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Abstract—Task graphs are widely used to represent data-
intensive applications. To efficiently execute these applications
on heterogeneous systems, each task must be properly scheduled
on the processors of the system. The NP-completeness of the task
scheduling problem has motivated researchers to propose various
heuristic methods. Recently, Quality of Service (QoS) aware
scheduling is becoming an active research area in heterogeneous
systems because the end-user has different QoS requirements.
Generally, time and cost are the most relevant user concerns.
However, it is challenging to find a feasible scheduling plan
which minimizes the total execution time of the user’s application
(makespan) while satisfying both budget and deadline constraints.
In this paper, we present a novel heuristic algorithm called
Budget-Deadline-Aware-Scheduling (BUDA) that addresses task
graphs scheduling under budget and deadline constraints in
heterogeneous systems. The novelty of the BUDA algorithm is
based on a Heterogeneous Time-Cost Matrix (HTCM) that is
used to prioritize tasks and for processor selection. In addition,
we introduce a new Heterogeneous Time-Cost Trade-off factor
(HTCT) that tries to adjust the time and cost for the current
task among all processors. The experiments based on randomly
generated graphs and real-world applications graphs show that
the BUDA algorithm outperforms the state-of-the-art algorithms
in terms of makespan, time efficiency, and success rate.

Index Terms—Task scheduling, quality of service, task graphs,
heterogeneous system

I. INTRODUCTION

A heterogeneous computing system (HCS) can be defined
as a set of computing resources (e.g., central processing units
(CPUs) or graphics processing units (GPUs)) interconnected
with a high-speed network for executing data-intensive appli-
cations [1]. In HCS, the computing resources have different
performances with different prices and Quality of Service
(QoS) levels [2]. To efficiently execute data-intensive applica-
tions on a heterogeneous system, each task must be properly
scheduled on the processors of the system. Task scheduling
consists of assigning the tasks of the application to a set of
processors and ordering their execution so that the dependen-
cies between them are maintained while optimizing one or
more QoS parameters. The usual QoS parameters are budget
and deadline. In general, the task scheduling problem is an
NP-complete problem even in the case of scheduling a set of

jobs that requires one or two time-unit onto two processors [3].
Hence, QoS-aware scheduling has become more challenging,
and many heuristic methods have been proposed [4], [5], [6],
[7], [8].

Recently, budget-deadline-aware scheduling is becoming an
active research area in heterogeneous systems because time
and cost are the most relevant user concerns. Many algorithms
have been proposed, but most of them do not consider the time
and monetary cost together during the scheduling decision,
which mainly comprises the task prioritization phase and com-
puting resource selection phase. Therefore, these algorithms
either minimize the time while having a high cost or reduce
the cost while having a high execution time. Moreover, these
algorithms fail to satisfy the defined budget and deadline
simultaneously.

This paper presents a novel heuristic scheduling algorithm
called Budget-Deadline-Aware (BUDA) for allocating budget
and deadline constrained task graphs to fully connected het-
erogeneous processors. The proposed algorithm aims to find a
feasible schedule map that minimizes the total execution time
(TET) also called makespan while satisfying the budget and
deadline constraints simultaneously. The novelty of BUDA is
the Heterogeneous Time-Cost Matrix (HTCM) on which the
task prioritization and processor selection are based.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III describes the hetero-
geneous system, application model, and the research problem.
Section IV presents the proposed BUDA algorithm. Section
V presents the experimental results. Finally, Section VI con-
cludes the paper.

II. RELATED WORK

The workflow or task graph scheduling problem has been
widely studied and various heuristic algorithms are proposed.
These algorithms can been classified into variety of categories
according to the scheduling objectives. The minimization of
the total execution time (makespan) is the major objective
in most of the scheduling algorithms [9]. In [1], a wide



comprehensible heuristic list scheduling algorithms is pre-
sented with the objective to minimize the makespan. The
energy consumption minimization is another important goal
addressed by several scheduling algorithms, such as [10] and
[11]. Some algorithms consider one or more objectives, e.g.,
makespan and energy consumption minimization [12], energy
consumption and latency [13], and makespan and monetary
cost minimization [14]. Other scheduling objectives, such
as security-aware [15], [16], and reliability-aware [17], [18]
are also proposed. Moreover, the authors of [19] present a
classification of scheduling objectives.

However, recently, more works are focusing on the devel-
opment of QoS-aware scheduling algorithms which is more
complex since it addresses the optimization problem (i.e., the
minimization or maximization of one or more objective func-
tions) while satisfying one or more QoS constraints. Generally,
time and cost are the most relevant user concerns since the
user wants to minimize the execution time while meeting
both the deadline and budget of its application on the target
computing resources. Hence, recent works propose budget-
aware and deadline-aware scheduling algorithms. A deadline-
aware scheduling algorithm aims to minimize the total exe-
cution time while satisfying the defined deadline constraint
[4], [5]. Concerning a budget-aware scheduling algorithm, it
aims to minimize the total execution time while satisfying
the budget constraint [20] [21]. Finally, the objective of a
budget-deadline-aware scheduling algorithm is to minimize
the makespan while satisfying the deadline and budget simul-
taneously. For instance, a budget-deadline-aware scheduling
algorithm called BHEFT is presented in [22]. The BHEFT
algorithm is an extension on HEFT algorithm that used ranku
as defined in [23] to prioritize tasks. In BHEFT, the processor
selection is based on three variables, namely spare application
budget, task actual budget, and adjustment factor. In [24], the
authors propose a budget constrained scheduling algorithm
called HBCS with the objective to minimize the makespan
while satisfying the defined budget. Similar to BHEFT, the
HBCS algorithm also uses ranku to calculate the task priority.
To select a processor for a task, the HBCS algorithm computes
a worthiness value for each task on each processor. The
worthiness value guarantees that the schedule result does not
exceed the given budget. The drawback of HBCS algorithm
is that it yields to longer makespan since it assigns task
with low priority and small budget to the processor with
the minimum execution cost. For this reason, the authors of
[21] present a new budget constrained scheduling algorithm
called MSLBL. MSLBL also used ranku to prioritize task.
The main idea of MSLBL is to transfer the given budget
constraint to the task of the application. In MSLBL, a task is
assigned to the processor that achieves the smallest EFT value
while satisfying the current task budget. A more recent budget
constrained application scheduling algorithm called FBCWS
is proposed in [25] with the aim to minimize the makespan
while achieving a fair task assignment strategy that satisfies
the budget constraint. The FBCWS algorithm first categorizes
tasks of the application into two types: CPU intensive tasks,

which require more processing power and time, and less
intensive tasks. Then, tasks are ranking in a decreasing order
of their B-level value. In the processor selection phase, the
less intensive tasks are assigned to slow processors while the
CPU intensive tasks are allocated to the faster processors.

Limitation of existing works. Most scheduling algorithms
for budget and deadline constrained applications used the up-
ward rank value (ranku, as defined in [23]) to prioritize tasks.
However, ranku uses the average execution time ET (Ti)
of task Ti, and does not consider the execution cost of the
task on the heterogeneous processors. Also, in heterogeneous
computing systems, each task has variable execution times on
different processors, which leads to variable execution costs.
For this reason, the authors of [26] introduce a heterogeneous
upward rank (hranku) value to determine the priority of
tasks. However, the hranku value also does not consider the
execution cost (monetary cost). Therefore, for accuracy, we
introduce a novel task prioritization approach, which considers
not only the heterogeneity of the processors but also the
execution times and execution costs of the tasks on the
processors.

III. PROBLEM DEFINITION

A. Target System

The heterogeneity model of a target computing system
can be categorized into two models: (i) processor-based het-
erogeneity model (PHM), where a processor executes the
application’s tasks at the same speed, regardless of their type;
(ii) task-based heterogeneity model (THM), where the speed
at which a processor executes a task depends on how well the
heterogeneous processor satisfies the task requirements and
features [27].

In this study, we assume a THM model as in [27], because
different tasks may have different processing requirements.
The heterogeneous computing system consists of a set P of
m heterogeneous processors, P1, P2, ..., Pm, which are fully
interconnected with a high-speed network. The processors are
priced in a way that the most powerful processor will have
the highest execution cost (i.e, monetary cost). To normalize
different price units for the heterogeneous processors, we
define the price Price(Ti, Pj) of a processor Pj to execute
a task Ti as follows:

Price(Ti, Pj) = αi,j(1 + αi,j)/2, (1)

where αi,j defined by (2), is the ratio of the speed SP (Ti, Pj)
at which processor Pj executes task Ti to the speed at which
the faster processor executes Ti. Since we assume a THM, the
heterogeneous processors will have different price units for
different tasks. Hence, the price will be in the range of ]0,1],
where the fastest processor with the highest power has a price
value equal to 1. This approach that we used to normalize
different price units for the heterogeneous processors is also
adopted in [2].

αi,j =
SP (Ti, Pj)

max
Pk∈P

[SP (Ti, Pk)]
. (2)



B. Application Model

In this paper, an application is represented by a direct
acyclic graph (DAG) G(T,E), where T is the set of n tasks,
and E is the set of e edges. Each task Ti ∈ T is associated
with a non-negative weight W (Ti) representing the amount of
data to be processed in task Ti. Each edge e(i, j) ∈ E is also
associated with a non-negative weight C(Ti, Tj) representing
the communication time between task Ti and task Tj . The
edges also represent the task-dependence constraints, i.e., task
Ti should complete its execution before task Tj can be started.
The time to execute task Ti on processor Pj denoted as
ET (Ti, Pj) is calculated by (3). The average execution time
ET (Ti) of task Ti is calculated by (4).

ET (Ti, Pj) =
W (Ti)

SP (Ti, Pj)
(3)

ET (Ti) =
1

k

k∑
j=1

ET (Ti, Pj) (4)

The average communication cost C(Ti, Tj) of an edge e(i, j)
is calculated as follows:

C(Ti, Tj) = L+
data(Ti, Tj)

B
, (5)

where L is the average latency time of all processors and B is
the average transfer rate among the processors. data(Ti, Tj)
is the amount of data required to be sent from task Ti to task
Tj . It should be noted that when Ti and Tj are scheduled on
the same processor, the communication cost is considered to
be zero since it is negligible compared with the interprocessor
communication cost [28].

C. Definitions

a) Earliest Start Time (EST): The EST of a task Ti on
a processor Pj is defined as follows:

EST (Ti, Pj) = max{avail(Pj), max
Tk∈pred(Ti)

{AFT (Tk)
+C(Tk, Ti)}},

(6)

where avail(Pj) is the earliest time at which processor Pj

is ready. The inner max block in (6) is the time at which all
data required by Ti has arrived at Pj , and pred(Ti) is the
set of immediate predecessor tasks of Ti. AFT (Tk) is the
actual finished time of task Tk, i.e., the time when task Tk
scheduled on a processor Pj was actually finished. For the
entry task Tentry , EST (Tentry, Pj) = 0.

b) Earliest Finished Time (EFT): The EFT of a task Ti
on a processor Pj is defined as follows:

EFT (Ti, Pj) = EST (Ti, Pj) + ET (Ti, Pj) (7)

c) Schedule: We define a Schedule Sch of an application
as a tuple {Ti, Pj , EST (Ti, Pj), EFT (Ti, Pj), EC(Ti, Pj)}.
It is interpreted as task Ti is assigned to processor Pj , and
Pj is expected to start executing Ti at time EST (Ti, Pj)
and completed by time EFT (Ti, Pj). EC(Ti, Pj) is cost
(monetary) of executing Ti on Pj .

TABLE I: Acronyms Used in the Paper

Notation Definition

ET (Ti, Pj) Execution time of task Ti on processor Pj

EC(Ti, Pj) Execution cost of task Ti on processor Pj

SP (Ti, Pj) Speed at which a processor Pj executes task Ti

Price(Ti, Pj) unit price of a processor Pj to executes task Ti

Pselect Processor selected to execute the current task

β Budget factor

δ Deadline factor

Makespan(G) Total execution time of the application G

TEC(G) Total execution cost of the application G

d) Makespan: The overall completion time of a DAG G,
or makespan, also called scheduling length is defined as the
actual finished time (AFT) of the last task in G, i.e., the exit
task (Texit). If there are multiple exit tasks and no redundant
task is added, the makespan is the maximum AFT of all exit
tasks. It can be defined as follows:

Makespan = max
Texit∈Sexit

[AFT (Texit)], (8)

where Sexit is the set of the exit tasks.
e) Total Execution Cost (TEC): The execution cost of

running a task Ti on processor Pj denoted as EC(Ti, Pj) is
calculated by the following equation:

EC(Ti, Pj) = ET (Ti, Pj)× Price(Ti, Pj). (9)

The total execution cost TEC of an application represented
by a DAG G can be calculated as:

TEC(G) =

n∑
i=1

EC(Ti, Pselect), (10)

where Pselect is the processor on which task Ti has been
assigned, and n is the number of tasks in the application.
Table I summarizes the acronyms used in this paper.

D. Problem Formulation

Based on the previous definitions, the problem can be
formulated as follows: assign the tasks of a given DAG to
a set of processors such that the Makespan is minimized
while satisfying both budget (β) and deadline (δ) constraints
specified by the user. This is expressed by (11).

Minimize :Makespan,

subject to :Makespan ≤ δ,
TEC ≤ β.

(11)

IV. PROPOSED BUDA ALGORITHM

In this section, we present a new Budget and Deadline
aware scheduling algorithm, called BUDA, that minimizes
the makespan while satisfying both budget and deadline
constraints. The BUDA algorithm has two main phases: a
task prioritizing phase for giving priority to tasks, and a
processor selection phase for selecting the suitable processor



to execute the current task. Before introducing the details
of our algorithm, we define the novelty concept, namely the
Heterogeneous Time-Cost Matrix (HTCM), which determines
the two phases of the algorithm.

A. Heterogeneous Time-Cost Matrix

The novelty of our algorithm is based on the Heterogeneous
Time-Cost Matrix (HTCM) on which the task prioritizing and
processor selection phases are based. HTCM is a (n × m)
matrix, where each element HTCM(Ti, Pj) represents the
length of the critical path from task Ti to the exit task,
including both execution time and execution cost of Ti on
the processor Pj . The elements HTCM(Ti, Pj) of the matrix
HTCM are recursively defined by (12) by traversing the DAG
from the exit task to the entry task.

HTCM(Ti, Pj) = max
Tk∈succ(Ti)

{
HTCM(Ti, Pj)

+ET (Ti, Pj) + EC(Ti, Pj) + C(Ti, Tk)
}
,

(12)

where HTCM(Texit, Pj) = ET (Texit, Pj) +EC(Texit, Pj),
and succ(Ti) is the set of immediate successor tasks of task
Ti.

By considering both execution time (ET) and execution cost
(EC) in HTCM, we are giving priority to the task with higher
ET and EC values, which can lead to a shorter makespan as
shown in the illustration example IV-E.

B. Task Prioritizing Phase

To determine task priority, we first compute the average
HTCM value of each task denoted by rankhtcm, and defined
as follows:

rankhtcm(Ti) =

∑m
j=1HTCM(Ti, Pj)

m
, (13)

where m is the number of processors. Then, the task priority
list is obtained by sorting the tasks in decreasing order of their
rankhtcm values.

C. Processor Selection Phase

To select a processor for a task, we compute the Hetero-
geneous Time-Cost Trade-off (HTCT) value defined by (14),
which is the summation of EFT and HTCM. In this way, we
are trying to adjust the time and cost for the current task
among all processors. The goal is to guarantee that a processor
that achieves the Earliest Finish Time for the current task, but
with a high monetary cost may not be selected, and this is
the purpose of the HTCM matrix. This goal may be achieved
since both execution time and execution cost are included in
HTCM.

HTCT (Ti, Pj) = EFT ((Ti, Pj) +HTCM(Ti, Pj) (14)

D. Description of BUDA Algorithm

Before the description of the BUDA algorithm, we define
the attributes used in the algorithm as follows:
• maxeft and maxhtct are the initial values of EFT and

HTCT, respectively.

• ECmin(Ti) denotes the minimum execution cost of task
Ti among all available processors of the target system;

• Pbest is defined as the processor that yields the smallest
EFT value for the actual task.

• ECbest(Ti) is the execution cost of task Ti on Pbest.
• Cheapest Cost (Costcheapest): denotes the cost of the

cheapest assignment and represents the lowest possible
cost required for executing the given DAG irrespective
of finishing time. It is obtained by assigning each task to
its cheapest processor. Costcheapest is defined by (15).

• Remaining Average Budget (RAB): RAB is defined
as the remaining cheapest cost for unscheduled tasks,
excluding the average execution cost of the current task.
The initial value of RAB is equal to Costcheapest. It is
updated at each step before selecting a processor for the
current task using (16).

• Available Budget (AvailB): AvailB is defined as the
actual remaining budget after execution a task. Its initial
value is equal to the user budget β, and it is updated after
a processor is selected for the current task using (17).

Costcheapest =
∑
Ti∈T

ECmin(Ti) (15)

RAB = RAB − EC, (16)

where EC is the average cost of the current task.

AvailB = AvailB − EC(Ti, Pselect), (17)

The BUDA algorithm is given by Algorithm 1. The main
idea of BUDA is to balance the execution time and the
execution cost for the current task among all processors. In
this way, the priority of a task will depend not only on the
heterogeneity of the processors but also on the task’s features.
This is more accurate for the task-based heterogeneity model
as explained in Section III-A. Also, by adjusting the time
and cost, a processor with a high monetary cost may not be
selected even if it achieves the minimum earliest finish time
for the current task.

The core steps of the BUDA algorithm are described as
follows:

(1) The BUDA algorithm starts by computing HTCM
matrix and rankhtcm at line 1.

(2) At line 2, an empty list denoted by L-rankhtcm is
created, and the entry task (Tentry) is placed on top
of the list.

(3) In lines 3-4, the cheapest cost of the given DAG G
is computed, and the algorithm initializes the available
budget (AvailB) and the remaining average budget
(RAB).

(4) In lines 5-35, the BUDA algorithm starts to map the
tasks to processors. At each step, the task with the
highest rankhtcm value among the unscheduled tasks
is selected as the current task Ti to be scheduled. After
computing the earliest finished time and the execution
cost of Ti on each processor, the ECbest(Ti) is set (Line
15). Next, the actual task budget ATB is computed



Algorithm 1 BUDA Algorithm
Input: DAG G with Budget B and Deadline D; m heteroge-
neous processors, SP (Ti, Pk) and Price(Ti, Pk);
Output: Output Sch, Makespan(G), and TEC(G);

1: Compute HTCM and rankhtcm for each task using (12)
and (13), respectively;

2: Create an empty list L-rankhtcm and put tentry as initial
task;

3: . Compute Costcheapest using (15);
4: AvailB = β; RAB = Costcheapest; TEC = 0;
5: while L-rankhtcm is not empty do
6: Ti ← the task with the highest rankhtcm value from
L-rankhtcm;

7: maxeft = +∞; maxhtct = +∞; update the RAB
using (16);

8: for (j = 1; j <= m; j ++) do
9: Compute EFT (Ti, Pj) and EC(Ti, Pj);

10: if maxeft > EFT (Ti, Pj) then
11: maxeft = EFT (Ti, Pj);
12: Pbest = j ; . Processor with the minimum

EFT value for task Ti
13: end if
14: end for
15: ECbest(Ti) = EC(Ti, Pbest);
16: ATB = AvailB −RAB;
17: for (j = 1; j <= m; j ++) do
18: if EC(Ti, Pj) > ECbest(Ti) or EC(Ti, Pj) >

ATB then
19: HTCT (Ti, Pj) = +∞; . Pj cannot be

selected
20: else
21: HTCT (Ti, Pj) = EFT ((Ti, Pj) +

HTCM(Ti, Pj) . Pj is a candidate processor
22: end if
23: if maxhtct > HTCT (Ti, Pj) then
24: maxhtct = HTCT (Ti, Pj);
25: Pselect = j;
26: end if
27: end for
28: Assign task Ti to Pselect;
29: Compute EST (Ti, Pselect) = EFT (Ti, Pselect) −

ET (Ti, Pselect);
30: Sch = {Ti, Pj , EST (Ti, Pj), EFT (Ti, Pj),
31: EC(Ti, Pj)};
32: AFT (Ti) = EFT (Ti, Pselect);
33: TEC(G) = TEC(G) + EC(Ti, Pselect);
34: Update AvailB as defined in (17);
35: end while
36: Makespan = AFT (Texit);
37: return Sch, Makespan(G), and TEC(G);

(Line 16). In lines 17-27, the algorithm starts to check
the candidate processors. Line 18 guarantees that if the
execution cost of task Ti on processor Pj is higher
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Fig. 1: Sample DAG and execution times of 10 tasks on 3
processors.

than the execution cost on the processor that achieves
the smallest EFT or if that cost is higher than the
actual task budget, then processor Pj cannot be selected.
Hence, the current schedule does not exceed the budget.
In lines 23-26, the processor with the minimum HTCT
value is selected to execute the current task Ti. After
assigning task Ti to the processor Pselect, the schedule
parameters and the available budget for the remaining
unscheduled tasks are updated (lines 29-34).

(5) Finally, the algorithm computes and returns the schedule,
the makespan, and the total monetary cost.

In terms of time complexity, BUDA requires the compu-
tation of HTCM matrix and the cheapest cost of the given
DAG that have complexity O(n×m), where n and m are the
number of tasks and number of processors, respectively. In
the processor selection phase, the complexity is O(n×m) for
calculating the EFT and EC for the current task among all
processors, and O(m) for selecting the suitable processor for
the current task. The total time is O((n×m)+n(n×m)+m),
where the total BUDA algorithm complexity is of the order
O(n2 ×m). That is, the time complexity of BUDA is of the
same order as the BHEFT [22] and HBCS [24] algorithms.

E. An Illustrative Example

We use the sample DAG of Fig. 1 to illustrate the per-
formance of the BUDA algorithm. We assume a budget of
230 and a deadline of 240 for the sample DAG. Table II
shows the speed of the processors and the DAG attributes.
The values of the tasks weight and edges weight are given
in Fig. 1. The value of Price(Ti, Pk), W (Ti, Pk), and
EC(Ti, Pk) are calculated using (1), (3), and (9), respectively.
Table III shows the elements of the HTCM matrix. The
priority of each task is calculated using (13). For instance,
rankhtcm(T1) = (484.04 + 750.07 + 943.8)/3 = 726.
After computing the priority of each task, we obtain the task
list (T1, T5, T2, T4, T6, T9, T3, T7, T8, T10) by ordering them in
decreasing value of rankhtcm. We observe that our algorithm
schedules T7 before T8, while the BHEFT (Table V) and



TABLE II: Processors Speed (SP), Execution Time (ET), Price, and Execution Cost (EC) for the DAG of Fig. 1

SP (Ti, Pk) ET (Ti, Pk) Price(Ti, Pk) EC(Ti, Pk)

Ti W (Ti) P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

1 41 1.07 0.8 0.72 38.32 51.25 56.95 1.0 0.65 0.56 38.32 33.31 31.89

2 16 0.08 0.36 0.66 200 44.44 24.24 0.07 0.42 1.0 14.0 18.66 24.24

3 31 0.27 1.9 1.75 114.82 16.32 17.72 0.08 1.0 0.88 9.19 16.32 15.59

4 1 1.34 0.12 0.35 0.75 8.33 2.86 1.0 0.05 0.16 0.75 0.42 0.46

5 13 0.19 0.79 0.02 68.42 16.46 650 0.15 1.0 0.01 10.26 16.46 6.5

6 41 0.72 1.9 1.52 56.95 21.58 26.98 0.26 1.0 0.72 14.81 21.58 19.43

7 51 1.21 0.33 0.64 42.15 154.55 79.69 1.0 0.17 0.4 42.15 26.27 31.88

8 32 1.22 0.55 1.22 26.23 58.18 26.23 1.0 0.33 1.0 26.23 19.2 26.23

9 63 1.07 0.13 1.67 58.88 484.62 37.73 0.53 0.04 1.0 31.21 19.38 37.73

10 28 1.05 0.87 1.12 26.67 32.19 25 0.91 0.69 1.0 24.27 22.21 25.0

TABLE III: Heterogeneous Time-Cost Matrix (HTCM) for the
DAG of Fig. 1

Task P1 P2 P3

T1 484.04 750.07 943.8

T2 389.34 647.51 222.94

T3 285.25 293.86 220.88

T4 184.9 579.15 185.78

T5 279.71 651.33 841.96

T6 305.16 304.94 278.87

T7 145.24 245.22 171.57

T8 172.4 200.78 171.46

T9 146.03 563.4 130.46

T10 50.92 54.40 50.0

HBCS (Table VI) algorithms that used ranku schedule T8
before T7. This is due to the fact that our algorithm considers
both execution time (ET) and execution cost (EC) while the
BHEFT and HBCS algorithms do not consider the EC during
the task prioritization phase. Therefore, our algorithm tries to
give priority to the task with the highest ET and EC values,
which are included in the HTCM matrix. Since task T7 has
higher ET and EC values than task T8 (Table II), it is scheduled
first by our algorithm.

Table IV shows the schedule produced by the BUDA
algorithm. To see how the HTCT values computed for each
task guide the processor selection, let us consider the schedul-
ing of task T5. It can be seen that the processor P2 (best
processor) gives the smallest EFT value for T5. However,
T5 is scheduled on P1 instead of P2. The reason is that the
execution cost of task T5 on P2, i.e, EC(T5, P2) = 16.46
(Table II) is higher than the execution cost of T5 on P1,
which is equal to 10.26. This information is included in the
HTCM matrix on which the processor selection is based.

In the same manner task T3 is scheduled on P3 instead of
P2. We can also observe that the HTCT values guide the
BUDA algorithm to determine the candidate processors, i.e.,
the processors that can be selected for the current task. For
instance, P1 is not a candidate processor for task T4 because
HTCT (T4, P1) = +∞ (Table IV). The makespan and the
total execution cost (TEC) obtained by the BUDA algorithm
are 235.78 and 214.95, respectively, which satisfy both budget
and deadline constraints. Also, the makespan and TEC of the
BUDA algorithm are less than those of BHEFT (Table V) and
HBCS (Table VI) algorithms.

This is a simple numerical example used to illustrate our
algorithm. The next section shows the performance of BUDA
over the related algorithms.

V. EXPERIMENTAL RESULTS AND DISCUSSION

This section compares the performance of the BUDA al-
gorithm with BHEFT [22], HBCS [24], and FBCWS [25]
algorithms. For this purpose, we consider two sets of graphs
as the workload: randomly generated graphs and real-world
applications graphs.

A. Comparison Metrics

• Average Makespan. The makespan is the usual metric
used to evaluate the performance of scheduling algo-
rithms. We use the average makespan as a metric because
a large set of DAGs with different properties is used. The
algorithm with the smallest average makespan is the best
algorithm according to this metric.

• Cost Ratio (CR): To compare the achieved money cost
between each algorithm, we use a cost ratio which is
calculated by dividing the total execution cost defined in
(10) by the given budget β.

CR =
TEC(G)

β
. (18)

A CR value greater than one denotes a monetary cost
larger than the defined budget which counts as a failure
to meet the budget. The algorithm with the smallest CR
value is the best algorithm in terms of monetary cost
according to this metric.



TABLE IV: Schedule Produced by the BUDA Algorithm

Task ATB EFT Best HTCT Processor EST Execution

Ti P1 P2 P3 Processor P1 P2 P3 selected Cost

T1 101 38.32 51.25 56.95 P1 522.36 801.325 1000.75 P1 0.0 38.32

T5 74 106.74 67.78 701.32 P2 386.45 719.11 1543.28 P1 38.32 10.26

T2 83 306.74 100.76 80.56 P3 696.14 748.27 303.5 P3 56.32 24.24

T4 60 107.49 101.65 96.18 P3 +∞ 680.8 281.96 P3 93.32 0.46

T6 79 163.69 86.9 123.16 P2 468.85 391.84 402.03 P2 65.32 21.58

T9 86 165.62 646.36 199.47 P1 311.65 1209.77 +∞ P1 106.74 31.21

T3 69 280.44 103.22 113.9 P2 565.69 397.08 334.78 P3 96.18 15.59

T7 86 207.77 284.45 193.59 P3 +∞ 529.67 365.16 P3 113.9 31.88

T8 78 191.8 165.36 219.82 P2 +∞ 366.14 +∞ P2 107.18 19.2

T10 83 261.03 235.78 259.36 P2 +∞ 290.18 +∞ P2 203.59 22.21

The +∞ value in the table means that the Processor cannot be selected.
Makespan(G) = 235.78 and TEC(G) = 214.95

TABLE V: Schedule Produced by BHEFT Algorithm

Ti ranku(Ti) EST EFT Pselect EC

T1 588.5 0 38.32 P1 38.32

T5 526.66 38.32 106.74 P1 10.26

T2 337.26 56.32 100.76 P2 18.66

T4 237.68 93.32 96.18 P3 0.46

T6 230 96.18 123.16 P3 19.43

T9 226.7 121.76 180.64 P1 31.21

T3 195.7 123.16 140.88 P3 15.59

T8 133.83 140.88 167.11 P3 26.23

T7 130.08 167.11 246.8 P3 31.88

T10 27.95 246.8 271.8 P3 25.0

Makespan(G) = 271.8 and TEC(G) = 217.04

TABLE VI: Schedule Produced by HBCS Algorithm

Ti ranku(Ti) EST EFT Pselect EC

T1 588.5 0 38.32 P1 38.32

T5 526.66 38.32 106.74 P1 10.26

T2 337.26 56.32 100.76 P2 18.66

T4 237.68 93.32 96.18 P3 0.46

T6 230 96.18 123.16 P3 19.43

T9 226.7 121.76 180.64 P1 31.21

T3 195.7 100.76 117.08 P2 16.32

T8 133.83 123.16 149.39 P3 26.23

T7 130.08 149.39 229.08 P3 31.88

T10 27.95 229.08 254.08 P3 25.0

Makespan(G) = 254.08 and TEC(G) = 217.77

• Time Ratio (TR): To compare the achieved time between
each algorithm, we use a time ratio which is calculated
by dividing the makespan by the defined deadline δ.

TR =
Makespan(G)

δ
. (19)

With the same reasoning with the cost ratio, a TR value
greater than one indicates an execution time larger than
the defined deadline which counts as a failure to meet
the deadline. Based on this metric, the algorithm with

the smallest TR value is the best algorithm in terms of
time efficiency.

• Success Rate (SR): SR is defined as the ratio between
the number of simulation runs that successfully met the
scheduling constraints, i.e., deadline and budget denoted
as Successrun, and the total number of simulation runs
denoted by Totalrun. To obtain the SR in percentage
we multiply its value by 100. Hence, SR is defined as
follows:

SR =
Successrun
Totalrun

× 100. (20)

B. Random Graph Generator

We used a synthetic DAG generation program available at
[29] to generate weighted DAGs. We consider the following
parameters to generate the DAGs:
• Number of task n = {20, 40, 60, 80, 100}.
• Communication to Computation Ratio (CCR). It is de-

fined as the ratio of the sum of the edge weights to the
sum of the task weights in a DAG.

• CCR = {0.1, 5, 10}.
• Number of processors m = {32, 64}.
• The parallelism factor is randomly taken from {1, 2}.
• The speeds SP (Ti, Pj) were randomly taken from ]0, 2[

as in [27].
Budget factor β and deadline factor δ. We have consid-

ered different combinations of β and δ as follows: (β, δ) =
{(4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (12, 12), (16, 16), (20, 20),
(4, 8), (8, 12), (12, 16), (16, 20), (8, 4), (12, 8), (16, 12),
(20, 16)}. These combinations result in a sufficient budget and
very relaxed deadline as shown in [30]. These parameters give
a total of 4000 different random DAGs since 25 DAGs were
generated for each DAG type.

C. Real-World Application Graphs

In addition to the randomly generated DAGs, we also eval-
uated the performance of the algorithms with two well-known
scientific applications: molecular dynamics code [1] (Fig. 2),
and Epigenomics with 100 tasks [31]. Since the structure of
these applications is well-known, we simply consider the same
DAG parameters and (β, δ) combinations given in Section
V-B. For these applications, we have considered 10 different
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Fig. 3: (a) Average makespan, (b) average cost ratio, (c)
average time ratio, and (d) success rate as function of DAGs
size.

graphs that lead to a total of 320 different graphs for each
real-world application type.

D. Performance Results

1) Results of Randomly Generated Graphs with 32 proces-
sors for varying number of tasks : Fig. 3 shows the average
makespan for all algorithms with respect to the number of
tasks. The BUDA algorithm obtained the best results. For
instance, when the number of tasks n is equal to 20, the BUDA
algorithm outperforms the HBEFT, HBCS, and FBCWS al-
gorithms by 12.01%, 22.92%, and 50.35%, respectively. In
terms of the average cost ratio (Fig. 3b), the HBCS algorithm
obtained the best. The second best algorithm is BUDA. For
instance, when n = 100, HBCS outperformed BUDA by
7.62% and BHEFT by 11.59%. This performance of HBCS
over the other algorithms is due to the fact that HBCS always
assigns a task to a processor that achieves minimum cost for

20 40 60 80 100
Number of Tasks

0

1000

2000

3000

4000

Av
er

ag
e 

M
ak

es
pa

n

BUDA
BHEFT

HBCS
FBCWS

(a) Makespan using 64 Processors

20 40 60 80 100
Number of Tasks

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Av
er

ag
e 

Co
st

 R
at

io

BUDA BHEFT HBCS FBCWS

(b) Cost ratio using 64 processors

20 40 60 80 100
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e 

Ti
m

e 
Ra

ti
o

BUDA
BHEFT
HBCS
FBCWS

(c) Time ratio using 64 Processors

20 40 60 80 100
Number of Tasks

0

10

20

30

40

Su
cc

es
s 

Ra
te

 (
%

)

BUDA
BHEFT

HBCS
FBCWS

(d) Success rate using 64 Processors

Fig. 4: (a) Average makespan, (b) average cost ratio, (c)
average time ratio, and (d) success rate as function of DAGs
size.

the current task within the available budget. Consequently,
HBCS can achieve a shorter cost ratio, but with a higher
makespan as shown in Fig. 3a. Also, all algorithms meet the
budget constraint for all DAG sizes since their cost ratio values
are less than one. For the time ratio (Fig. 3c), the BUDA
algorithm achieved a shorter average time ratio than all other
algorithms for DAG sizes of 20, 40, and 80. For instance,
BUDA surpassed BHEFT by 10.56% and 6.4% for DAGs with
20 and 40 tasks, respectively. For DAGs with 100 tasks, the
BHEFT only obtains an average improvement of 3.01% over
the BUDA algorithm. Also, the BUDA and BHEFT algorithms
meet the deadline constraint for DAG sizes of 20, 40, and
80, while the HBCS algorithm meets the deadline constraint
only for DAG sizes of 40 and 80. Moreover, the ranking
of the algorithms with respect to success rate (Fig. 3d) is
{BUDA, BHEFT, HBCS, FBCWS}. The BUDA algorithm
achieved the best results because it can adjust the time and cost
during the processor selection phase as shown in Section IV-E
(Table IV). The FBCWS algorithm yielded the worst results
because it schedules the majority of the less intensive tasks
(denoted as LTCTL in [25]) to the slow processors, while the
algorithm always scheduled the data-intensive tasks (denoted
as MTCTL in [25]) to the faster processors. Consequently,
FBCWS produced longer makespan and monetary costs than
the other algorithms.

2) Results of Randomly Generated Graphs with 64 pro-
cessors for varying number of tasks: In terms of makespan,
BUDA achieves the best results when the number of processors
is equal to 64. For instance, when the number of tasks n is
equal to 80, BUDA outperforms the BHEFT by 7.31%, HBCS
by 25.02%, and FBCWS by 46.38%. We observe that when
the DAGs size is equal to 60, all algorithms achieve a small
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Fig. 5: Success rate of the molecular dynamics code applica-
tion for varying budget and deadline constraints.

average makespan because the CCR values generated for these
DAGs are small compared to other random generated DAGs.
In terms of average cost ratio (Fig.4b), the HBCS algorithm
again gives the best results for the same reasons explained
in Section V-D1. For time efficiency, the BUDA algorithm
achieved a shorter average time ratio than all other algorithms
for DAG sizes of 20, 40, 60, and 80. For instance, BUDA
surpassed the BHEFT algorithm by 9.08% and 13.83% for
DAGs with 40 and 80 tasks, respectively. For DAGs with 100
tasks, the BUDA and BHEFT obtain similar results. Also, the
BUDA algorithm meets the deadline constraint for DAG sizes
of 20, 40, 60, and 100, while the BHEFT algorithm meets the
deadline constraint for DAG sizes of 20, 60, and 100 only.
Moreover, the ranking of the algorithm in terms of success
rate (Fig. 4d) is {BUDA, BHEFT, FBCWS, HBCS}.

3) Success rate of the Molecular dynamics code application
for varying budget and deadline constraints: Fig. 5a shows
the success rate for smaller values of budget (β) and deadline
(δ) constraints. On average the BUDA algorithm obtained the
highest success rate. For instance, when β = δ = 5, the
success rate of BUDA, BHEFT, and HBCS algorithms are
15%, 10%, and 5%, respectively. For higher values of (β)
and (δ) (Fig. 5b), BUDA again achieved the best results. In
particular, when β = δ = 8 and β = δ = 20, the ranking of the
algorithms with respect to the success rate is {BUDA, BHEFT,
HBCS, FBCWS} and {BUDA, BHEFT=HBCS, FBCWS},
respectively. Finally, when β < δ (Fig. 5c) and β > δ (Fig.
5d), the BUDA algorithm again produced the best results on
average. We observe that the success rate of all algorithms
increased when both budget and deadline values increased.
This is because the number of tasks in the graph of the
molecular dynamics code is fixed.
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Fig. 6: Success rate of the Epigenomic workflow for varying
budget and deadline constraints.

4) Success rate of the Epigenomic workflow with for vary-
ing budget and deadline constraints: Fig. 6 shows the results
achieved for Epigenomic in terms of success rate. In most
cases, the BUDA algorithm obtained the best performance in
terms of meeting both budget and deadline, i.e, the success
rate. For instance, when β = δ ∈ {4, 5, 6, 7} (Fig. 6a), the
average success rate values of BUDA, BHEFT, HBCS, and
FBCWS algorithms are (30.0 + 35.0 + 75.0 + 80.0)/4 = 55,
(30.0 + 45.0 + 55.0 + 60.0)/4 = 47.5, (10.0 + 25.0 + 35.0 +
60.0)/4 = 32.5, and (25.0 + 30. + 35.0 + 40.0)/4 = 32.5,
respectively. Hence, the performance ranking of the algo-
rithms with respect to the success rate is {BUDA, BHEFT,
HBCS=FBCWS}. For β = δ ∈ {8, 12, 16, 20}, BUDA and
BHEFT show similar performance on average and outperform
the other algorithms. Finally, when β < δ (6c) and β > δ
(6d) BUDA and BHEFT again obtained the best results with
similar performance on average.

5) Total Success Rate (TSR): Table VII shows the total
success rate of each algorithm considering the combinations of
budget factor β and deadline factor δ defined in Section V-B.
The best algorithm is BUDA for all application types. For
instance, BUDA obtained the highest performance (78.75%)
for the Epigenomic application while FBCWS yielded the
worst performance with a total success rate value of 58.44%.
In general, our BUDA algorithm is more consistent and it is
much more likely to give acceptable schedules under budget
and deadline constraints.

VI. CONCLUSION

This paper presents a novel algorithm called BUDA, for
scheduling budget and deadline constrained applications on
heterogeneous systems. The experiments performed for a large



TABLE VII: Total Success Rate of the Algorithms

Application BUDA BHEFT HBCS FBCWS

Random DAG 76.58% 74.6% 67.6% 61.93%

Epigenomic workflow 78.75% 76.87% 69.69% 58.44%

Molecular Dynamics Code 43.75% 40.0% 35.63% 24.38%

set of randomly generated graphs proved that the BUDA
algorithm outperformed the BHEFT, HBCS, and FBCWS al-
gorithms in terms of average makespan, time ratio, and success
rate. The BUDA algorithm also surpassed the benchmark algo-
rithms for the molecular dynamics code and the Epigenomic
workflows. However, for the Epigenomic workflow, BUDA
and BHEFT obtained similar results when the budget factor
and the deadline factor are different. This is due to the feature
of the Epigenomic graphs, which is characterized by having
more tasks belong to the critical path.

One key future research direction is to define a mechanism
to control the execution time and execution cost so that in any
step, the user can define the QoS that should be satisfied. We
also intend to extend the algorithm by considering the energy
consumption during both the task prioritization phase and the
processor selection phase. This consideration will allow the
user to minimize energy consumption while satisfying the
budget and deadline constraints.
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