u ∈ U\U (s,U)

LF , we will try
our best to defer its charging time under the constraints that
its deferring time is bounded by tmax

d (u) and its finish time
of charging is not later than that of any device in U

(s,U)
LF .

Specifically, we will set

td(u) = min{tmax
d (u),∆tu} (10)

where u ∈ U\U (s,U)
LF and ∆tu = max

u′∈U
{Tm(u′, s) +

Tc(u
′, s)} − (Tm(u, s) + Tc(u, s)). Note that ∆tu = 0

for each u ∈ U
(s,U)
LF , thus, we can generally set td(u) =

min{tmax
d (u),∆tu} for all u ∈ U .

Let OPTSCS(s, U) denote the optimal total charging ser-
vice cost at charging station s in SCS-TEMCC problem.
We propose an Optimal Deferring Time Scheduling (ODTS)
Algorithm for SCS-TEMCC problem, as shown in Algo-
rithm 1, to get OPTSCS(s, U) and the corresponding optimal
deferring time scheduling t∗d(U) = {t∗d(u)|u ∈ U}. Specially,
OPTSCS(s, U) = 0 and t∗d(U) = ∅ if U = ∅.

Theorem 2. For SCS-TEMCC problem, Algorithm 1 must be
an optimal solution with the time complexity of O(n).
Proof. For each u ∈ U

(s,U)
LF , we can get ∆tu = 0 and

set t∗d(u) = min{tmax
d (u),∆tu} = min{tmax

d (u), 0} = 0
in Algorithm 1, this is because Observation 1 implies that
there must exist an optimal solution where t∗d(u) = 0 for
all u ∈ U

(s,U)
LF . Once the deferring time scheduling of all

the devices in U
(s,U)
LF are fixed, the optimal deferring time

scheduling of all the devices in U\U (s,U)
LF must be independent

of each other. Specifically, for each u ∈ U\U (s,U)
LF ,

Algorithm 1 ODTS(s, U)

Input: the charging station s with unit time price c̄(s); the
device set U = {u1, . . . , un} with the given Tm(ui, s),
Tc(ui, s) and Bost(ui) where i ∈ {1, . . . , n}

Output: OPTSCS(s, U) and the corresponding optimal de-
ferring time scheduling t∗d(U) = {t∗d(u)|u ∈ U}

1: Tmax ← max
u∈U
{Tm(u, s) + Tc(u, s)};

2: for each u ∈ U do
3: tmax

d (u)← Bost(u)− fost(u, s, 0);
4: ∆tu ← Tmax − (Tm(u, s) + Tc(u, s));
5: t∗d(u)← min{tmax

d (u),∆tu};
6: end for
7: Tmin ← min

u∈U
{Tm(u, s) + t∗d(u)};

8: OPTSCS(s, U)← c̄(s) · (Tmax − Tmin);
9: return OPTSCS(s, U), t∗d(U);

1) if tmax
d (u) ≤ ∆tu, we can easily find that t∗d(u) =

min{tmax
d (u),∆tu} = tmax

d (u) must be u’s optimal deferring
time scheduling, since it has tried its best to defer its starting
time point of charging and such scheduling does not change
the latest finish time of the entire charging service;

2) if tmax
d (u) > ∆tu, Algorithm 1 will set t∗d(u) =

min{tmax
d (u),∆tu} = ∆tu, which will still be u’s optimal

deferring time scheduling, this is because compared with the
decision to let t∗d(u) = ∆tu, letting t∗d(u) < ∆tu will abso-
lutely not change the latest finish time of the entire charging
service and not make the earliest start time of the entire charg-
ing service be later, and also letting ∆tu < t∗d(u) ≤ tmax

d (u)
will absolutely not make the increment on the latest finish
time of the entire charging service be smaller than that on the
earliest start time of the entire charging service.

Accordingly, Algorithm 1 must be an optimal solution to
SCS-TEMCC problem. Obviously, Line 1 takes O(n) time,
Line 2 to Line 6 take O(n) time, Line 7 takes O(n) time
and Line 8 takes O(1) time, the total time complexity is thus
O(n)+O(n)+O(n)+O(1)=O(n). The proof is completed.

B. Average Marginal Cost Optimization for Single Station

For any charging station, we can define assigned device set,
candidate device set and average marginal cost as follows.

Definition 1 (Assigned Device Set). For the charging station
s, its assigned device set is defined as the set of the devices
that have already been assigned to s for charging.

Definition 2 (Candidate Device Set). For the charging station
s, its candidate device set is defined as the set of the candidate
devices that have not yet been assigned to any charging station
for charging.

Definition 3 (Average Marginal Cost). Given the charging
station s with the assigned device set Ua and the candidate
device set Uc in the network, the average marginal cost of any
nonempty candidate device subset U ′c ⊆ Uc is defined as

Ĉ∆(s, Ua, U
′
c) =

OPTSCS(s, Ua ∪ U ′c)−OPTSCS(s, Ua)

|U ′c|



which denotes the average increment of total charging service
cost at s per unit candidate device in U ′c, if all the can-
didate devices in U ′c are assigned to s for charging. Here,
OPTSCS(s, ·) can be figured out by Algorithm 1.

For better description of the solution to TEMCC problem, in
this subsection, we will first propose and solve the following
subproblem of the TEMCC problem, i.e., the Single Charging
Station based Minimum Average Marginal Cost Charging
(SCS-MAMCC) problem.

Problem 3 (SCS-MAMCC). Given a wireless rechargeable
sensor network that includes single charging station s with
the assigned device set Ua, how to find a nonempty subset U ′c
from the candidate device set Uc (Ua ∩ Uc = ∅) and assign
all the devices in U ′c to s for charging, such that the average
marginal cost Ĉ∆(s, Ua, U

′
c) is minimized.

In other words, the SCS-MAMCC problem can be repre-
sented by the following formulation.

min Ĉ∆(s, Ua, U
′
c)

s.t. U ′c ⊆ Uc and U ′c 6= ∅
(11)

Note that based on the optimal solution U∗c to SCS-MAMCC
problem, we can naturally get all the assigned devices’ op-
timal deferring time scheduling t∗d(Ua ∪ U∗c ) according to
Algorithm 1. To address the SCS-MAMCC problem, a naive
approach is to exhaustively enumerate all the feasible solutions
(i.e. all the subsets of Uc) and then compare their average
marginal costs, however, it will take O(2|Uc|) time in the
worst case. Here, we will devise an efficient polynominal-
time solution to the SCS-MAMCC problem by pruning the
exponential feasible solution space back to the polynominal
one.

For any feasible solution U ′c ⊆ Uc, we can employ a start-
end time pair < t

U ′c∪Ua
s , t

U ′c∪Ua
e > to implictly characterize

it, specifically, the start time tU
′

s and the end time tU
′

e can be
represented as follows:

tU
′

s = min
u∈U ′
{Tm(u, s) + t∗d(u)} (12)

tU
′

e = max
u∈U ′
{Tm(u, s) + Tc(u, s)} (13)

where t∗d(u) (u ∈ U ′) can be figured out by calling
ODTS(s, U ′) (Algorithm 1). For any possible start-end time
pair < ts, te >, we denote by S<ts,te> the set of the
feasible solutions with start-end time pair < ts, te >, i.e.,
S<ts,te> = {U ′c|U ′c ⊆ Uc & t

U ′c∪Ua
s = ts & t

U ′c∪Ua
e = te}.

Letting U<ts,te>
max = arg maxU ′c∈S<ts,te> |U ′c|, we can obvi-

ously find that the feasible solution U<ts,te>
max must have the

minimum average marginal cost for all the feasible solutions
in S<ts,te>, this is because all the feasible solutions in
S<ts,te> must have the identical optimal charging service
time te − ts and it must have |U<ts,te>

max | > |U ′′c | for all
U ′′c ∈ S<ts,te>\{U<ts,te>

max }. This indicates that all the feasible
solutions in S<ts,te>\{U<ts,te>

max } must not be the optimal
solution, here, they are called the invalid feasible solutions

Algorithm 2 AMCO(s, Ua, Uc)

Input: the charging station s, the assigned device set Ua, the
candidate device set Uc

Output: the optimal subset U∗c ⊆ Uc

1: Fv ← ∅; U1 ← Ua ∪ Uc;
2: while Ua ∩ U

(s,U1)
LF = ∅ & U1 6= ∅ do

3: U2 ← U1;
4: while Ua ∩ U

(s,U2)
ES = ∅ & U2 ∩ U

(s,U1)
LF 6= ∅ do

5: Fv ← Fv ∪ {U2\Ua}; U2 ← U2\U (s,U2)
ES ;

6: end while
7: if Ua ∩ U

(s,U2)
ES 6= ∅ & U2 ∩ U

(s,U1)
LF 6= ∅ then

8: Fv ← Fv ∪ {U2\Ua};
9: end if

10: U1 ← U1\U (s,U1)
LF ;

11: end while
12: if Ua ∩ U

(s,U1)
LF 6= ∅ & U1 6= ∅ then

13: U2 ← U1;
14: while Ua ∩ U

(s,U2)
ES = ∅ do

15: Fv ← Fv ∪ {U2\Ua}; U2 ← U2\U (s,U2)
ES ;

16: end while
17: Fv ← Fv ∪ {U2\Ua};
18: end if
19: for each U ′c ∈ Fv do
20: Ĉ∆(s, Ua, U

′
c)←

OPTSCS(s,Ua∪U ′c)−OPTSCS(s,Ua)
|U ′c|

;
21: end for
22: select any U∗c ∈ arg min

U ′c∈Fv

Ĉ∆(s, Ua, U
′
c);

23: return U∗c ;

since we can definitely find a feasible solution U<ts,te>
max that is

better than them, and U<ts,te>
max is thus called the valid feasible

solution for such start-end time pair < ts, te > and will be
added into the valid feasible solution set Fv . Accordingly, our
basic idea is to enumerate all the possible start-end time pairs
by finding out all the possible corresponding start time for
each possible end time, and to find the corresponding valid
feasible solution for each possible start-end time pair.

Let U
(s,U)
ES denote the set of the devices with the earliest

start time of charging under the optimal solution t∗d(U) to
SCS-TEMCC problem, namely,

U
(s,U)
ES = arg min

u∈U
{Tm(u, s) + t∗d(u)} (14)

where t∗d(U) = {t∗d(u)|u ∈ U} can be figured out by
calling Algorithm 1. Here, we come up with an Average
Marginal Cost Optimization (AMCO) Algorithm to solve the
SCS-MAMCC problem, which is shown in Algorithm 2. In our
solution, it is obvious that U2 in each round of the iterations
must be the valid feasible solution for the start-end time pair
< tU2

s , tU2
e >. By iteratively updating U1 and U2, essentially,

we can definitely traverse all the possible start-end time pairs.
If |Ua| > 0, we can easily find that for any U ′c ⊆ Uc,

it must have t
U ′c∪Ua
e ≥ tUa

e since all the devices in Ua are
surely assigned to s for charging. As shown in Algorithm 2,
we traverse every possible end time tU1

e by iteration of U1,



and the iteration termination condition of U1 is U1 = ∅
or Ua ∩ U

(s,U1)
LF 6= ∅, this is because Ua ∩ U

(s,U1)
LF 6= ∅

implies tU1
e = tUa

e and the subsequent iteration of U1 will
make at least one assigned device in Ua be removed. By
iteration of U2, Algorithm 2 will further traverse every pos-
sible start time tU2

s for each fixed end time tU1
e , and the

iteration termination condition of U2 is Ua ∩ U
(s,U2)
ES 6= ∅

or U2 ∩ U
(s,U1)
LF = ∅. Here, note that 1) Ua ∩ U

(s,U2)
ES 6= ∅

implies tU2
s = minu∈Ua

{Tm(u, s)+t∗d(u)}, and the subsequent
iteration of U2 will not proceed any more due to the fact that
tU2
s must not be larger than minu∈Ua{Tm(u, s)+t∗d(u)}, where
t∗d(u) (u ∈ Ua) can be figured out by calling ODTS(s, U1)

(Algorithm 1), and 2) U2 ∩U (s,U1)
LF = ∅ implies the fixed end

time tU1
e has been changed by the current iteration of U2 (i.e.,

tU1
e 6= tU2

e ), and thus the subsequent iteration of U2 will not
proceed any more.

Observation 2. For any U ′c ⊆ Uc, there must exist a U ′′c ∈ Fv

such that Ĉ∆(s, Ua, U
′′
c ) ≤ Ĉ∆(s, Ua, U

′
c).

Theorem 3. For SCS-MAMCC problem, Algorithm 2 must be
an optimal solution with the time complexity of O(n3)..

Proof. The objective of SCS-MAMCC problem is to find
a nonempty subset U ′c ⊆ Uc such that Ĉ∆(s, Ua, U

′
c) is

minimized. According to Observation 2 and the fact that each
solution in Fv must be a feasible solution to SCS-MAMCC
problem, we can find that the optimal solution to SCS-MAMCC
problem must exist in Fv , which indicates that the objective
of SCS-MAMCC problem is essentially to find a U ′c ∈ Fv

such that Ĉ∆(s, Ua, U
′
c) is minimized. In Algorithm 2, U∗c

is obtained by comparing the average marginal costs of all
the feasible solutions in Fv (Line 22), and thus it must be
the optimal solution to SCS-MAMCC problem. Obviously, the
time complexity of Algorithm 2 is dominated by Line 2-11
and Line 19-21, which takes O(n3) + O(n3) = O(n3) time.
The proof is completed.

C. Approximation Algorithm to TEMCC Problem

Based on the above-mentioned solution to SCS-MAMCC
problem, we further consider the case with multiple charging
stations and propose a greedy-based Charging Service Cost
Optimization (CSCO) Algorithm to solve the TEMCC problem.
Algorithm 3 shows the detailed description of our proposed
CSCO algorithm, the basic idea is to iteratively find a de-
vice assignment according to the greedy criterion of average
marginal cost minimization. In each iteration, specifically, we
will first get each charging station sj’s optimal assignment
U∗c [j] by calling AMCO(sj , S

∗
j , U

′ ∩Rc
j) (Algorithm 2) and

select the winner sj∗ where U ′ is the current candidate
device set, S∗j is the current assigned device set of sj and
j∗ ∈ arg min

j∈J
Ĉ∆(sj , S

∗
j , U

∗
c [j]) (Line 6 to Line 13), then add

all the devices in U∗c [j∗] into S∗j∗ and update U ′ = U ′\U∗c [j∗]
(Line 14). Obviously, the time complexity of Algorithm 3 is
dominated by Line 5-15, which takes O(n)×O(m)×O(n3) =
O(mn4) time.

Algorithm 3 CSCO(S,U)

Input: the set of charging stations S = {s1, . . . , sm}, the set
of devices U = {u1, . . . , un}

Output: the optimal partition S∗1 , . . . , S
∗
m, the optimal sched-

uled deferring time t∗d(u1), . . . , t∗d(un) and the optimal
total charging service cost OPT .

1: U ′ ← U ; OPT ← 0;
2: for j=1 to m do
3: S∗j ← ∅; U∗c [j]← ∅;
4: end for
5: while U ′ 6= ∅ do
6: J ← ∅;
7: for j=1 to m do
8: if U ′ ∩Rc

j 6= ∅ then
9: U∗c [j]← AMCO(sj , S

∗
j , U

′ ∩Rc
j);

10: J ← J ∪ {j};
11: end if
12: end for
13: select any j∗ ∈ arg min

j∈J
Ĉ∆(sj , S

∗
j , U

∗
c [j]);

14: S∗j∗ ← S∗j∗ ∪ U∗c [j∗]; U ′ ← U ′\U∗c [j∗];
15: end while
16: for j=1 to m do
17: OPT ← OPT + OPTSCS(sj , S

∗
j );

18: end for
19: return S∗1 , . . . , S

∗
m, t∗d(u1), . . . , t∗d(un) and OPT ;
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Fig. 3: Illustration of Pairwise Charging Overlapping.

Observation 3. Given any nonempty set J ′ ⊆ {1, . . . ,m} and
any nonempty set S′j ⊆ Rc

j\S∗j for each j ∈ J ′, it must have

min
j∈J′

Ĉ∆(sj , S
∗
j , S

′
j) ≤

∑
j∈J′ OPT∆(sj)∑

j∈J′ |S′j |
(15)

where OPT∆(sj) = OPTSCS(sj , S
∗
j ∪ S′j) −

OPTSCS(sj , S
∗
j ) and S∗j ⊂ Rc

j denotes the assigned
device set of sj .
Definition 4 (Charging Overlapped). Any charging station sj
is called charging overlapped if and only if any two different
devices up

j and uq
j in Rc

j satisfy the following condition:

(T
up
j

mc − Tm(uq
j , sj))× (Tm(up

j , sj)− T
uq
j

mc) < 0 (16)



where Tu
mc = Tm(u, sj) + Tc(u, sj), and Fig. 3 explicitly

shows all the possible cases that the above-mentioned con-
dition holds.

Theorem 4. For TEMCC problem, if the charging stations
s1, . . . , sm are all charging overlapped, Algorithm 3 can
achieve an approximation ratio of lnn + 1.
Proof. Before adopting Algorithm 3, we can’t predict the
number of iterations in Line 5-15. Without losing generality,
we assume it has a total of k iterations. At the beginning of
iteration p (p ≤ k), we record U ′ as residual set RSp and
record U∗c [j∗] as SOLp. For any RSp, there is a feasible
solution space FSSp, we record OPT p (OPT p ∈ FSSp)
as the optimal solution for RSp, OPT p may not be obtained
in polynomial time, but it must exist. Obviously, OPT 1 is
the optimal solution to the whole problem. With the increase
of p, both |RSp| and cost(OPT p) will get smaller, where
cost(OPT p) represents the cost for charging by OPT p.

In iteration p, our task is to find SOLp to mini-
mize Ĉ∆(s, Ua, SOLp), note that SOLp ⊆ e ∈ FSSp,
where e is a feasible solution satisfying conditions. For
any SUBOPT p ⊆ OPT p, we have Ĉ∆(s, Ua, SOLp) ≤
Ĉ∆(s, Ua, SUBOPT p). Due to the drawer principle, there
exists Ĉ∆(s, Ua, SUBOPT p) ≤ cost(OPT p)/|RSp|.

According to Observation 3, we can find
the charging service cost of Algorithm 3
satisfies that

∑k
p=1 Ĉ∆(s, Ua, SOLp)|SOLp| ≤∑k

p=1
cost(OPT 1)
|RSp| |SOLp| ≤

∑n
i=1

cost(OPT 1)
n−i+1 ≤

cost(OPT 1)(ln n + 1). The proof is thus completed.

In real applications, it is usually true that each charg-
ing station is charging overlapped, since the omnidirectional
charging technology will usually make each device experience
a relatively long charging duration. This indicates that in most
of real situations, Algorithm 3 can achieve an approximation
ratio of lnn + 1 according to Theorem 4.

IV. PERFORMANCE EVALUATION

A. Simulation Setup
We consider a 1000m×1000m monitoring filed and assume

all the rechargeable devices and charging stations are evenly
distributed in the field. Each sensor device ui is powered by a
rechargeable battery with the capacity C(ui) = 1.5V × 2A×
3600sec = 10.8KJ . Unless otherwise stated, we set n = 150,
m = 10, and for each device ui, the moving speed is set to
0.5m/s, the residual energy E(ui) is set to a random value
between 500J and 2000J, the upper bound Bost(ui) is set to
a random value such that ui must belong to at least one set
Rc

j where j ∈ {1, . . . ,m}. For simplicity and without loss
of generality, we assume that Pr(sj) = 5W and c(sj) = 1
for each charging station sj . All the experiment results are
generated by averaging over 50 times.

B. Baselines
Next, we will take the following 3 typical heuristic solutions

as the baselines to evaluate the performance of our proposed
CSCO algorithm.

(a) number of rechargeable devices
vs. charging service cost

(b) number of charging stations vs.
charging service cost

(c) number of optional charging sta-
tions vs. charging service cost

(d) moving speed vs. charging ser-
vice cost

(e) received charging power vs.
charging service cost

(f) maximum residual energy vs.
charging service cost

Fig. 4: Performance Comparison

• Simple-CSCO (SCSCO): This algorithm is similar to
CSCO algorithm. The only difference is that SCSCO algo-
rithm does not consider the deferring time of rechargeable
devices, that is, td(ui) = 0 by default for any device ui.

• Nearest Charging Station Algorithm (NCSA): Each device
ui moves to the nearest charging station s∗ for charging,
where s∗ ∈ arg mins∈S Tm(ui, s). After the charger-
device assignment, each charging station will execute the
ODTS algorithm to derive the deferring time scheduling
for the assigned devices.

• Single Optimal Algorithm (SOA): In each iteration, to
select the device with the lowest current total charging
service cost and assign it to the corresponding charging
station. After n rounds of iterations, each charging station
will execute the ODTS algorithm to derive the deferring
time scheduling for the assigned devices.

C. Simulation Results

We first verify the impact of the number of rechargeable
devices on charging service cost. Fig. 4(a) shows that as the
number of rechargeable devices increases, the total charging
service cost increases and the growth rate gradually decreases
for all the solutions. Specifically, by varing the number of
rechargeable devices from 50 to 250, the total charging service
cost increases about 40% but the average charging service cost
of the devices decreases about 72% for our proposed CSCO
algorithm. This is because more rechargeable devices in the



common charging hours can share charging service cost more
significantly. On average, CSCO algorithm can reduce the total
charging service cost by at least 20% compared with the other
solutions.

By varying the number of charging stations from 6 to
20, in Fig. 4(b), we can find that the total charging service
cost of all the solutions increase. Also, we find that CSCO
algorithm always outperforms the other solutions, and has a
lower growth rate on total charging service cost compared with
NCSA, which implies CSCO algorithm will have a significantly
larger performance advantage over NCSA as the number of
charging stations increases. In Fig. 4(c), we vary the number
of optional (candidate) charging stations from 1 to 10 for each
device, which can be realized by carefully adjusting Bost(ui)
of each device ui. It can be seen that the number of optional
charging stations is a key factor that affects performance, this
is because cooperative charging will greatly reduce the charg-
ing service cost, and a greater number of optional charging
stations will provide more cooperation opportunities for all
the devices. With the number of optional charging stations
increases, we can find the charging service cost of CSCO
algorithm decreases with the highest rate, and always keeps
the performance advantage over the other solutions.

Fig. 4(c) and Fig. 4(d) exhibit the impact of the device’s
moving speed and received charging power on total charging
service cost, respectively. We can find that CSCO algorithm
always exhibits the best performance over all the solutions
no matter how moving speed or received charging power
varies, and also find that with the increase of moving speed
or received charging power, the total charging service cost
of all the solutions decrease, this is because faster moving
speed or larger received charging power will make each device
save more time and have more number of optional charging
stations, which provides more opportunities for cooperative
charging.

In Fig. 4(f), we vary the maximum residual energy of each
device from 500J to 3000J, and define the residual energy as
a random value between 500J and maximum residual energy.
With the increase of maximum residual energy, we can find
CSCO algorithm always has the best performance over all the
solutions, and the charging service cost decreased slightly for
all the solutions. This is because larger maximum residual
energy usually implies less required charging time for each
device, which will result in lower charging service cost.

V. CONCLUSION

In this paper, we focus on the Time-sensitive and Econom-
ical Mobile Cooperative Charging (TEMCC) problem based
on the cooperative charging service model, i.e., how to find
a spatio-temporal cooperative charging scheduling strategy
to minimize the total charging service cost, subject to the
constraints that the out-of-service time of each device does not
exceed a given upper bound, which is NP-hard. By considering
the spatio-temporal cooperation of the devices, we propose a
greedy-based Charging Service Cost Optimization Algorithm,
which can achieve an approximation ratio of lnn + 1 in

most of real situations. Through extensive simulations, we can
conclude that the total charging service cost of our solution is
always lower than that of the other solutions.
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