
DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 1

Machine and Deep Learning for Resource
Allocation in Multi-Access Edge Computing: A

Survey
Hamza Djigal, Jia Xu, Senior Member, IEEE, Linfeng Liu, Member, IEEE, and Yan Zhang, Fellow, IEEE

Abstract—With the rapid development of Internet-of-Things
(IoT) devices and mobile communication technologies, Multi-
access Edge Computing (MEC) has emerged as a promising
paradigm to extend cloud computing and storage capabilities
to the edge of cellular networks, near to IoT devices. MEC
enables IoT devices with limited battery capacity and compu-
tation/storage capabilities to execute their computation-intensive
and latency-sensitive applications at the edge of the networks.
However, to efficiently execute these applications in MEC systems,
each task must be properly offloaded and scheduled onto the
MEC servers. Additionally, the MEC servers may intelligently
balance and share their computing resources to satisfy the
application QoS and QoE. Therefore, effective resource allocation
(RA) mechanisms in MEC are vital for ensuring its foreseen
advantages. Recently, Machine Learning (ML) and Deep Learn-
ing (DL) have emerged as key methods for many challenging
aspects of MEC. Particularly, ML and DL play a crucial role in
addressing the challenges of RA in MEC. This paper presents
a comprehensive survey of ML/DL-based RA mechanisms in
MEC. We first present tutorials that demonstrate the advantages
of applying ML and DL in MEC. Then, we present enabling
technologies for quickly running ML/DL training and inference
in MEC. Afterward, we provide an in-depth survey of recent
works that used ML/DL methods for RA in MEC from three
aspects: (1) ML/DL-based methods for task offloading; (2)
ML/DL-based methods for task scheduling; and (3) ML/DL-
based methods for joint resource allocation. Finally, we discuss
key challenges and future research directions of applying ML/DL
for resource allocation in MEC networks.

Index Terms—Multi-access edge computing, resource alloca-
tion, task offloading, task scheduling, machine learning, deep
learning, IoT applications.

I. INTRODUCTION

W ITH the recent progress in information and mobile
communication technologies, such as fifth-generation

mobile networks (5G), the quality of service (QoS), and the
conjectures towards fantastic Quality of Experience (QoE) are
widely increasing. Tens of billions of resource-limited wireless
smart devices, such as mobile user equipment (UEs), sensors,
and wearable devices can connect to the Internet through
5G networks [1]. The number of IoT devices is expected

This work was supported in part by the National Natural Science Foundation
of China under grants 61872193, 61872191 and 62072254, and in part by
the National Foreign Expert Program of China under grant QN2022014001.
(Corresponding author: Jia Xu)

Hamza Djigal, Jia Xu and Linfeng liu are with the Jiangsu Key Laboratory
of Big Data Security and Intelligent Processing, Nanjing University of
Posts and Telecommunications, Nanjing, Jiangsu 210023, China. (e-mail:
djigalshamza@gmail.com, {xujia, liulf}@njupt.edu.cn).

Yan Zhang is with Department of Informatics, University of Oslo, 0316
Oslo, Norway (e-mail:yanzhang@ieee.org).

to increase to 25.2 billion by 2025, and it is estimated that
3.1 billion of the connected IoT devices will use cellular
technology, establishing business opportunities for enterprises
and mobile operators [2]. Also, the 5G networks bring a
range of benefits to the end-users and IoT devices, including
5G’s ultra-reliability (99.999%), very low latency (below 5ms),
high bandwidth (10 Gbps), and the ability to support 1000
times higher data volumes [3]. The 5G networks will highly
improve user’s QoS and QoE, and facilitate the demand of
smart applications (e.g., smart cars, smart energy grids, smart
houses, etc.) [2].

Due to their limited resources (computation, storage, etc.)
capacities and finite battery capacity, the IoT devices are not
suitable for supporting latency or delay-intensive applications
or IoT applications providing 5G services such as online
gaming and video services [4]. To overcome this challenge,
the concept of mobile cloud computing (MCC) is introduced
to enable the IoT devices to offload their computation-sensitive
applications to powerful centralized remote clouds which are
accessible via the Internet or a core network (CN) of a mobile
operator [5]. However, MCC also incurs high latency because
data is offloaded to remote cloud servers that are located
far away from the IoT devices. To address this issue, the
emerged Mobile Edge Computing paradigm has been intro-
duced by ETSI ISG [6] to move the cloud computation and
storage capabilities closer to the end-users. In September 2017,
ETSI ISG officially renamed it Multi-access Edge Computing
(MEC) to better reflect that the edge is not only based on
mobile networks but can also refer to various networks such
as WiFi and fixed access technologies [7], [8], [3]. MEC
comprises edge servers located at the edge of the network
and implemented either at the following access points: base
stations (BSs), radio access networks (RANs) for LTE/5G, hot
spots, data centers (DCs), routers, switches, and wiFi access
points (WAP).

The basic principle of MEC is to bring the cloud computa-
tion and storage capabilities closer to the edge of the networks.
Hence, MEC can provide ultra-low latency and reliability
compared to the MCC. In addition, due to its ultra-low latency
and high bandwidth characteristics, MEC brings new business
opportunities to the major stakeholders including mobile oper-
ators, application developers, telecom equipment and software
vendors, IT platform and technology vendors [9]. For instance,
a mobile operator can maximize its revenue by offering open
access of the MEC platforms through Application Program-
ming Interfaces (APIs) to service providers and suggest usage-

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 2

Intelligent 
Device 
 Layer

Intelligent 
MEC   
Layer

 Offloading
Decisions

Machine  
Learning

Run Locally

Offload to External Server

Server Decisions Allocate to MEC
Server

Application task Graph

Mobile
Device

Machine
Learning

Allocate to Cloud
Server

MEC  
Scheduler

Cloud  
Scheduler

Intelligent 
Cloud   
Layer

Deep  
Learning

Deep  
Learning

Task queue

INTERNET

Fig. 1: The framework of ML/DL-enabled intelligent resource
allocation in MEC

based charging for using resources (e.g., computation, storage,
and bandwidth) [3]. Another advantage of MEC is that it
enables IoT devices with limited battery capacity and limited
computation/storage capabilities to execute their computation-
intensive and latency-intensive applications at the edge of the
networks. However, to efficiently execute these applications
in MEC systems, each task must be properly offloaded and
scheduled onto the edge/cloud servers. Moreover, multiple
edge servers can collaboratively offload their computation-
intensive tasks to each other through a backhaul network
to offer better services for the end-users by balancing and
sharing their computation resources [4]. For example, a nearby
edge server can decide to offload the computation task of a
connected mobile device to another edge server if it does
not have the required computing resources to process the
task within its deadline. Hence, efficient resource allocation
mechanisms in MEC are vital for its foreseen advantages. The
main objective of this paper is to provide an in-depth survey
of recent works that used ML and DL methods to address
the resource allocation problem in MEC, which we divide
into three sub-problems: (1) task offloading problem, (2) task
scheduling problem, and (3) joint resource allocation problem.

Traditionally, the resource allocation problem is solved
using optimization methods such as heuristic or meta-heuristic,
which are not globally optimal [10]. Also, these traditional
solutions are not suitable for delay-sensitive and data-intensive
applications since they are computationally expensive. More-
over, the time complexity of these traditional approaches pro-
portionally increases with the increase in the number of tasks
and network size. To overcome the drawbacks of traditional
methods, some recent studies have begun to investigate ML
and DL methods to solve the resource allocation problem
in MEC. For instance, Huang et al. [11] proposed a DL-
based task offloading and bandwidth allocation mechanism in
MEC, which minimizes the overall offloading cost. Moreover,
ML and DL techniques could be vital for optimizing the
resource allocation process while meeting the QoS and QoE
requirements of the application because they can intelligently

predict unknown QoS or QoE requirements by learning from
historical data.

Fig. 1 illustrates a ML/DL-enabled intelligent framework for
resource allocation in MEC. In the intelligent device layer, a
machine learning algorithm is embedded in each intelligent
device (e.g., mobile device), which can make offloading deci-
sions. In the intelligent MEC layer, an ML algorithm selects
the suitable computation resources (server decisions) which
can execute the offloaded tasks. If the offloaded tasks are
allocated to an MEC server, a DL-based scheduler embedded
in the MEC server makes the scheduling decision (i.e., task
prioritization and assignment). Generally, the DL training
process is done in the intelligent cloud layer because it requires
powerful computing resources [12]. Additionally, the ML/DL-
based offloading and scheduling decisions depend not only on
the data size and computation resource capabilities but also
on the ML/DL model to be executed.

A. Existing Surveys on Resource Allocation

In this section, we first present previous surveys on task
offloading in MEC. Then, we discuss related surveys on task
scheduling in various distributed systems, such as grid comput-
ing, cloud computing, fog computing, and MEC. Additionally,
we classify the related surveys on traditional techniques for
resource allocation (Table I). Finally, we compare the existing
surveys with our survey in terms of different aspects as shown
in Table II.

1) Existing Surveys on Task Offloading: In [13], the authors
present a comprehensive survey on data offloading techniques
in cellular networks. They classify the existing techniques
into two main categories, namely delayed offloading and
non-delayed offloading according to the delay that the data
may tolerate. In delayed offloading, packet reception may
be purposely delayed up to a certain time to achieve more
beneficial delivery conditions. In non-delayed offloading, no
additional delay is added to packet reception except the delay
caused by the packet processing. Since there is no extra delay
in no-delayed offloading, the QoS requirements are preserved.
The authors of [5] address the computation offloading decision
problem in MEC. They classify the offloading decision ap-
proaches into full offloading and partial offloading. The main
idea of the full offloading approach is to offload the whole
computation task to the MEC servers. In partial offloading,
a part of the computation task is processed locally by the
device while the rest is processed by the MEC servers. In
[20], the authors present a survey on opportunistic offloading
and classify them into two main categories: traffic offloading
and computation offloading. In traffic offloading, the mobile
devices download contents via the cellular network and send
them to other nodes via opportunistic communication. In com-
putation offloading, the computationally intensive tasks of the
mobile device with limited computing resources are offloaded
through opportunistic communication to other mobile devices
nearby which have enough computing capacity to process the
tasks. In [24], the authors present a survey and taxonomy
on task offloading in edge-cloud environments. They analyze
the task offloading solutions from five aspects: task types,

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 3

TABLE I: Summary of Existing Surveys on Conventional Techniques for Resource Allocation in Cloud/Edge/Fog

Ref. Traditional Techniques Resource Allocation (RA) Aspects Focus of Discussion

Heuristic Meta-Heuristic Game Theory Offloading Scheduling Joint RA

2015, [13] D D Data offloading techniques in cellular networks.

2016, [14] D Taxonomy for classifying 109 scheduling problems and solu-
tions in DS.

2017, [15] D Taxonomy of task allocation with temporal and ordering
constraints

2017, [10] D D D Taxonomy and survey on scheduling algorithms in IaaS cloud

2017, [5] D D Survey on architecture and computation offloading in MEC

2017, [16] D D Survey of economic and pricing models for resource manage-
ment in cloud.

2018, [17] D D Survey of cluster frameworks and scheduling strategies in data
center networks

2018, [18] D D D Survey of task scheduling methods in desktop grid computing
systems

2018, [19] D Taxonomy of the scheduling problem in cloud.

2018, [20] D Survey of opportunistic offloading: traffic and computation
offloading.

2019, [21] D D D Systematic review and taxonomy of scheduling techniques in
cloud.

2019, [22] D D Survey of meta-heuristic scheduling techniques in cloud.

2019, [23] D D D Taxonomy and survey on scheduling techniques in fog-cloud

2020, [24] D D D D Survey and Taxonomy on Task Offloading for Edge-Cloud
Computing

2020, [25] D Survey of computation offloading modeling in edge comput-
ing

2020, [26] D D Multiple workflows scheduling problems in multi-tenant dis-
tributed systems.

2020, [27] D D D Survey of smartphone perspective on computation offloading

2021, [28] D D Survey of task offloading in MEC

2021, [29] D D Survey of resource allocation in NFV

2021, [30] D D D Survey of collaborative task scheduling in edge computing

2021, [31] D D Resource allocation in heterogeneous 5G networks

TABLE II: Comparison between Existing Surveys and our Survey: Emerging Techniques for Resource Allocation in MEC

Ref. ML/DL-
Enabled
MEC

Enabling
Techniques for
ML/DL Tasks
in MEC

Taxonomy of ML/DL for RA In-depth Review of Works focused on ML/DL for RA Focus of Discussion

Focused on ML Focused on DL ML/DL-based Offloading ML/DL-based Scheduling ML/DL-based Joint RA

2019, [32] D D Discussed key factors that enables the im-
plementation of DL in mobile networking
applications

2019, [33] D D D Discussed techniques for quickly running
DL inference in MEC

2020, [34] D D D D Discussed federated learning for MEC opti-
mization

2020, [35] D D D Mainly discussed ML-based resource al-
location techniques for HetNets, MIMO,
D2D, and NOMA networks.

2020, [25] D Survey of computation offloading modeling
in edge computing

2020, [36] D D Survey of ML-based computation offloading
modeling in edge computing

2020, [37] D DL for 5G networks

2020, [38] D Survey of stochastic-based offloading mech-
anisms in edge/cloud

2020, [39] D D Investigated key techniques about the con-
vergence of DL and MEC, MEC for DL,
and DL for Edge

2020, [40] D D Survey on edge intelligence, mainly dis-
cusses caching, training/inference, and of-
floading methods in MEC.

2020, [41] D Survey on MEC for 5G and IoT. Mainly
discusses enabling technologies for MEC in
5G

2021, [42] D Survey on task offloading in edge and cloud
computing

2021, [43] D D D D Mainly focused on conventional techniques
for resource scheduling in MEC

Our survey D D D D D D D In-dept survey of ML/DL-based resource
allocation mechanisms in MEC (See Sec-
tion I-B for key contributions)

offloading schemes (i.e., full offloading and partial offloading),
objectives, device mobility, and multi-hop cooperation. The
authors of [25] provide a survey on computation offloading
modeling in edge computing. Since the offloading problem

is an optimization problem, they classify the offloading mod-
eling approaches from different perspectives, including non
and convex optimization, Markov Decision Process (MDP),
game theory, Lyapunov optimization, and machine learning. In

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 4

[36], the authors present a survey on ML-based computation
offloading in MEC systems and classify all the solutions into
reinforcement learning, supervised learning, and unsupervised
learning approaches. In contrast to Shakarami et al. [36],
the authors of [38] provide a survey on stochastic-based
offloading approaches in MCC, MEC and Fog computing
systems. They propose a taxonomy to classify the approaches
into three Markow models, namely, Markov chain, Markov
process, and hidden Markov. In [39], the authors investigate
the convergence of MEC and deep learning. They mainly
discuss enabling techniques for the integration of MEC and
DL, i.e., DL applications in MEC, DL training/inference in
MEC, MEC for DL services, and DL for optimizing MEC.

2) Existing Surveys on Task Scheduling: In [44], the authors
address the task allocation and load balancing problems in
distributed systems. They focus on five main aspects: control,
resource optimization, reliability, coordination strategy among
heterogeneous nodes, and network structure. The authors of
[23] provide a survey on scheduling techniques in different
cloud models including traditional, serverless, and Fog-cloud
environments. In [35], the authors investigate ML algorithms
for resource management in wireless IoT networks. They
mainly survey machine learning techniques for emerging cel-
lular IoT networks such as MIMO, D2D communications,
and NOMA networks. However, they did not address the
task offloading problem which is vital for ensuring high
performance in IoT networks, especially in the presence of a
large number of computationally intensive tasks. The authors
of [30] present a survey of collaborative task scheduling
problems in edge computing. They analyze the problem from
four main perspectives: computing architectures (e.g., device-
edge, device-edge-cloud, etc.), computation task models (e.g,
local execution, offloading types, etc.), optimization objec-
tives, and scheduling methods. In [43], the authors present
a comprehensive survey of resource scheduling in edge com-
puting. They classify the existing works from three aspects
including computation offloading, resource allocation, and
resource provisioning. They also discuss different techniques
of resource scheduling such as heuristic, approximation, game
theory, and machine learning. Compared to [30], the authors
of [43] provide more details about the scheduling methods and
the optimization objectives. However, they also don’t provide
an in-depth review of ML/DL-based methods for resource
scheduling.

In summary, most of the existing surveys on resource
allocation either focused on the task offloading problem or
task scheduling problem, ignoring the joint task offloading and
scheduling problem. Also, as shown in Table I, the majority
of the existing surveys focused on the traditional resource
allocation methods such as heuristics, meta-heuristics, and
game theory ignoring the emerging ML and DL techniques.
Moreover, the emerging ML and DL techniques that have been
used to solve the resource allocation problem in MEC have
not been comprehensively discussed in the existing surveys.

To the best of our knowledge, there is no survey that thor-
oughly discussed the application of ML and DL for resource
allocation in MEC while considering the other aspects shown
in Table II, i.e., the ML/DL-enabled MEC; enabling techniques

for ML/DL tasks in MEC; taxonomy of ML/DL for resource
allocation, and in-depth review of works focused on ML/DL
for resource allocation.

Motivated by this, we propose an in-depth survey of
ML/DL-based resource allocation methods in MEC. Particu-
larly, we survey recent works that used ML and DL techniques
to address the task offloading, task scheduling, and joint
resource allocation problems in MEC while considering the
other aspects shown in Table II.

B. Contributions

In contrast to the existing surveys depicted in Table I and
Table II, this survey focuses on ML and DL techniques for
resource allocation in MEC. The key contributions of this
article are as follows:
• We discuss the advantage of applying ML and DL

for MEC (ML/DL-enabled MEC) by presenting three
use cases from three perspectives: end-users, service
providers, and networking services.

• We discuss potential technologies for quickly running ML
and DL tasks (i.e., training and inference) in MEC.

• We discuss potential ML and DL algorithms for resource
allocation in MEC, and their advantages and disadvan-
tages are summarized.

• We conduct a comprehensive and in-depth survey of
recent works that used ML and DL methods to address
the resource allocation problem in MEC. Particularly, we
discuss and classify current ML and DL-based methods
for resource allocation from three aspects: task offloading,
task scheduling, and joint resource allocation.

• We discuss lessons learned from the state-of-the-art ML
and DL-based methods for resource allocation in MEC,
which will help researchers to well-understand how and
when ML and DL-based methods outperform the tradi-
tional techniques for resource allocation in MEC.

• We discuss key challenges and present future research
directions of applying ML and DL for resource allocation
in MEC.

The rest of the paper is organized as follows. Fig. 2 shows
the structure of the paper. Table III shows all the acronyms
used in the paper. Section II presents an overview of MEC,
ML/DL, and resource allocation. Section III discusses the
advantages bring by ML and DL for MEC. Section IV presents
enabling technologies for ML and DL tasks in MEC. Section
V presents potential ML and DL techniques for resource
allocation. Section VI presents an in-depth survey of ML/DL-
based methods for task offloading in MEC. In Section VII,
we thoroughly survey state-of-the-art ML and DL methods
for task scheduling in MEC. Section VIII thoroughly reviews
recent works addressing the joint resource allocation problem
using ML/DL methods. In section IX, we discuss challenges
and future research directions. Finally, Section X concludes
this survey.

II. OVERVIEW

In this section, we summarize the basics of MEC, ML/DL,
and resource allocation.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 5

Structure of
the paper

I. Introduction II. Overview III. ML/DL ENABLED MEC:
USE CASES

IV. ENABLING TECHNOLOGIES
FOR ML/DL TASKS IN MEC  

 

V. ML AND DL FOR RESOURCE
ALLOCATION IN MEC  

 

VII. ML/DL-Based
Methods for Task Scheduling

in MEC 
 

VI. ML/DL-Based Methods
for Task Offloading in MEC 

 

VIII. ML/DL-Based
Methods  for Joint Resource

Allocation in MEC 

X. Conclusion 

B. Contributions

A. Existing Surveys on
Resource Allocation

A. Multi-Access Edge
Computing (MEC)

C. Resource Allocation

B. Machine Learning
and Deep Learning

A. Why Do We Need
ML/DL in MEC ?

B. ML/DL-Enabled MEC:
Use Cases

A. Minimization of
Latency

B. Minimization of Energy
Consumption while

Satisfying a QoS Metric

C. ML/DL Tasks across
Edge Devices, Edge and

Cloud Servers  

 

C. Trade-Off Between
Execution Delay, Task
Drops, Queuing Delay,

Failure Penalty, and Cost

D. Trade-Off Between
Privacy, Execution Delay,
and Energy Consumption

E. Lessons Learned From
Task Offloading in MEC  

A. Minimization of
Execution Time

B. Minimization of Energy
Consumption while

Satisfying Response Time

C. Trade-off Between
Response Time and

Resource Utilization Costs

C. Minimization of
Communication Cost  

D. Lessons Learned From
Task Scheduling in MEC

A. Minimization of Energy
Consumption

B. Minimization of
Execution Delay Under

Energy Constraints

C. Minimization of
Latency

E. Lessons Learned From
Joint Resource Allocation

A. Trade-off Between
Large-Scale Training

Datasets and
Computation Delay

IX. Challenges and Future Research Directions

A. Motivation Example

B. Machine Learning for
Resource Allocation

C. Deep Learning for
Resource Allocation

A. ML/DL Tasks on-Edge-
Devices

B. ML/DL Tasks on Edge
Servers

B. Trade-off Between
Convergence Rate and 

Time Complexity

C. Deep Learning
Models Caching

H. Resource Allocation
in MEC for ML and DL

D. Integration of
Blockchain and ML/DL

for Resource
Allocation 

E. Resource Allocation
under Time-Varying
Wireless Channel

Conditions

F. Considering 
More Computing

Resources

G. Resource  
Allocation on Hybrid

Architectures

J. Federated Deep 
Transfer Learning

I. Deep Learning
Inference on

Resource-Constrained
Devices

D. Privacy-Preserving 

D. Issues With
Traditional Resource

Allocation
D. Lessons Learned

F. Summary of ML/DL-
Based Resource Allocation

in MEC

Fig. 2: Structure of the survey.

A. Multi-Access Edge Computing (MEC)

Since the fundamental of MEC have been widely studied
in the literature [3], [5], [8], [45], [46], in this sub-section,
we discuss key networking technologies for MEC realiza-
tion, including Network Function Virtualization (NFV) and
Software Defined Networking (SDN). Before we introduce
these networking technologies, it is natural to answer to the
following question: Why Do We Need Multi-Access-Edge
Computing?

1) Why Do We Need Multi-Access-Edge Computing?:
Traditionally, the huge volume of data (big data) are mainly
stored and analyzed on powerful remote cloud data centers.
However, today, with the increasing number of smart devices
(with limited resources and battery capacity) connecting to
the internet through 4G/5G networks, processing the data
generated by the devices on the remote cloud will incur
high latency. The reason is that cloud servers are located far
away from the smart devices (i.e., data sources). Hence, MEC

paradigm is introduced by ETSI ISG [6] to bring the cloud
services closer to the data sources and the end-users. MEC is
characterized by ultra-low latency and high bandwidth.

2) Network Function Virtualization (NFV): NFV is a new
network concept that aims to manage networking functions
by evolving virtualization technology [47]. It has been proved
that NFV has many benefits such as reducing the monetary
cost of hardware infrastructure, optimizing the quality of
service deployment, orchestrating many virtual networks, and
scaling of network services [8]. NFV allows network service
providers and vendors to implement network functions in
software by evolving virtualization technologies rather than
run on purpose-built hardware. NFV has also several use cases
and applications including, traffic analysis [48] and security
threats analysis [49] [50]. In NFV, services are implemented by
a sequence of Virtual Network Functions (VNFs) that can run
on servers [29]. These VNFs are also called Service Function
Chaining (SFC). Furthermore, NFV offers a more efficient

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 6

TABLE III: Acronyms Used in the Paper

Acronym Definition Acronym Definition Acronym Definition

A3C Asynchronous Advantage Actor–Critic FCM Fuzzy C-Means PPO Proximal Policy optimization

ABC Artificial Bee Colony FIFO First In, First Out PSO Particle Swarm Optimization

ACO Ant Colony Optimization FCFS First Come First Serve QL Q-Learning

AI Artificial Intelligence FF First Fit QoE Quality of Experience

ANN Neural Network GA Genetic Algorithm QoS Quality of Service

AE AutoEncoder Gbps Gigabit billions of bits per second RA Resource Allocation

API Application Programming Interface GPU Graphics Processing Unit RAE Relative Absolute Error

BS Base Station HCA Hierarchical Clustering Algorithm RAN Radio Access Network

CART Classification and Regression Tree ILP Integer Linear Programming RF Random Forest

CN Corps Network IoT Internet-of-Things RL Reinforcement Learning

CMDP Constrained Markov Decision Process JTOS Joint Task Offloading and Scheduling RNN Recurent Neural Network

CNN Convolutional Neural Networks KNN K-Nearest Neighbors RR Round Robin

CPU Central Processing Unit LP Linear RSU Road Side units

CRL Clustered Reinforcement Learning LPL Local Processing Policy SA Simulated Annealing

CRN Cognitive Radio Network LTE Long Term Evolution Seq2Seq Sequence-to-Sequence

CSI Channel State Information LSTM Long Short-Term Memory SL Supervised Learning

D3QN Dueling Double Deep Q-Network MAQL Multi-Agent Q-Learning SLA Service Level Agreement

D2D Device-to-Device MCC Mobile Cloud Computing SDN Software Defined Networking

DAG Direct Acyclic Graph MCTS Monte Carlo Tree Search SVM Support Vector Machine

DC Data Center MDP Markov Decision Process SOM Self organizing Map

DCS Distributed Computing System MEC Multi-access Edge Computing TD Temporal Difference

DE Differential Evolution MGM Markov Game Model TL Transfer Learning

DL Deep Learning MIMO Multiple Input Multiple Output UE User Equipment

DNN Deep Neural Network MINLP Mixed Integer Nonlinear Programming USL Unsupervised Learning

DRL Deep Reinforcement Learning ML Machine Learning V2I Vehicle-to-Infrastructure

DT Decision Tree MLP Multilayer Perceptron V2V Vehicle-to-Vehicle

DTL Deep Transfer Learning MRL Meta-Reinforcement Learning VM Virtual Machine

EFT Earliest Finished Time ms millisecond WAP Wifi Access Point

EL Ensemble Learning MTL Multi-task Transfer Learning

EPG Exact Potential Game NFV Network Functions Virtualization

EST Earliest Start Time NOMA Non-Orthogonal Multiple Access

ET Execution Time PDS Post Decision State

and scalable network resources allocation for network func-
tions, and therefore it can significantly reduce both operating
expenses (OPEX) and capital expenses (CAPEX) of network
service providers [51].

Although NFV brings a range of benefits for both academia
and industry, the resource allocation in NFV, in particular,
in MEC brings new challenges. For instance, since in NFV,
the network functions must be executed in a specific order, it
is crucial to investigate an efficient offloading and placement
mechanism of VNF. Also, the scheduling of SFC is another
challenge that needs to be considered in MEC. Towards this,
the authors of [52] propose a deep learning based approach
to address the SFC scheduling problem in MEC. In [53], the
authors present a survey on hardware acceleration techniques
for NFV. Moreover, the work in [29] provides a compressible
survey of resource allocation problems in NFV.

3) Software Defined Networking (SDN): SDN is another
networking technology for designing cost-effective and adapt-
able networks [54]. Many studies focus on the convergence
of SDN and NFV at the MEC network. For instance, Light-
MANO [55] is a multi–access networking framework, which
converges SDN and NFV into a single lightweight platform
for the management and orchestration of network services
over distributed NFV systems. Other studies investigate the
integration of networking technologies with MEC, such as

[56] which investigates the convergence of O-RAN with
MEC, SON, and network slicing in 5G networks; and [57]
which studies the pairing of cloud RAN and MEC. The
authors of [51] present a comprehensible survey of NFV
and its relationship with SDN. The works in [58], [59], [60]
investigate the advantages of SDN and NFV in the ecosystem
of MEC. LayBack [61] is an architecture that facilitates the
communication and computation of resource sharing among
different networking technologies. Moreover, the authors of
[62] provide a comprehensible survey of networking technolo-
gies for ultra-low latency (ULL) applications.

B. Machine Learning (ML) and Deep Learning (DL)

There are many surveys that have already discussed the
basics of ML and DL techniques, such as [73], [63], [74],
[75], [69], [70]. For this reason, in this section, we discuss
popular artificial neural networks, which are commonly used
for training and inference in MEC. Table IV summarizes
existing surveys on ML/DL in MEC networks.

1) Popular Neural Networks: Artificial neural networks
(ANNs) commonly called Neural Networks (NNs) are series
of mathematical functions that attempt to retrieve the desired
output from an input dataset by mimicking the way biological
neurons operate. A neural network comprises layers of inter-
connected nodes which contains an input layer, one or many

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 7

TABLE IV: Summary of Existing Surveys on ML/DL

Ref. Focus of Discussion

2017, [63] Survey of ML techniques in cellular networks

2018, [64] DL for wireless networks. Mainly focused on the applications
of DL for different network layers, and DL to enhance
network security

2018, [65] DL for IoT big data and streaming data analytics

2019, [66] Discussed DRL approaches in communications and network-
ing

2020, [67] Integration of Blockain and ML in communications and
networking

2020, [68] Relationship between ML and privacy protection in 6G net-
works

2020, [69] ML and DL for IoT security

2021, [70] Survey of DL and it applications

2021, [71] ML techniques for network optimization to meet the end-to-
end QoS and QoE

2021, [72] ML techniques in the edge network. Mainly discusses models
compression techniques, hardware, and software stacks

Feature Extraction + Classification

Input

Not Car

Output
Input  
Layer

Hidden
Layer1

Hidden
Layer2

output 
Layer

Fig. 3: Deep Learning.

hidden layers, and an output layer. Each node (or perception
or artificial neuron) is associated with a weight and threshold.
Neural networks are at the core of DL algorithms. A neural
network has mainly two phases: training and inference, which
will be discussed in the next sub-section.

Deep Learning (DL) is a particular type of ML model
based on ANNs with multiple non-linear processing layers
to automatically extract complex representation from data and
to design its high-level abstractions [66]. As shown in Fig.
3, the input data passes through multiple hidden layers which
perform some operations (e.g., matrix multiplications). The
output of a layer is generally the input to the next layer. The
output of the final layer is either a feature or a classification
output. In contrast to traditional ML algorithms which first
partition the feature extraction and classification, then solve
them separately; deep learning models integrate the feature
extraction and classification, and the end-to-end approach is
adopted to solve the problem [76]. A DL model with many
hidden layers in sequences is called a deep neural network
(DNN). There are three main models of DNNs including
Multilayer Perceptron (MLP), Convolutional Neural Networks
(CNNs), and Recurrent Neural Networks (RNNs).

a) Multilayer Perceptron (MLP): MLPs are type of
feedforward neural networks, which comprise a series of
feedforward fully connected layers (Fig. 4a). MLPs use a
backpropagation method (supervised learning) for training.
Backpropagation helps to adjust the weights of the percep-
trons to get the expected output or an output closer to the
expected one. MLPs are generally applied for classification
and regression problems.

b) Convolutional Neural Networks (CNNs): CNNs (or
ConvNets) contain multiple feature extraction layers, including

a series of convolutional layers, pooling layers, and fully
connected layers [77] (Fig. 4b). CNNs are commonly used in
computer vision. A CNN learns to extract the features of the
inputs (e.g., images or videos) to achieve a specific task, such
as image classification and pattern recognition. Compared to
MLPS, CNN models extract the simple features from inputs by
executing mathematical operations (convolution operations), in
particular, matrix multiplication. There are many CNN models
such as AlexNet [78], VGG-16 [79], GoogleNet [80], ResNet
[81], SqueezeNet [82], and MobileNets [83]. More details
about these CNN models can be found in [77], [84].

c) Recurrent Neural Networks (RNNs): RNNs contain
intralayer recurrent connections, which make them different
from MLP and CNN models [85] (Fig. 4c). RNNs are mainly
used for time-series of sequential input data to make predic-
tions about future outputs (e.g., sales forecasting).

2) ML/DL Training and Inference: In the context of ma-
chine learning, training is the process of learning an ANN or
a DNN using dataset to achieve a specific AI task (e.g., image
or voice recognition). The training is performed by feeding the
ANN/DNN data, so that it can make a prediction about the
type of data [86]. For example, suppose that we are training a
DNN to differentiate three different objects, such as a cup, car,
and bicycle as shown in Fig. 5a. The first step is to gather a
dataset that consists of thousands of images that contain cups,
cars, and bicycles. The second step is to feed the images to
the DNN so that it can make a prediction about what is the
image. If the prediction is inaccurate, the DNN is updated
by correcting errors until obtaining more accurate predictions.
The training process continues until the DNN makes prediction
that satisfies the desired accuracy. Once the required accuracy
is obtained, the DNN training is finished, and the trained model
is ready to be used to make inference (prediction).

Inference consists of using a trained ANN/DNN model to
make prediction on novel data. ML/DL inference is accom-
plished by feeding new input data to the neural network,
allowing ANN/DNN to classify the input data. Considering
the previous example (Fig. 5b), the DNN can be fed new
input images of cups, cars, bicycles, and other images. After
fully trained a DNN, it is simplified (compressed) before
it can be deployed to the resource-constrained device. This
is due to the fact that fully trained DNN models require
more computational resources in terms of storage, CPU/GPU,
energy, and latency. On the other hand, compressing a DNN
model will impact the model accuracy. In [87], the authors
present a method to minimize the inference time in embedded
devices while meeting the user requirement. They propose
an adaptive method to determine at the runtime, the best
DNN model to use for a given dataset. To achieve this goal,
the authors use an ML technique to automatically create a
predictor that can quickly selects the optimum model to use.
Firstly, the predictor trains the model off-line, then determines
the optimum DNN by using the learned model of the input
data. The proposed method is applied to the image classifica-
tion problem and evaluated on a Jetson TX2 embedded DL
system. The 50K images from the ImageNet ILSVRC 2012
validation dataset is used to evaluate the proposed method. The
experimental results show that the proposed approach obtains

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 8

Input
Layer

Output
layer

Hidden Layers 

(a) Multilayer Perceptron

Input
..

  

N

Convolution Pooling Fully-Connected

(b) Convolutional Neural Network

Input
Layer

Output
layer

Hidden Layers 

Recurrent Network

(c) Recurrent Neural Network

Fig. 4: Popular Neural Networks

Input Output
?

Error
Backwards

a) DNN Training

Input

Forward

b) DNN Inference

Fig. 5: DNN Traning versus DNN Inference

7.52% improvement in inference accuracy and 1.8x reduction
in inference time over the individual DNN models.

C. Resource Allocation

In the literature, the resource allocation problem in
Cloud/MEC is often referred to: (i) task offloading problem
for deciding whether, where, how much, and what should be
offloaded to the cloud/edge servers [5]; or (ii) resource pro-
visioning problem for determining the adequate computation
resources (e.g., servers) that will be used to execute each task;
or (iii) task allocation problem [88] for ordering and mapping
each task onto the best-suited computation resource. Also,
the term “task scheduling problem” is often used to refer to
the combination of the sub-problems (ii) and (iii) [10]. The
term “joint resource allocation” is often used to refer to the
combination of task offloading and task scheduling problems
for jointly offloading and scheduling the application’s tasks to
the best-suited edge/cloud servers [4]. Hence, we follow the
same motif throughout the rest of this paper and discuss the
resource allocation problem from three main aspects: (1) task
offloading problem, (2) task scheduling problem, and (3) joint
resource allocation problem.

1) Task Offloading: Task offloading is the process of trans-
ferring computation-intensive tasks to a set of remote com-
puting machines (e.g., cloud or edge servers) that can process
the tasks. An efficient task offloading strategy can significantly
reduce the latency and the total energy consumption of the IoT
devices [1]. For instance, the authors of [89] propose a secure

task offloading mechanism that can minimize the virtual reality
(VR) devices’ computation load while satisfying the VR’s
QoE and resisting malicious attacks. To this end, the authors
introduce a blockchain to detect malicious attacks during
tasks offloading and data processing, and use a reinforcement
learning algorithm to properly allocate resources based on the
defined-QoE requirements. In the proposed mechanism, the
main information of each viewport providing offloading is
stored by a transaction < TXNv,m >t−1 of a blockchain
controller (BC) implemented at the edge access point (EAP),
where TXNv denotes the transaction ID, m denotes the BC
ID, and t represents the time slot. As shown in Fig. 6, each
EAP m needs to carry out the task offloading and blockchain
consensus in parallel at each time slot. There are mainly two
phases for each EAP m to perform over time slot t, namely
the transaction generation and blockchain consensus. During
the transaction generation at time slot t, the BC m generates
transactions < TXNv,m >t−1 according to the offloaded
records at time slot t − 1. Then, the number of transactions
gathered by BC m at time slot t denoted by Tm(t) is calculated
by (1)

Tm(t) =

Vm∑
v=1

xm,v(t− 1), (1)

where xm,v(t − 1) is the offloading decisions, and Vm the
number of VR devices. Concerning the blockchain consen-
sus process, it comprises five phases including request, pre-
prepare, prepare, commit, and reply as shown Fig. 6. This
consensus is based on the Byzantine fault tolerance (PBFT)
protocol which is widely used in the literature.

The challenges of task offloading in MEC are as follows
[88], [27]:

• Decision on task offloading: a key step regarding task
offloading is to decide whether to offload or not the
computational tasks of IoT devices. This decision may
result in: i) local execution, that is, the task is processed
locally by the IoT device due to the cost constraints
or MEC resources constraints; ii) full offloading which
means that the whole task is offloaded and processed by
the MEC server, and iii) partial offloading, i.e., the task

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 9

 
BC1

 
BC2

 
BCm

 
BCM

.......

Edge Access  
Point m

Resquest

<block,m>t-2 <TXNv,m>t-1 <block,m>t-1

Pre-prepare Prepare Commit Reply

<TXNv,m>

time slot t
t-1 t+1

.......

.......

Transaction
generation

Blockchain 
 concensus

Task
computation

Request  
acquisition

Result
feedback

B
lo

ck
ch

ai
n 

C
on

tr
ol

le
rs

Fig. 6: Blockchain-enabled secure task offloading [89]

is divided into two parts, one part is executed by the IoT
device and the rest is offloaded to the MEC server [5].

• What to offload: It consists of determining the parts of the
IoT application that should be offloaded (i.e, offloadable
parts) and the parts that should be executed locally (i.e.,
non-offloadable parts, e.g., user input or camera).

• Where to offload: It consists of selecting the target com-
puting infrastructure (e.g., to MEC server, cloud server,
or cloudlets) that will execute the offloaded tasks.

• How to offload: the answer to this question solves techni-
cal issues related to the task offloading mechanism. For
example, a good task offloading scheme should satisfy
the QoS requirements of the IoT application.

• When to offload: It determines the appropriate time for
transferring the offloadable tasks from IoT devices to the
selected MEC servers.

2) Task Scheduling: Task scheduling is the process of
assigning an application’s tasks to the computation resources
and ordering their execution so that the dependencies between
them are maintained while meeting the required QoS [10].
Efficient task scheduling mechanisms are vital for maximizing
the QoS performance [90], maximizing the revenue earned
by MEC service providers [91], and minimizing the energy
consumption and delay of the application [92]. Also, pro-
cessing the high volume of data generated by billions of IoT
devices onto MEC servers requires appropriate task scheduling
mechanisms. Besides, these data may require different QoS
that a single MEC server cannot provide. Therefore, a proper
task scheduling strategy is vital to meet the required QoS.

3) Use case of task offloading and scheduling in MEC:
To help readers understand the task offloading and scheduling
problem, we illustrate a use case from the perspective of the
end-users, namely, virtual reality (VR) application which is
considered to be the most key application market in future
[93]. We first suppose a full task offloading and scheduling
scenario, where the offloading algorithm implemented in the
edge device decides to offload the whole VR application
represented by a direct cyclic graph (or tasks graph) to the
edge server (see Fig. 7a). Then, the scheduling algorithm gives
priority to each task and allocates the tasks to the available
edge servers based on their priority. After the execution of the

tasks, the result from the edge servers is sent back to the edge
device. In this scenario, the scheduling length (makespan) is
equal to 65. The second scenario is the partial task offloading
and scheduling, where the offloading algorithm decides to
execute a part of the VR tasks locally and the rest (e.g.,
computation-intensive tasks) is offloaded to the MEC servers
(see Fig. 7b). The makespan in the second scenario is 45
because only three tasks are executed on the edge servers.

4) Traditional Techniques for Resource Allocation in MEC:
The traditional resource allocation techniques can be cat-
egorized into approximation-based, heuristic-based, meta-
heuristic-based, and game-theoretic-based. Approximation
methods find a quasi-optimal solution (within polynomial time
[94]) to NP-hard problems that are guaranteed to be close to
the optimal solution [95]. In the context of resource allocation,
the methods for designing approximation algorithms include
greedy-based [96], [97], [98], local search-based [99], [100],
primal-dual-based [101], [102], and LP-rounding-based [103],
[104], [105].

A heuristic technique is defined as “any approach to
problem-solving that employs a practical method that is not
guaranteed to be optimal, perfect or rational, but it is never-
theless sufficient for reaching an immediate short-term goal
[106]”. Heuristic methods are designed for specific problems,
and they can find reasonably good solutions in an acceptable
time interface [10], [107]. In the context of resource allocation,
heuristic techniques can be classified into three groups: list-
based [108], [109], [110] [111], [112], [113]; clustering-based
[114], [115], [116], [117], [118], and duplication-based [119],
[120], [121]. Among the three heuristic methods, the list-based
approach is the simplest one with quadratic time complexity,
i.e., O(t2 × p) for t tasks and p processors.

While the heuristic techniques are designed for specific
problems, the meta-heuristic approaches are designed for
general-purpose optimization problems [10]. In terms of total
execution times of an application (or makespan), the meta-
heuristic techniques are better than heuristic-based due to their
ability to search in a larger space of solutions. However, com-
pared to heuristic methods, the running time of meta-heuristic
algorithms increases rapidly when the number of tasks in
the application increases [122]. Thus, meta-heuristic methods
are not suitable for large-scale IoT applications. The meta-
heuristic techniques can be categorized into genetic algorithm
(GA) [123], [124], [125], particle swarm optimization (PSO)
[126], [127], [128], ant colony optimization (ACO) [129],
[130], [131], and simulated annealing (SA) [132], [133].

Game theory is a branch of applied mathematics that
studies interactive decision-making, where the outcome for
each player depends on the actions of all [134], [135], [136].
Game theoretical approaches can be classified into two groups:
the classical game, which assumes that all players are rational,
and the evolutionary game, which considers that a player may
play for his interest and has limited information about available
choices of strategies [137].

D. Issues With Traditional Resource Allocation Techniques
Due to the NP-hardness of the resource allocation problem,

the solutions obtained by the conventional methods are not

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 10

Process
Locally

MEC SERVERS

Results 

Virtual Reality
Application (VR)

Mobile
device 

Fully Conneted  
edge servers 

Ta
sk

 o
rd

er
in

g

S1 S2 S3

T1

T2

T4

T3

T5

0

10

20

30

40

50

60

Makespan = 60

Tasks
allocation

Server  
Idle

Tasks 
graph

T1

T2 T3 T4

T5

OFFLOADING
ALGORITHM

T1T2T4T3T5

Task priority

Tasks 
graph

T1

T2 T3 T4

T5

Full  

offloading

EDGE DEVICE

SCHEDULING
ALGORITHM

S1

S2 S31)

2)

3)

4) Send back result to mobile device

Tasks T1 T2and 

are allocated to the edge
server S1

(a) Full task offloading and scheduling

Process
Locally

MEC SERVERS

Results 

Virtual Reality
Application (VR)

Mobile
device 

Fully Conneted  
edge servers 

Ta
sk

 o
rd

er
in

g

S1 S2 S3

T4

T3

T5

0

10

20

30

40

50

60

Makespan = 45

Tasks
allocation

Server  
Idle

Tasks 
graph

T1

T2 T3 T4

T5

OFFLOADING
ALGORITHM

T4T3T5

Tasks 
graph

T3 T4

T5

  Partial 

offloading

EDGE DEVICE

SCHEDULING
ALGORITHM

S1

S2 S31)

2)

3)

4) Send back result to mobile device

Tasks and 

are processed by edge server S2

are processed
locally

Tasks T1 T2and 

T4 T3 T5

T1

T2

Task priority

(b) Partial task offloading and scheduling

Fig. 7: Use case of task offloading and scheduling in MEC

globally optimal. They have difficulties in adapting to various
QoS requirements and dynamic environments. In general, the
traditional resource allocation techniques have the following
main limitations:
• Computationally expensive: The execution time of tradi-

tional methods proportionally increases with the increase
in the application size (i.e., number of tasks), which
leads to extra overheads in terms of computational time.
Therefore, they are unappropriated for delay-sensitive and
data-intensive applications. Also, meta-heuristic methods
such as GA are time-consuming since they maintain large
solutions in memory.

• Slow convergence: The traditional resource allocation
methods have a slow convergence rate since they cannot
learn from previous sub-optimal solutions.

• Lack of adaptability: The solutions obtained through
traditional resource allocation methods are sensitive to the
environment changing. They supposed that the computing
environment is static and known by mobile users. If a
parameter about the computing environment (e.g., the
wireless channel information) changes, the optimization
problem would be reformulated to take into account the
new changed parameter to achieve the desired objective.
Therefore, conventional resource allocation schemes are
not adaptable in time-variant dynamic environments.

III. ML/DL ENABLED MEC: USE CASES

A. Why Do We Need ML/DL in MEC ?
The growing numbers of IoT devices connected to the Inter-

net have generated a massive amount of data (pictures, audios,

videos). Since the data is generated at the network edge, it is
more beneficial to analyze them at the network edge. In this
context, ML/DL techniques are necessary due to their ability
to efficiently analyze and quickly extract features from a huge
volume of data. Additionally, to efficiently execute and analyze
the generated data, it is crucial to properly allocate (offload
and schedule) them to the edge computational resources, which
can satisfy the data requirements (e.g., latency, privacy, QoE).
Since ML/DL are key techniques for data prediction, they
can accurately predict both data requirements and the MEC
computing nodes which will process the data.

B. ML/DL-Enabled MEC: Use Cases from three Perspectives

In this section, we present ML/DL use cases from three
perspectives (see Fig. 8): 1) end-users, 2) service providers,
and 3) networking.

1) End-User Perspectives: The execution of ML/DL tasks
in MEC, in particular, on edge devices is beneficial to the
end-users. In general, by running ML/DL at the edge of
the network, the user QoE is maximized since they can
predict user’s requirements. For instance, a DL approach called
LiveDeep is proposed to predict the user’s viewport for live
virtual reality (VR) streaming [138]. Facebook presents a data-
driven approach to enable ML inference on smartphones with
the objective to increase the QoE and reduce the latency
[139]. Running ML/DL tasks on edge devices also enables
the end-user to rapidly analyze and obtain its health report.
For example, HealthFog [140] is a framework that implements
deep learning in edge devices for automatic heart disease
analysis. HealthFog delivers healthcare as a service using IoT

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 11

ML/DL-Enabled MEC

Service Providers
Perspectives

Networking
Perspectives

Healthcare

Online  
Gaming

AR/VR Image/Voice
recognition

Video
processing

Fraud  
detection Content

caching

Network Slicing

Resource
Allocation

Profit
maximization

Customers
segmentation

Data
Analyzing

End-Users
Perspectives

QoE

Market
Prediction

SDN/NFV Security
and

Privacy

Data Collection

Fig. 8: ML/DL-Enabled MEC: Use Cases from three Perspectives

devices and efficiently executes user requests (i.e., the patient
heart information). Additionally, bringing ML/DL models to
the edge network enhances user privacy because the raw data
required for DL tasks is stored on the edge devices instead
of the cloud. Moreover, bringing ML/DL techniques at the
edge of the network enables rapid access to the huge volume
of real-time data generated by the IoT devices for rapid AI
tasks, which in turn gives the devices the ability to respond to
real-time events in an intelligent manner.

On top of this, ML/DL techniques enable end-users to
intelligently offload their latency-sensitive applications (e.g.,
online gaming and mobile augmented reality (MAR)) to other
devices or to the edge servers. Chakrabarti [141] proposes
a DRL-based mechanism to offload MAR application’ tasks
to the nearby devices. The authors of [142] propose a DRL-
based joint task offloading and migration approach, where
DRL and LSTM are combined to solve the task offloading
problem in MEC networks. The proposed algorithm called
“Online Predictive Offloading (OPO)” uses LSTM to predict
the load of the edge server with the objective to improve the
convergence speed and accuracy of the DRL model during the
offloading process. The experimental results shows that the
proposed approach reduces the latency by 6.25% on average.

2) Service Providers Perspectives: One of the benefits of
bringing ML/DL models to the edge of the network for the
service providers or any stakeholder is the processing and
analyzing of data generated by users or IoT devices at the edge
network. This significantly reduces the cost and latency of
sending data to the remote cloud for processing and analyzing.
Also, the analyzed data can be exploited for security and
safety (e.g., park monitoring, fire prevention), or for marketing
purposes (e.g., users segmentation to determine users wishes).

Besides, the service providers can also maximize the long-
term profit by intelligently selling their computation resources
to the end-users. For instance, the authors of [143] present
a public blockchain application in MEC with the objective
to maximize the long-term profit of the service providers. In
the public blockchain-enabled MEC network, each blockchain
user (i.e., miner) offloads its proof-of-work puzzle tasks to

the associated base stations operated by the MEC service
providers. The goal of the miners is to maximize their mining
rewards. To achieve these goals, a framework-based reinforce-
ment learning is proposed. The proposed framework enables
the service providers to maximize their long-term profit by
dynamically adjusting the price per unit hash rate to a miner
while taking into account the highest price that the miner can
pay during the whole mining process. The framework also
allows the miners to select the best response strategies, and
therefore satisfy miners’ objectives.

3) Networking Perspectives: The third ML/DL use case is
the one optimizing networking technologies for MEC such
as network slicing [144], [145], [146]; NFV [147], [148];
SDN [149] [150]; mobility management [151], [152]; content
caching [153], [154]; resource allocation [155], [156], [157];
and security/privacy [158], [159].

Network slicing is a networking technology that enables
network providers to split the physical network infrastructure
into multiple logical networks [160]. Abidi et al. [145] propose
a 5G network slicing approach based on deep belief network
(DBN) and neural network (NN) (Fig. 9). Firstly, the number
of IoT devices (e.g., mobile phones, cars, and cameras) in
the 5G network is observed. Then, the attributes of the
devices (e.g., device type, packet information, bandwidth)
are collected. After that, the collected data are normalized
into the interval [0,1] to reduce the redundant data. Then,
the feature extraction is performed by multiplying a weight
function with the attributes values of the network to obtain
high-scale variation. The weight function is optimized by
using a hybrid metaheuristic method, namely the glowworm
swarm optimization method and the deer hunting optimization
method. Next, the network slicing prediction is performed
using DBN and NN to maximize the accuracy. The types of
the predicted network slices are enhanced mobile broadband
(eMBB), massive machine type communication (mMTC), and
ultrareliable low-latency communication (URLLC). The exper-
imental results prove that the accuracy of the proposed hybrid
learning approach is better than the benchmark methods.
For example, the simulation results proved that the proposed

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 12

BycicleCarCameraDoor Lock

5G Network

Set of features
Device type Delay rate

Modulation
typeSpeed Bandwidth

Packet
loss rate

Final Features X Weight Function

Proposed Algorithm

Optimal Weight Features

ClassificationDBN NNAccuracy
Maximization

Network Slicing Type
eMBB mMTC URLLC

Fig. 9: ML and DL based 5G Network Slicing [145]

Enabling Techniques for
ML/DL Tasks in MEC

On-Edge-Devices On-Edge-Servers Across devices, 
edge/cloud servers

Model 
Compressing

Hardware 
Designing

Model 
Optimization

Model
Offloading

Model
Caching

Joint Model
Offloading and 
Partitioning

Model
Partitioning Federated

Learning

Fig. 10: Major Enabling Techniques for ML/DL Tasks in MEC

approach is 0.61% better than the PSO+NN+DBN based
approach in terms of accuracy.

IV. ENABLING TECHNOLOGIES FOR ML/DL TASKS IN
MEC

As the number of IoT devices increases, the need for
researchers to understand how to design architectures that inte-
grate ML/DL training and inference with MEC grows rapidly.
Additionally, given the fact that MEC systems are distributed,
a key question that arises is “where should we perform the
training and inference and where should we deploy the fully
trained model in MEC ?”. In the literature, they are different
approaches for performing ML/DL training and inference in
MEC. Here, we discuss three major approaches (see Fig. 10):
1) On-Edge-Devices, where the ML/DL models training and
inference are executed on the IoT device; 2) On-Edge-Servers,
where data generated from the IoT devices are offloaded to
one or more edge servers for training/inference; and 3) models
training and inference across the edge devices, edge servers,
and cloud servers.

A. ML/DL Tasks on-Edge-Devices

At the intelligence devices layer, ML/DL techniques are
applied for a range of applications, including virtual reality
video streaming [161], image recognition [162], and pandemic
tracking [163]. The execution of ML/DL models on the edge
devices can reduce the latency of the training and inference
time [4]. However, it is computationally expensive for ML/DL
models, in particular, DNN, to make training and inference
on resource-constrained devices due to millions of parameters
that need to be refined over several time periods. For this
reason, many studies have proposed strategies to reduce the
training and inference times of DNN models running on
resource-constrained devices while optimizing the QoS and
QoE requirements. Such studies can have benefits throughout
the MEC ecosystem by minimizing the latency of the DNN
models while running on the IoT device or edge server. In
this section, we discuss key approaches for enabling ML/DL
tasks on smart devices such as model compression, hardware
designing, and neural networks optimization.

1) Model Compression: The common strategy for enabling
ML/DL models on intelligent devices is to compress the
model. Model compression reduces the resource and compu-
tational requirements, but it leads to an accuracy reduction
compared with the original model. The most popular models
compression techniques include knowledge distillation [164],
pruning [165], and quantization [166].

The Knowledge Distillation (KD) method (also called as
“student-teacher networks”) transfers the knowledge learned
from a larger DNN model (teacher model) to a model that
has fewer parameters and layers (student model) (see Fig.
11a). The first step consists of training a larger DNN to
generate labeled data. After that, the generated data is used to
train a smaller and shallower mimic model, then the student
model is deployed. Several studies have used this model
compression technique. For instance, the authors of [167]
combine knowledge distillation and auto-encoder methods to
visually interpret and diagnose image classifiers. Furthermore,
a small locally accurate model is trained to mimic the behavior
of an original cumbersome DNN (big model) around one
image of interest. In this approach, knowledge distillation is
used to transfer the knowledge from the big model to the small
model, while the auto-encoder is used to generate neighbors
around the image of interest. Tanghatari et al. [168] propose a
knowledge distillation approach to distribute the DNN training
over IoT edge devices with the objective to protect data privacy
on the edge devices and decrease the load on cloud servers.
Furthermore, the knowledge of the main network is transferred
to the generated small network. The experiments results show
that the proposed approach preserves the IoT device data
privacy and obtains on average 2.3% accuracy loss compared
to the conventional centralized training on the cloud.

Pruning is a powerful compression method that removes
redundant parameters of a neural network that are not neces-
sary for training or inference (Fig. 11b). In [169], the authors
propose a pruning technique based on activation maximization
for CNN model acceleration and compression. Activation
maximization is a simple method to visualize the features

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 13

KNOWLEDGE

Knowledge Transfer

Teacher model

Student model

 
Training 

Data

Model
Deployed in

Mobile
Device

(a) Knowledge Distillation

Original DNN Model Pruned DNN Model

Pruned DNN
Model

Deployed in
Mobile Device

(b) Pruning

Fig. 11: Model compression techniques enabled ML/DL tasks
on edge device

of a trained neural network with the objective to maximize
the activation of certain neurons [170]. The experimental
results based on RadioML2016.10a dataset [171] show that
the proposed model obtains a higher accuracy compared to the
weight sum (WS) [172] and average percentage of zeros [173]
approaches. PruneFL [174], a federated learning approach with
adaptive and distributed parameters pruning is proposed to
minimize the training time on edge devices while ensuring a
similar accuracy as the original model. PruneFL has two main
phases: initial pruning at a selected edge device and further
pruning which involves both the edge device and edge server
during the federated learning process.

Concerning DNN quantization, it aims to reduce the number
of bits required to store the weights of the neural networks
[175] [176]. Coelho et al., [177] propose a novel heteroge-
neous quantization approach to minimize the energy consump-
tion of the DNN model on Field Programmable Gate Arrays
(FPGAs) while achieving high accuracy. The evaluation of
parameters quantization during DNN training on edge device
is the objective in [178]. Furthermore, it aims to understand
how to select the quantization parameters during training
to optimize neural networks for inference. The authors of
[179] propose a quantization method in federated learning to
enhance the efficiency of data exchange between edge servers
and cloud servers. In this approach, the model training is
performed on the edge servers, and the model aggregation
is done on the cloud servers. The main idea is to quantize
the neural network weights when the models are transmitted
from the edge servers to the clouds and vice versa. Experiment
results based on WikiText-2 [180] show that the proposed
method reduces up to 19× the volume of data exchanged
between the edge servers and cloud servers. Simulations
results also prove that the impact on the validation loss of
the final model is around 5%.

DNN Model 
(4-Bit

Quantize +
Input Data)

DRR3 Memory

Memory
Controller

Input/Output
Buffers

FantastIC4
Control Unit

FantastIC4
Accelerator

Fig. 12: FantastIC4 hardware accelerator architecture for DNN
[181]

2) Hardware Designing: Although model compression is a
powerful technique to enable model training and inference on
edge devices, it can impact the final accuracy of the model.
For instance, the pruning technique can reduce the model size
but does not improve the training or inference time [182].
Also, most of the existing model acceleration approaches
used compression techniques to reduce the complexity of the
model. However, few compression techniques are implemented
on popular DL frameworks such as Tensorflow Lite and
Core ML [176]. For these reasons, recent studies have been
focused on hardware architecture to facilitate the execution of
ML/DL tasks on resource-constrained devices. For instance,
the authors of [181] present FantastIC4, a new hardware
architecture, which efficiently executes highly compact repre-
sentations of DNNs based on fully-connected layers. As shown
in Fig. 12, the FantastIC4 hardware-accelerator system is a
combination of a CPU and an FPGA. FantastIC4 has three
main parts: the software program, the DDR3 memory, and
the hardware architecture on the FPGA chip. The software
program comprises the CPU that transfers the input data and
DNN model to the FPGA chip. Since the input data is usually
very large, and cannot fully be stored on an on-chip BRAM
(Block RAM), some of the data is stored in an off-chip
DRAM Dynamic RAM). The input data is accessed through
a memory controller built across a MIG (memory interface
generator) IP. Concerning the FPGA chip part, it comprises
the FantastIC4 control unit, memory controller, I/O Buffers,
and the FantastIC4 accelerator. The memory controller aims
to facilitate the transfer of the input data from the off-chip
DRAM to the accelerator, then stores the execution results into
the DRAM. The control unit manages the behaviour of other
modules on the FPGA, the data movement, and the process
inside the accelerator. Concerning the I/O buffers, they store
the data for execution and cache the PSum data from the
accelerator for inference of the subsequent layer. Finally, the
heart of the system is the FantastIC4 accelerator, which reads
the input data from the DRAM, performs the execution, and
caches the results into the DRAM memory.

CMSIS-NN [183] is an efficient kernel designed to max-

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 14

imize the performance and minimize the memory footprint
of neural networks on Arm Cortex-M CPUs targeted for IoT
devices. MCUNet [184] is another framework designed for ef-
ficient neural network architecture (TinyNAS) and lightweight
inference engine (TinyEngine) on microcontrollers. TinyNAS
first optimizes the search space to fit the resource-constrained
devices and then performs a neural network architecture
search within the optimized space. TinyNAS is co-designed
with TinyEngine to enhance the search space and fit large
models. TinyEngine reduces the memory usage by 3.4× and
accelerates the inference by 1.7-3.3× compared to CMSIS-NN
[183]. Simulation results based on ImageNet proved that the
MCUNet framework achieves 70.7% accuracy and accelerated
the inference of wake word applications by 2.4-3.4×.

The authors of [185] present a hardware accelerator based
on quantum annealer. Quantum annealer is a hardware ar-
chitecture for discrete optimization problems. The proposed
architecture outperformed GPUs and quantum annealers in
terms of energy consumption. Hardware-Aware Automated
Quantization (HAQ) [186] is a hardware architecture that
uses reinforcement learning to automatically determine the
quantization policy. HAQ also includes hardware architecture
into a loop to minimize the latency, energy, and storage on
the target hardware. Compared with conventional architectures
(e.g., fixed bit width quantization), HAQ reduces the latency
by 1.4-1.95× and the energy consumption by 1.9× with good
accuracy.

There are other hardware accelerators for DNN tasks that
have been proposed in the literature. For instance, DNNBuilder
[187] can automatically build high-performance DNN hard-
ware accelerators on FPGAs with the objective to satisfy the
throughput and latency requirements of both cloud and edge
devices. Kernel decomposition is another approach of hard-
ware accelerators for DNN models. For example, ESCALATE
[188] is an algorithm-hardware co-design for CNN accelerator
based on kernel decomposition technique.

3) Neural Networks Models Optimization: Artificial net-
work networks (ANNs) model optimization is another key
approach to achieve high accuracy for ML/DL tasks. Recent
studies have been focused on the architecture design of exist-
ing ANN models to create optimized ANN models instead of
using compression methods to reduce their complexity. For
instance, the authors of [189] propose an optimized ANN
model to predict the thermal efficiency and water yield of
solar still. The optimized ANN model used PSO and HWO
(Humpback whale optimizer) [190] to optimize the traditional
ANN model. Simulation results prove that the proposed opti-
mized ANN model achieves the highest prediction accuracy
compared to ANN, ANN-HWO, and ANN-PSO. RouteNet
[191] is another NN model optimization, which is based
on graph neural networks. RouteNet can optimize network
representation in SDN. Compared to the conventional well-
known NN (e.g, CNN, RNN) which are not designed to
learn graph-based data, RouteNet is able to learn the complex
relationship between topology, routing, and input traffic of a
graph-structured network. The experimental results show that
RouteNet obtains accurate delay prediction (Mean Relative
Error) of 15.4%.

B. ML/DL Tasks on Edge Servers
While model compression and architecture optimization en-

able to run ML/DL tasks on edge devices, it is still challenging
to deploy large DNNs models on resource-constrained devices
with limited power, computation, and storage in real-time.
Therefore, resource management approaches including task
offloading, task partitioning, and content caching are good
strategies to address this challenge.

1) ML/DL Tasks Offloading: Offloading ML/DL tasks from
edge devices to more powerful servers such as edge servers or
cloud servers is a good choice. Since the edge server is close
to edge devices, it is natural to offload ML/DL computational
tasks to the edge servers rather than the cloud. In [192], the au-
thors propose an algorithm called “Multiple Algorithm Service
Model (MASM)” to offload AI tasks to the cloudlet servers
with the objective to minimize the energy consumption of the
servers and the offloading delay cost while meeting the quality
of the results (QoR). DNNOff [193] aims to automatically
determine the DNN tasks that should be offloaded to the edge
servers. To achieve this, the DNNOff algorithm first extracts
the structure and parameters of the deep neural network model,
then a random forest regression model is used to predict the
execution cost of each layer. Finally, the DNNOff algorithm
uses the prediction model to determine the parts that should
be offloaded to the edge servers. The experiments based on
real-world DNN applications with AlexNet, VGG, and ResNet
models show that the DNNOff algorithm reduces the response
time by 12.4–66.6%.

2) ML/DL Tasks Partitioning: He et al. [194] propose DNN
tasks offloading approach to minimize the end-to-end inference
delay. To achieve this goal, a tandem queueing model is used to
analyze queueing and processing delays of DL tasks. Tandem
queueing models are queueing theory models that consider
the possibility that an end-user may request services from
many sequentially arranged servers [195]. The authors of [194]
first formulate the problem as a joint optimization problem,
that is, DNN partitions deployment and resource allocation
problems. Then, an algorithm based on Markov approximation
is used to solve the problem. Simulation results prove that the
proposed algorithm reduces the average end-to-end inference
delay by 25.7%. In [196], the authors also present DNN tasks
partitioning and offloading algorithm with the objective to
minimize the processing delay and the computing burden of
edge devices. Compared to [194] which used the Markov
approximation method, in [196], a Mixed Integer Linear
Programming (MILP) is used to solve the partitioning and
offloading problems. The experiments results show that the
proposed algorithm obtains up to 90.5% and 69.5% processing
delay reduction compared with the MEC-server-only scheme
(i.e., all DNN tasks are offloaded to the edge server) and
mobile-device-only scheme (i.e., all DNN tasks are processed
locally on the mobile devices), respectively. The work pro-
posed in [197] extends [196] by considering not only the
processing delay but also the energy consumption and price
paid for DNN tasks execution on the edge server.

3) Content Caching: Edge servers can cache locally the
user’s related data near the location where the data have been
generated to reduce latency. Therefore, content caching can

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 15

.......

Frame buffer

Cache  
Interface

1 Fetch

Encoder

Encode
2

Cloud
Connector

Semantic Cache

4 Enqueue

8 Response callback

3

Lookup

Key1 (label_1, score),....
(label_n,score)

Key2 (label_1, score), ...
(label_n,score)

KeyM (label_1, score), ...
(label_n,score)

5

Cloud
request

Cloud  
response

6

Cloud

EDGE DEVICE

Cache response
7label_1, score 

................... 
 label_n,score) 

frame_ID 4 9
Infer

Common to cache hit or miss

Only on cache miss

Fig. 13: Semantic cache to perform AI inference in edge [198]

enable model inference in the edge network. In [198], the
authors propose a semantic cache approach to perform AI
inference on unstructured data in edge nodes, which reduces
the volume of data that needs to be sent to the remote cloud
server. As shown in Fig. 13, the user first submits the input
data (e.g., image or video) for AI inference to the cache service
via the cache interface. Then, the interface forwards the input
data to the encoder for features extraction. The encoder first
searches in the cache. If there is a cache miss, then the image is
sent to the cloud server which will perform the inference. The
inference result from the cloud is stored in the cache indexed
by a key, and finally, it is sent back to the user.

CacheNet [199] is a novel DNN model caching framework,
which caches the low-complexity DNN models on the end
devices and the high-complexity DNN models on edge/cloud
servers. The basic idea of CacheNet is inspired by the caching
approach in computer architecture, where the computer ele-
ments (e.g., register, cache, RAM) are separated by memory
hierarchy based on response time. Compared to the memory
hierarchy in a computer that only stores data, CacheNet stores
DNN models. Especially, CacheNet generates multiple small
sub-models. Then, each sub-model captures a partition of
the knowledge represented by the large DNN model instead
of training a single large-scale DNN model. Experiments
results based on CIFAR-10 [200] and FVG dataset prove that
CacheNet is 58 - 217% faster than the benchmark approaches.

C. ML/DL Tasks across Edge Devices, Edge Servers, and
Cloud Servers

1) ML/DL Tasks Offloading and Partitioning: The most
widely approach used to efficiently enable ML/DL inferences
on MEC is tasks offloading and partitioning among the par-
ticipating nodes in MEC (i.e., edge devices, edge servers,
and cloud servers). As shown in Fig. 14, the joint DNN
tasks partitioning and offloading approach first determines

Partition  
Offloading

DNN Tasks

 1. Receive Partitioned DNN 
 2. Perform rest of DNN tasks 
 3. Return result 

 1. Inputs data 
 2. Determine partitioning points
 3. Perform part of DNN tasks 
 4. Offload rest of DNN tasks 

Fig. 14: Joint DNN tasks partitioning and offloading

the partitioning points and perform some part of the DNN
tasks on the edge device (vehicle). The rest of the DNN
task is offloaded to the edge server, which will identify the
partitioning point, processes it, and returns the result to the
vehicle.

The authors of [201] propose a joint multi-device DNN
partitioning, offloading, and allocation mechanism. The main
objective is to minimize the maximum DNN execution latency
among all the edge devices, and therefore reduce the global
latency. In the proposed approach, multiple devices cooperate
with an edge server, and each device can make a DNN
partitioning decision on its own DNN model. The offloaded
DNN layers of edge device are executed on the edge server
to accelerate the learning process. To partition the DNN tasks,
the logical layers are divided into two types, one type that
will be executed locally on the device, and another type that
will be executed on the edge server. Only intermediate outputs
are offloaded from an edge device to an edge server. The
offloading decision at the device side is modeled as an integer
variable Si ∈ {0, 1, 2..., k}, denoting that the layer 0 to Si are
executed locally on the edge device while the rest of the layers
are offloaded to the edge server. The simulation results prove
that the proposed approach outperforms the local-execution
method by 67.6% and the edge-only-execution scheme by 41%
when there are enough resources and bandwidth.

In [202], the authors present an efficient energy-aware DNN

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 16

offloading algorithm for intelligent IoT systems in cloud-edge
environments. The main objective is to minimize the overall
energy consumption of all participating nodes (i.e., devices,
edge servers, and cloud servers). The offloading algorithm
called SPSO is based on two meta-heuristic methods, namely
the particle swarm optimization (PSO) and the Genetic Algo-
rithm (GA). Layers partitioning is also introduced to reduce
the encoding dimension and the execution time. The DNN
partitioning is performed as follows: firstly, the branches in
a DNN are divided into isolated modules. Then, for each
module, the actual layer is initialized as the start layer. After
that, every two adjacent layers are checked based on a defined
fitness function. Once a partition point is found, the actual
layer is updated to the next layer. This process is repeated
until the last two adjacent layers are checked. Finally, the
layers between each two adjacent partition points are merged
to form a deployment unit.

Qadeer and Lee [203] investigate the computation and
wireless resource allocation problem in edge-based cloud
(with limited computational resources) and traditional cloud
environments. Specially, they propose an algorithm based on
a deep deterministic policy gradient with a pruning approach.
The learning process is performed on the edge-based cloud to
achieve dynamic resource allocation for the edge devices. Ex-
perimental results show that the proposed algorithm achieves
up to 55% reduction in terms of operational cost, and up to
86.5% reduction in rejection rate on average. Furthermore,
the proposed algorithm obtains up to 115% gain in terms
of QoE. Another offloading approach in edge-cloud networks
is proposed in [204] with the objective to minimize the
task processing delay. To achieve this, a DRL method, in
particular, a DQN is used to learn the optimal offloading
schemes through exploration and exploitation processes. Shi
et al., [205] investigate the trade-off between the inference
latency and data privacy during the DNN tasks partitioning in
a MEC network.

2) Federated Learning: Federated Learning (FL) is another
powerful enabling approach for ML/DL models training and
inference in MEC while guaranteeing data privacy. FL is
a decentralized ML approach that allows smart devices to
cooperatively train a shared learning model while keeping the
raw data on their devices, thus protecting their privacy. In FL,
the edge devices (e.g., mobile phones) use their local dataset
to collaboratively train and learn the model required by an FL
server without sending their data. Then, they send the model
updated to the server for aggregation. These steps are repeated
several times until an expected accuracy is obtained.

Although, the learning techniques such as RL and DRL
can effectively address the resource allocation problem in
wireless networks, their learning speed may be slower in
complex networks. Indeed, in a complex wireless network, a
new learning policy should be updated for a newly-arrived
system because of the lack of network adaptability [206].
To solve this issue, recent efforts focus on the application
of FL for DRL. For instance, the authors of [206] present
a federated learning framework for resource allocation in
wireless networks with the objective to accelerate the learning
speed. In the proposed FL framework, the edge server and

DRL

System 1

DRL

System 2

DRL

System k...

Edge 
 Server

Policy redistribution

Policy aggregation

Fig. 15: Federated learning for DRL [208]

the distributed systems share a DRL model that represents
the learning policy as shown in Fig. 15. Also, each system
k learns its local policy model Wk by a DRL method. The
edge server updates a central policy model Wcs by aggregating
the learned policy models from the systems Wk’s. Then, the
updated central policy model of the server is redistributed
to each distributed system which replaces its local policy
model with the central one. By repeating this process, the FL
mechanism can accelerate the learning speed of the resource
allocation policy and ensure adaptability to newly-arrived
systems because of the central policy model at the edge server.

The authors of [207] also apply FL to accelerate the training
of the DRL agents for task offloading in MEC. The FL recur-
sively selects a random set of IoT devices to first download
the parameters of the DRL agents from the edge server, then
uses their own data to perform the training process on the
downloaded model. Finally, it uploads only the updated model
parameters of the DRL agent to the edge server for model
aggregation. This FL-based approach enables resource-limited
devices to learn a shared DRL agent without centralizing the
training data.

In [209], the authors propose a task offloading and resource
allocation algorithm based on federated learning and DRL. The
algorithm distributed the DRL tasks from the edge servers to
the edge devices for training, which improve the accuracy. The
proposed algorithm called FDOR has four components: of-
floading action generation, offloading policies updating, DNN
model aggregation, and adaptive learning rate approach. The
authors of [210] present a gradient-descent-based federated
learning approach, which comprises two main phases: local
update and global aggregation. In the local update phase,
each edge node performs gradient descent to locally adjust
the model parameters with the objective to minimize the loss
function defined on its own raw data. In the aggregation step,
the model parameters obtained at each edge node are sent to
an aggregator, which regroups the parameters and sends back
an updated parameter to each edge node for the next round of
iteration.

The authors of [208] investigate resource optimization tech-
niques in FL. Especially, an NN-aware resource management
mechanism based on FL is proposed, where the sub-networks
of the global model are assigned to the mobile clients based
on their local resources. They also present a use case of FL,
namely virtual keyboard application (VKA) used by Google
AI group [211]. The VKA on mobile devices uses a natural
language processing (NLP) DL model to predict a word. The

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 17

Central
Server

+

Aggregation

Global
model

Download global model

Upload local model 

Training with  
private data

0

We

Go

q w e r t y u i o p

a s d f g h j k l

z x c v b n m

1 2 3 4 5 6 7 8 9 0

?123 , .

We go |

NLP for word prediction

Fig. 16: Federated learning: virtual keyboard use case [208]

process of VKA with FL is described as follows (Fig. 16):
firstly, the mobile device uploads the global model from the
central server, then enhances it by training on local data. After
that, the updated local model is sent to the central server
through a secure encrypted communication link. Next, the
global model is improved by aggregating the updated local
models to the central server. This iteration of model training
and aggregation is repeated until the global model converges.

In [34], the authors present a comprehensible survey of
federated learning in MEC networks. They discuss several
aspects of FL including fundamentals of FL, applications of
FL in MEC, and challenges.

D. Lessons Learned

In this section, we discuss lessons learned from enabling
techniques for ML/DL tasks (i.e., training and inference).
Table V summarizes the potential techniques that enable to
quickly perform ML/DL tasks in MEC. As shown in Table
V, the majority of the enabling approaches for ML/DL tasks
in MEC are evaluated using software stacks such Raspeberry
Pi, PyTorch, TensorFlow, and QKeras. ImageNet [219] dataset
is widely used to evaluate the performance of the proposed
ML/DL approaches because it contains enough labeled high-
resolution images belonging to different categories, which
facilitate the training of large CNNs [78].

Although there are several hardware and software stacks
(e.g., edge tensor processing unit, FPGAs, Tensorflow Lite,
Core ML, and EdgeML [72]) for ML and DL techniques, there
is a need to evaluate these tools and propose a standard testbed
for ML/DL tasks in MEC. A standard testbed consisting of
neural network models, datasets, networking models, IoT de-
vices, edge/cloud servers, and resource allocation mechanisms
is perceptible in enabling ML and DL tasks in MEC.

In MEC, DNN training and inference are mainly performed
across edge devices, edge servers, and cloud servers. The main
reason is that DNN training and inference require not only
more computing power, but also less latency that a single
computing node (e.g., edge only, edge server only, or cloud
server only) cannot provide.

There are mainly three types of strategies to enable fully
DNN models training and inference in MEC. The first one is

model compression, which reduces the DNN model inference
times. This approach has advantages in MEC by minimizing
the latency of DNN models running on resource-constrained
edge devices. However, the drawback of model compression
techniques is that they do not guarantee to maintain the
original model accuracy. In other words, the compressed DNN
model can obtain an accuracy less than that of the original
model. The second approach to facilitate the execution of
ML/DL tasks in MEC is hardware architecture designing. The
main challenge of these architectures is that they are designed
for a specific DNN model as explained in the previous section.
Therefore, it is challenging to design an architecture that can
support different DNN models.

The third approach allowing DNN training and inference in
MEC is ML/DL tasks offloading from the resource-constrained
device to powerful servers (e.g, edge servers or cloud servers).
Generally, for latency-aware applications, the tasks are of-
floaded to other edge devices or to the edge servers, which
are close to the specific edge device. It is important to notice
that the models compression method can be jointly used with
the offloading technique to meet QoS requirements as in [228],
[229]. The main challenge of offloading methods is to decide
which part of the DNN tasks should be offloaded and where
to offload them. Scheduling the offloaded DNN tasks is also
challenging during DNN inference in MEC. Therefore, it is
crucial to investigate the joint DNN tasks offloading and
scheduling in MEC. Finally, a natural question that arises is
how ML/DL methods can improve the tasks offloading and
scheduling (i.e., resource allocation) in MEC. The answer to
this question is the purpose of the next sections.

V. ML AND DL FOR RESOURCE ALLOCATION IN MEC

A. Motivation Example

To illustrate the importance of ML/DL methods for resource
allocation in MEC, let’s consider that we would want to write
an algorithm to offload “untrusted tasks” of an applica-
tion to an edge server. By using traditional programming
approaches (Fig. 17), we would first look at what an “untrusted
task” looks like. We might observe that some characters or
words (such as “3pay”, “money”, ”free”, “bank”) tend to
appear several times. Perhaps we would also remark some
patterns in the mobile user’s id, name, location, and so on.
Then, we would write a discovery algorithm for each of
these patterns that would flag a task as “untrusted task” if a
number of these patterns are found. Finally, we would test the
algorithm and repeat the above steps until it is good enough.
Since this problem is not trivial, the algorithm will likely
become enough hard to maintain.

In contrast to the traditional approaches, an ML-based “un-
trusted tasks” offloading algorithm automatically learns which
characters and words are good predictors of “untrusted tasks”
by discovering unusually frequent patterns of characters or
words (Fig. 18). Also, the ML-based mechanism is much eas-
ier to maintain and more accurate. Indeed, if malicious senders
remark that all their tasks containing the word “3pay” are
blocked, they might start writing “pay” instead. An “untrusted
tasks” offloading algorithm using traditional approaches would

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 18

TABLE V: Summary of Works focused on Enabling ML/DL Tasks in MEC

Computation Layer Ref. NN Models Techniques Application Simulation Tools Dataset Key Metric

2021, [179] LSTM Quantization Image classification PyTorch WikiText-2 [180],
MNIST, Bar Craw

Validation loss

2019, [186] MobileNet-V1 Quantization Xilinx Zynq-7020 FPGA
and Xilinx VU9P

ImageNet Latency, energy, and
model size

2021, [181] MLPs, ResNet-50 and
ResNet-34, ResNet-20,
and EfficientNet-B0

Hardware accelerator Hand-gesture recog-
nition, image classi-
fication

System Verilog + Mentor
Graphics Simulator

Google speech sommands,
MNIST, and CIFAR-10

Throughput and power
consumption

2019, [167] LeNet [212] and VGG16 [213] Knowledge distillation
and Auto-encoder

Image classification TensorFlow, Javascript,
and Flask library

MNIST, QuickDraw, and
CelebA [214]

Interpret and diagnostic
image classifiers with high
accuracy

2022, [168] LeNet5, AlexNet, MobileNet-
V3, VGG-19, ResNet-18,
ResNet-32

Knowledge distillation - TensorFlow CIFAR-10 Privacy preserving

2018, [87] Inception, ResNet, and Mo-
bileNet

KNN Image classification Jetson TX2 embedded DL ImageNet ILSVRC 2012
validation dataset

Minimize inference time
while meeting user QoS

On Edge Devices 2020, [169] VT-CNN2 Pruning based on activa-
tion maximization

Automatic modula-
tion classification

TensorFlow RML2016.10a dataset
[215]

Model acceleration

2019, [174] Conv-2 [216], VGG-11 [79],
ResNet-18 [217]

Pruning Image classification PyTorch, Raspberry Pi FEMNIST [216], CIFAR-
10 [218], and ImageNet
[219]

Accuracy and time trade-
of

2021, [177] Fully-connected NN [220] Quantization Particle
identification

QKeras [221], AutoQK-
eras, and hls4ml

Hls4ml lhc jet dataset
[222]

Energy minimization and
accuracy

2019, [178] Resnet-v1-50 Quantization TensorFlow Cifar10 Accuracy

2019, [192] - Offloading - MATLAB Numerical Energy consumption, de-
lay cost, and QoR

2022, [193] AlexNet, VGG, and ResNet Offloading Image recognition Python and Caffe2 unknown Response time

2020, [194] VGGNET-16 Offloading + Partitioning NVIDIA Tesla V100 GPU Numerical End-to-End Inference de-
lay

On Edge Servers 2020, [223] MobileNet, Inception, and
ResNet

Graph-based partition Unknown Scikit-learn, Caffe Mobility datasets [224]
and CRAWDAD [225]

Throughput

2019, [196] , VGG16, VGG13,
ALEXNET, and LENET

a Offloading + partition-
ing (MILP)

Unknown Orange Pi Win Plus,
MATLAB

Numerical Delay

2018, [198] RESNET-152 Caching Object classification NVIDIA Tegra TK1 +
Raspberry Pi3

Youtube-Objects video Latency

[199], 2020 CacheNet, Shake-Shake and
ResNet

Caching - TensorFlow, TensorFlow
Lite and NCNN

CIFAR-10 and Frontal
View Gait (FVG) dataset
[226]

Latency

2021, [201] MobilenetV2 and VGG19 Partitioning Unknown Raspberry Pis, NVIDIA
Jetson Nanos

Unknown Latency

Across devices, edge
and cloud servers

2022, [202] AlexNet, VGG19, GoogleNet,
and ResNet101

Offloading Unknown Python Unknown Energy Consumption

2022, [203] Conv1D and gated recurrent
unit (GRU)

Resource allocation +
Pruning

Python Numerical Operational cost, rejection
rate, and QoE

2022, [227] MobileNetV1 Reinforcement learning Image classification AWS a1.medium, AWS
a1.large, ARM-core, and
ARM-NN SDK

Numerical Response time and Accu-
racy

2022, [209] Fully connected DNN Offloading, FL Wireless communi-
cation

PyTorch Numerical convergence speed, execu-
tion delay

2019, [210] Squared-SVM, Linear regres-
sion, K-means, and CNN

Federated learning Unknown Raspberry Pi MNIST, SGD, DGD,
CIFAR-10

Minimize the loss func-
tion

Problem:  
''Untrusted

Tasks'' 
Offloading

Define
rules Evaluate

Analyze
Error

Initiate

Traditional Approach

1)

2)

3)

Set of  
Tasks

Smart device

Intelligent Device Layer

Offloaded  
Task Queues

Edge Servers

4)

MEC Layer

Fig. 17: Traditional approach for untrusted task offloading.

need to be updated to flag the word “pay”. If malicious senders
keep working around the traditional offloading algorithm, we
will need to keep writing new rules forever. In contrast, an
ML-based “untrusted tasks” offloading algorithm will auto-
matically observe that “pay” has become unusually frequent
in “untrusted tasks” flagged, and it starts flagging them without
writing new rules (Fig. 19).

Now, suppose that we want to schedule the offloaded tasks
to the MEC servers (Fig. 20). To provide a more realistic
scenario, we consider the problem as a flow shop scheduling
problem, which is widely used in manufacturing [230]. Also,

Problem:  
''Untrusted

Tasks'' 
Offloading

Evaluate

Analyze
Error

Initiate

Offloaded  
Task Queues

Edge ServersML Approach

1)

2)

3)

4)

Set of  
Tasks

Smart device

Intelligent Device Layer MEC Layer

Train ML
Algorithm

Data

Fig. 18: ML approach for untrusted task offloading.

recently, many manufacturing factories are integrated edge
computing and AI to solve the daily job scheduling problem.
Hence, this tutorial will help both generalists and specialists to
understand how ML and DL can be used to solve the resource
allocation problem in MEC. The flow shop scheduling problem
can be formulated as follows: given a set of J jobs, the tasks
of each job need to be processed by m machines (servers)
in a specific order. In our case, we have one job with 3
tasks that need to be scheduled on 3 servers (Table VI). The
main challenge in flow shop scheduling is to find the optimal
sequence in which the tasks will be executed. For instance, if

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 19

Problem:  
''Untrusted

Tasks'' 
Offloading

Evaluate

Analyze
Error

Initiate

Offloaded  
Task Queues

Edge ServersML Approach

1)

2)

3)

4)

Set of  
Tasks

Smart device

Intelligent Device Layer MEC Layer

Train ML
Algorithm

Data

Automatically

Update Data

Fig. 19: ML approach for untrusted task offloading: automat-
ically adapting to environment.

Problem:  
''Untrusted

Tasks'' 
Offloading

Evaluate

Analyze
Error

Initiate

Offloaded  
Task Queues

Edge ServersML Approach

1)

2)

3)

4)

Set of  
Tasks

Smart device

Intelligent Device Layer MEC Layer

Train ML
Algorithm

Data

Automatically

Update Data
MEC SCHEDULER

QL

Fig. 20: QL-based offloaded task scheduling.

Algorithm 1 Q-Learning Algorithm
Input: Random state;
Output: Q-Table;

1: Initialize Qπ(s, a) arbitrary for all (state, action) pairs;
2: repeat(for each episode τ )
3: Initialize state s;
4: repeat(each step of episode)
5: Choose action a from s using policy derived from
Qπ (e.g., ε-greedy, ε ∈ [0, 1]);

6: Take action a, observe r, s′;
7: Update Qπ(s, a) using (2);
8: s← s′;
9: until s is terminal

10: until convergence (|Qπτ (s, a) − Qπτ−1(s, a)| < ω); where
ω is the infinitesimal value.

we have n tasks, we will have n! feasible sequences. Here, we
aim to find the optimal sequence using a Q-learning method
described in Algorithm 1, where Qπ(s, a) is the value-function
to maximize. At each step t, the Qπ(s, a) value function is
iteratively updated using Bellman equation (2).

Qπt+1(s, a) = Qπt (s, a) + α[R(s, a) + γmax
a′

Qπt (s
′, a′)

−Qπt (s, a)],
(2)

where α is the learning rate, R(s, a) is the reward for taking
action a at state s. The maxa′ Q

π
t (s
′, a′) value is the maximum

expected future reward for any action in state s′. These
maximum values are stored in a table commonly called Q-
table. The Q-table has one row and one column for each
possible state and action, respectively.

The parameters used for this tutorial are given in Table VII.
The values of the Q-table are initially set to zero. The learning
steps to find the optimal sequence are described as follows:

TABLE VI: Processing time of 3 tasks on 3 machines

Task M1 M1 M3

T1 4 3 1

T2 3 5 5

T3 3 2 4

First episode:
• Current state: [T1, T2, T3];
• Select a random action: T2;
• Sequence : T2;

• Reward: R([T1, T2, T3], T2) =
1

makespan(T2)
=

1

3 + 5 + 5
= 0.0769;

• Calculate the new Qπ(s, a): Qπ([T1, T2, T3], T2)

= Qπ([T1, T2, T3], T2) + α
[
R([T1, T2, T3], T2)

+γmax[Qπ([T1, T3], T1), Q
π([T1, T3], T3)]

−Qπ([T1, T2, T3], T2)
]

= 0 + 0.4×
[
0.0769 + 0.8×max[0, 0]− 0

]
= 0.03076;

• The Q-table is updated (Table VIII index 1), and we
process the current state [T1, T3];

• Select a random action: T3;
• Sequence: [T2, T3];

• Reward: R([T1, T3], T3) =
1

makespan([T2, T3])
=

1

17
= 0.0588;

• Calculate the new Qπ(s, a): Qπ([T1, T3], T3)

= Qπ([T1, T3], T3) + α
[
R([T1, T3], T3)

+γmax[Qπ([T1], T1)]−Qπ([T1, T3], T3)
]

= 0 + 0.4×
[
0.0588 + 0.8× 0− 0

]
= 0.0235;

• The Q-table is updated (Table VIII index 3), and we
process the current state [T1];

• Select a random action: T1;
• Sequence: [T2, T3, T1];

• Reward: R([T1], T1) =
1

makespan([T2, T3, T1])
=

1

18
= 0.0555;

• Calculate the new Qπ(s, a): Qπ([T1], T1)

= Qπ([[T1], T1) + α
[
R([T1], T1)

+γmax[Qπ([T1], ∅)]−Qπ([T1], T1)
]

= 0 + 0.4×
[
0.0555 + 0.8× 0− 0

]
= 0.0222;

• The Q-table is updated (Table VIII index 5), then the
next episode starts. This process is repeated until the con-
vergence of the algorithm. Fig. 21 shows the makespan
obtained for each episode. After a certain number of
episodes we obtain the best sequence that is [T3, T2, T1].

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 20

TABLE VII: Q-Learning parameters

Name Notation Value

Greedy policy ε ε= 0.2

Learning rate α α= 0.4

Discount factor γ γ= 0.8

Reward R R =
1

makespan

TABLE VIII: Q-table of three tasks

Actions

Index States T1 T2 T3

1 T1, T2, T3 0 0.03076a 0

2 T1, T2 0 0 0

3 T1, T3 0 0 0.0235

4 T2, T3 0 0 0

5 T1 0.0222 0 0

6 T2 0 0 0

7 T3 0 0 0

8 ∅ 0 0 0

aBold values indicate which action was selected in a
specific state

0 20 40 60 80 100 120
Episodes

8

9

10

11

12

13

14

15

M
ak

es
pa

n

Makespan obtained in each episode

Fig. 21: Q-Learning for flow shop scheduling in MEC.

B. Machine Learning for Resource Allocation in MEC

ML has been widely used for solving resource allocation
problems in MEC networks. For instance, the authors of [231]
propose an ML-based algorithm for resource allocation in edge
and IoT networks. Especially, they use a clustering approach
to categorize the IoT users into clusters. The cluster with the
highest priority offloads and executes its tasks at the edge
server, while the cluster with the lowest priority executes its
tasks locally. For the other clusters, the task offloading decision
is modeled by a Markov Decision Process (MDP), and a DQN
is used to train the optimal policy. In the same spirit, the
authors of [232] use a Q-learning (QL) approach for cross-
layer resource allocation in cognitive radio networks (CRN).
Since the QL approach leads to a long convergence time for
large state and action spaces, they also use a DQN to address
this challenge. ML is also used for spectrum sharing cellular
networks [233] and for resource trading in fog environment
[234]. Furthermore ML is applied for resource allocation
in various networking systems such as IoT [235], vehicular

communication networks [236], and SDN [237].

C. Deep Learning for Resource Allocation in MEC

Deep learning has also been used for resource allocation
in recent wireless communication technology such as 5G. For
instance, the authors of [247] propose a deep learning method
(LSTM) for resource allocation in 5G wireless networks with
the objective to minimize the energy usage of the remote radio
heads while considering the QoS constraints of the users. In
[253], the authors present a DRL-based resource allocation and
power management in the cloud. Using an autoencoder and a
weight sharing structure, the convergence speed is accelerated,
while the LSTM and RL are used to manage the server
power usage. The simulation results based on Google cluster
traces show that the proposed mechanism minimizes the power
consumption and energy usage compared to the traditional
schemes. Similarly, the authors of [254] propose a DRL-based
resource allocation algorithm for V2V communications with
the objective to minimize the interference of the V2V links to
the V2I links while satisfying the latency constraints on V2V
links.

In summary, several ML and DL methods have been used
for resource allocation in MEC networks. Table IX summa-
rizes potential ML and DL methods for resource allocation
and their advantages and disadvantages in MEC.

In the next sections, we provide an in-depth survey of
recent works in this area from three perspectives: ML/DL-
based methods for task offloading (Section VI), ML/DL-based
methods for task scheduling (Section VII), and ML/DL-based
methods for joint resource allocation (Section VIII).

VI. ML/DL-BASED METHODS FOR TASK OFFLOADING IN
MEC

In this section, we survey state-of-the-art ML/DL-based
methods for task offloading in MEC. We classify the research
in this area into works focused on the minimization of la-
tency (VI-A), minimization of the energy consumption while
satisfying a QoS metric such as slowdown, response time,
execution delay (VI-B), finding a proper trade-off between
multiple QoS (VI-C), and finding a desirable trade-off between
both the privacy protection, the execution delay, and the energy
consumption (VI-D).

A. Minimization of Latency

The main objective of [12] is to find a proper offloading
mechanism, which can minimize the latency of the application.
To this end, the authors propose a DRL-based offloading
algorithm, which can effectively learn the offloading policy
represented by a Seq2Seq neural network. The algorithm has
three main phases. In the first phase, the priority of each
task is calculated based on the EFT, which is the summation
of the running cost of the current task and the maximal
EFT of the previous tasks. Then, the tasks are sorted in the
ascending order of EFT. In the second phase, the offloading
policy is designed. In this phase, the sorted task is converted
into embedding vectors, that is 1, 0, where 1 indicates that

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 21

TABLE IX: Potential ML and DL Methods for Resource Allocation (RA) in MEC

Method Main Idea Advantage Disadvantage Potential Applications in RA

ML Methods

DT Use a tree-like prediction model to
learn from training datasets represented
as a set of rules and decision branches.

Easy to understand and has logarithmic time com-
plexity.

Local optimal decision is obtained
at each leaf. Hence, it cannot
guarantee globally optimal deci-
sion tree.

Task orchestration [238], task of-
floading with the objective to min-
imize the energy consumption of
mobile devices [239].

RF Randomly use many decision trees to
acquire robust prediction made by the
individual trees to increase the overall
accuracy

Low prediction errors even for noisy workloads Time consuming Modulation and coding prediction
in 5G [240].

SVM SVM learns the optimal separating hy-
perplane between the two classes of
training dataset in the feature space
[241]

Less computational resources Monopolization issue: node with
more assets have more power than
others.

Cooperative offloading in balloon
networks [242].

QL QL learns an action-value function
Q(s; a) for each state-action pair. The
Q(s; a) value is the cumulative return
value obtained after executing action a
in state s.

Simple to implement since it can be formulated by
a single equation

Slow convergence rate since all Q-
values must converge before attain-
ing the optimal policy.

Accurate task ordering and assign-
ment [243], [244], Adaptive re-
source allocation [245].

Bagging Bagging is an ensemble machine learn-
ing technique that aggregates multiple
prediction models to reduce the vari-
ance.

Take the advantage of different learners to avoid the
overfitting of models.

Computationally expensive and
loss of interpretability

Prediction task’s attributes [246]

DL Methods

Seq2Seq Train a model to generate a sequence of
items from one domain to a sequence of
items in another domain.

Easy to convert a resource allocation decision into a
sequence prediction process.

Challenging with large input se-
quences since the output sequence
is heavily related to the hidden
state in the final output.

Binary offloading decision by con-
verting the task into embedding
vectors ”0” and ”1”, where ”1”
indicates that the task is offloaded
and ”0” indicates the task is exe-
cuted locally [12].

LSTM LSTM is a type of RNN that can learn
long-term dependencies in prediction
problems.

Easy to capture and store long-term dependencies. Hard to remember a decision after
a long period. It also requires high
memory bandwidth due to the lin-
ear layers in each cell.

resource allocation for TV Service
in 5G wireless network [247].

Autoencoder (AE) AE is a type of NN used to train a
compressed representation of raw data.
It has two main layers, namely the
encoder that converts the input into the
code, and a decoder that uses the code
to reconstruct the initial input.

Good for feature extraction Computationally time consumption Keep track of the long-term de-
pendencies that exist between the
tasks’ requirements and the VMs’
specifications [248].

CNN CNN has two main steps: feature ex-
traction, which performs a series of
convolutions and pooling operations for
detecting features, and the classification
phase, which assigns a probability to
the object for prediction. [66]

CNN can strongly reduce the complexity of the
network model and the weigh sharing.

Require large training datasets.
CNN cannot encode the position of
IoT devices.

Feature extraction of the task queue
[244], power allocation for secure
industrial IoT [249].

RNN RNN save the output of a particular
layer and feed the result back to the
input to predict the output of the layer.

RNN can remember information over time. Very difficult to train an RNN
to solve problems with long-term
temporal dependencies because of
the vanishing gradient problem
[66].

Interference pattern prediction and
power allocation in D2D network
[250].

DRL DRL allows an agent to approximate
its policy and get the optimal solu-
tion without requiring any prior training
data knowledge.

High convergence rate compared to RL. DRL enable
IoT device to learn optimal policies(e.g., channel
selection) without knowing the environment (e.g.,
wireless channel information or mobility pattern).

A DRL agent requires a million
of training data samples to learn
optimal policies.

Big data task scheduling [251], Op-
timal task ordering [251], decision-
making process [252]

TABLE X: Average latency (ms) of the DRL-based offloading
method proposed in [12]

Tasks (n) DRL-based HEFT-based Round-Robin-based

n=10 349.7 365.05 436.53

n=25 790.79 833.90 948.71

n=40 1185.59 1262.06 1372.12

the task is offloaded on the MEC server, and 0 denotes that
the task is executed locally on the device. The proximal
policy optimization (PPO) [255] method is used to train
the Seq2Seq neural network. Finally, the task is executed
according to the results of the offloading decision of the
second phase. The experimental results demonstrated that the
proposed algorithm achieves lower latency than the HEFT-
based and Round-Robin-based algorithms. For instance, when
the number of tasks is equal to 10, the proposed DRL-based
offloading algorithm obtains a latency of 349.7, while the
latency of the HEFT-based and RR-based are 365.05 and
436.53, respectively (see Table X). The drawback of the

proposed algorithm is that it has weak adaptability to a new
environment. Therefore, it requires full retraining to update
policy for the new environment, which is time-consuming.

To solve this issue, the authors of [256] introduce a task of-
floading scheme based on meta-reinforcement learning (MRL)
called MRLCO that can learn a meta-offloading strategy for
all IoT devices and rapidly obtain the proper policy for each
IoT device. The main objective of [256] is to find an efficient
offloading mechanism that minimizes the total latency. Com-
pared to the previous work that has weak adaptability for a
new environment, the method in [256] can quickly adapt to
new environments. The proposed offloading strategy is also
modeled as a seq2seq neural network. The novelty of the
MRLCO algorithm is its ability to achieve fast adaptation
to new MEC environments with a small number of gradient
updates and samples. The experimental results show that the
MRLCO algorithm obtains the lowest latency compared to the
scheme proposed in [12].

Another idea aiming at minimization of the latency is intro-
duced in [257]. When compared to the previous studies, the

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 22

DNN

Input for
the t-th

time
frame

Channel
Gain

...

Compute  

Quantization 

$$x_n$$

Selected
action

Offloading
action

generation

Selected action
for the t-th time

frame

Replay Buffer

........

ActionChannel

........

Training sample

Sample random batch

Train

Offloading
Policy
Update

Fig. 22: Illustration of DRL-based offloading scheme proposed
in [257]

authors of [257] also maximize the weighted sum computation
rate of all offloaded devices. The main objective of the paper is
to find a mechanism that can achieve optimal task offloading
policies and wireless resource allocations while considering
the time-varying wireless channel conditions. To this end,
the authors propose a DRL-based online offloading (DROO)
algorithm with DNN that learns the offloading decisions from
the experience. The DROO algorithm has two main phases: of-
floading action generation and offloading policy updating (see
Fig. 22). The generation of the offloading action uses a DNN,
which is represented by its embedded parameters θ. In the tth

time slot, the DNN takes the channel gain ht as input and
gives an offloading action xt (xt ∈ [0, 1]) as output based on
its current offloading policy πθt . The action is then quantified
into K binary offloading actions, and the best action x∗t is
selected based on the feasible computation rate. The solution
for ht is the output (x∗t , a

∗
t , τ
∗
t ), which guarantees that all the

constraints are satisfied. Finally, the network takes the action
x∗t , obtains a reward Q∗(ht, x∗t ), and adds the obtained state-
action pair (ht, x∗t ) to the replay memory. In the policy action
updating phase, a group of training samples is extracted from
the memory to train the DNN, which appropriately updates
its offloading policy from θt to θt+1. The new policy θt+1 is
used in the next time slot to generate offloading decision x∗t+1

based on the new channel ht+1. Simulation results show that
the DROO algorithm minimizes the latency by more than an
order of magnitude compared to the benchmark approaches.

In [258], the authors investigate the task offloaded schedul-
ing problem in edge computing to minimize the long-term
cost defined as a trade-off between task latency and energy
consumption. To this end, a novel DRL-based algorithm called
DRLOSM is proposed to solve the problem, which is mod-
eled as MDP. To improve the training efficiency, a proximal
policy optimization (PPO) algorithm is introduced, which is
a policy gradient scheme with good stability and reliability
[259]. Additionally, a convolutional neural network (CNN) is
integrated with the DNN scheme to better extract the features
of the task queue. The DNN scheme estimates the offloading
scheduling policy. In the training phase of the proposed
algorithm, two DNNs are initialized one with the parameter
θold for sampling πθold , and another with θ for optimizing πθ.
In the sampling phase, N trajectories are sampled following

the policy πθold . To obtain an efficient training model, the
Generalized Advantage Estimations (GAEs) for each time step
in each trajectory are calculated in advance. Then, the sampled
data are cached for the optimization phase. In the optimization
phase, the value θ of the policy πθ is updated for a certain
number of epochs. After that, the policy πθ is enhanced in each
epoch by applying stochastic gradient ascend on the cached
data. Finally, the sampling policy πθold is updated with πθ, the
cached data is dropped, and the next iteration continues.

B. Minimization of Energy Consumption while Satisfying a
QoS Metric

The minimization of the energy consumption while sat-
isfying the slowdown is the main objective of [260]. The
authors propose a DRL-based offloading algorithm with DNN
as an approximator function that achieves the desired trade-off
between energy consumption and slowdown. The simulation
results show that the algorithm can learn the approximate
optimal task offloading policy after several training rounds
and it is better than the baseline algorithms in terms of mean
energy consumption and mean slowdown.

The goal to minimize the energy consumption and response
time is pursued in [261]. This is accomplished by an algorithm
based on classification and regression tree (CART), which
finds the optimal offloading policy according to the device’
QoS such as capacity, availability, authentication, speed, and
cost. The proposed algorithm is compared with the First Fit
(FF) and local processing policy (LPL) (i.e., execution is done
always locally on the device). The simulation results show
that the proposed CART-based offloading policy is better than
FF and LPL methods in terms of energy consumption and
response time. For instance, the proposed algorithm is better
than FF method by 44 % in terms of energy consumption. In
terms of response time, the proposed algorithm outperforms
FF method by 50%.

Compared to the above studies, which assume that the
wireless channel state information (CSI) is static and known
by mobile users, the authors of [262] present an offloading
mechanism in a static and time-varying MEC system. Under
a static channel state information, the offloading problem is
formulated as a noncooperative exact potential game (EPG),
where each mobile user offloads its computation tasks to the
edge server to selfishly maximize its processed CPU cycles
in each time slot and reduce its energy consumption. Then,
under time-variant and unknown channel state information,
a payoff game theory is adopted, which is also proved to
be an EPG. In this case, the offloading problem is solved
using a Q-learning method and a best-response approach [263],
which helps mobile users to adapt their offloading policies to
dynamic wireless environments. The simulation results prove
that the proposed mechanism outperforms the local processing
and random approaches, and achieves at least 87.87% average
payoff compared to the full CSI case.

In [264], the authors propose a novel architecture called
Space-Air-GroundEdge (SAGE) to offload task-intensive ser-
vices in maritime MEC networks to jointly minimize latency
and energy consumption. The offloading problem is formu-
lated as Multi-Armed Bandits (MABs) learning problem. The

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 23

Algorithm 2 D-DRL Algorithm Proposed in [266]

1: Input: computational tasks, states, and actions;
2: Output: Optimal offloading policy;
3: for user n ∈ N do
4: Initialize the learning parameters;
5: end for
6: for time slot k ∈ 1, 2, ... do
7: for user n ∈ N do
8: Observe bkn and update its observation ok−1n into
okn; . bkn is the user n bandwidth at time k

9: n;
10: Store (ok−1n , xk−1n , okn, r

k−1
n ) into the replay buffer;

11: Input okn into actor network πθn and determine the
size of input data xkn uploaded to the edge server.

12: Compute its reward rkn = un(x
k
n, x

k
−n)

13: end for
14: if k%D == 0 then
15: for m ∈ 1, 2, ...M do
16: for user n ∈ N do
17: Compute the gradients;
18: Update user n actor and critic networks in

every time slots D;
19: end for
20: end for
21: Clear the replay buffer;
22: end if
23: end for

MAB problem is a classic reinforcement learning problem of
exploration and exploitation [265]. To solve the problem, an
Upper Bound of Confidence interval (UCB) based algorithm
is proposed. Firstly, the proposed algorithm analyzes the
historical records and the associated reward and cost values
of the maritime IoT devices to find the edge sever that
will be selected. Then, the algorithm updates the confidence
interval of each server forward degree and the number of times
that the server is selected. Finally, the edge server with the
lowest regret value that satisfies the offloading QoS is selected
as the optimal server. The simulation results prove that the
proposed algorithm outperforms the traditional UCB and ε-
greedy algorithms under various conditions in terms of latency
and energy consumption.

The authors of [266] propose an algorithm called D-DRL
(Algorithm 2), which is based on DRL and differential neural
computer (DNC) for decentralized computation offloading in
edge computing to achieve the optimal offloading policy. DNC
is a particular RNN with internal memory, which is capable
of training and remembering the previous hidden states of the
inputs data. Hence, with DNC, not only the learning process
is accelerated but also the agent can continue learning policy
when the network is uncertain and time-varying. Compared to
previous approaches which assume that all users should share
their information, in [266], the users have the possibility to
share or not their QoS’s information. The offloading problem
is formulated as a “multi-agent partially observable Markov
decision process (POMDP)” and an algorithm based on DRL
is proposed to solve the problem. This approach enables

each user to determine the approximately optimal computation
offloading scheme directly from game history without any
preliminary information about other users. The D-DRL has
the following components: actor-critic network, replay buffer,
policy optimizer, and actor-critic laws updating. Firstly, each
user initializes the parameters of their actor and critic networks
(line 2). At each time slot, each user notices its bandwidth and
updates its parameters (lines 4-6). Then, each user inserts its
previous observation, new observation, strategy, and reward
into its replay buffer (line 8). After that, the current notice of
each user is considered as the input of its actor-network and
a part of its input data is uploaded to the edge sever based
on the output of the actor-network. Next, each user calculates
its reward and updates its actor and critic networks for each
time slot. The data stored in their replay buffers are taken as
one mini-batch, and they update the actor and critic networks
by calculating the gradients (lines 13-16). Finally, each user
optimizes its actor and critic networks by mini-batch stochastic
gradient and clears its replay buffer. Simulation results show
that the D-DRL algorithm outperforms the baselines algo-
rithms. For instance, the D-DRL takes about 8000 time slots
to converge to the stable state, while the MAPPO algorithm
[267] and MAA2C algorithm [268] take about 14000 time
slots and 18000 time slots, respectively.

C. Trade-Off Between Execution Delay, task drops, queueing
delay, failure penalty, and cost

While previous surveyed works focused on a single objec-
tive or bi-objective offloading problems, the authors of [269]
present a trade-off analysis between the execution delay, task
drops (i.e. once the task queue is full), queueing delay, failure
penalty, and execution cost for the offloading decision. Also,
compared to [262] which considers only the CSI, in [269], the
authors consider both the task queue state, the energy queue
state, and the CSI between the mobile users and the base sta-
tions. The task offloading decision is formulated as MDP. Two
DDQN learning algorithms are proposed to train the optimal
task offloading policy without any prior knowledge of CSI.
Simulation results show that the proposed algorithms called
“DARLING” and “Deep-SARL” are better than the baselines
in terms of long-term utility. The proposed algorithms obtain
an optimal trade-off among the task execution delay, the task
drops, the task queueing delay, the task failure penalty, and the
MEC service cost compared to the baselines. Furthermore, the
Deep-SARL algorithm outperforms the DARLING algorithm
by considering the additive structure of the utility function.

The drawback of both previous surveyed works is that the
offloading decision scheme does not take into account the
application security and privacy requirements. Hence, the next
section surveys studies that address the security-awareness and
privacy-awareness task offloading problems.

D. Trade-Off Between Privacy, Execution Delay, and Energy
Consumption

The protection of the mobile’s user location and usage
pattern privacy in MEC networks while minimizing the de-
lay and energy consumption of the offloaded tasks is the

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 24

Algorithm 3 RL-Based Privacy-Aware Offloading Algorithm
for healthcare IoT Devices Proposed in [270]

1: Input: Healthcare data, states, and actions;
2: Output: Optimal offloading policy;
3: Initialize the learning parameters α, γ, and δ;
4: HotBooting process;
5: for time slot k ∈ 1, 2, 3... do
6: Observe C(k)

1 , C
(k)
0 b(k);

7: Compute χ(k), h(k), and ρ(k);
8: s(k) = {Ck1 , χk, hk, ρk, Ck0 , bk};
9: Divide the healthcare IoT data with size of Ck0 +
Ck1 into N equivalent tasks;

10: Choose x(k) = [x0k, x
1
k] using ε-greedy policy;

11: Offload x
(k)
1 (Ck0 + Ck1 healthcare data to the

edge device, process x
(k)
0 (Ck0 + Ck1 of the data

locally, and store the rest in the replay buffer;
12: Evaluate the achieved privacy, total energy con-

sumption, and computation latency;
13: end for

main objective in [271]. To achieve this goal, the authors
formulate the optimization problem as a constrained Markov
decision process (CMDP) and solved it using Q-learning and
Lagrangian approaches. The proposed scheme is described
as follows: at each time slot n, the mobile user takes an
action an = argmin

a∈A
Qn(sn, a) based on the observation of

the buffer and channel state sn. Then, it observes the next
state sn+1. Next, it updates the Qn(s, a) of the Q-function
Q(s, a) and the estimate value of the Lagrangian multiplier.
The numerical experiments prove that when the privacy level
of the mobile user is equal to 0.6, the extra delay and energy
costs caused by the baseline algorithm are 100%, while the
delay and energy costs incurred by the proposed algorithm
are 45%. However, the proposed algorithm suffers from a slow
learning convergence.

To overcome the drawback of the above study, the authors of
[270] propose a novel offloading algorithm with the objective
to protect both the user location privacy and the usage pattern
privacy while minimizing the computation latency and the
energy consumption cost of healthcare IoT devices. This is
accomplished by an RL-based algorithm that achieves the
optimal offloading decision while protecting the user’s pri-
vacy and minimizing both the energy consumption and the
computation latency of the IoT devices. To accelerate the
learning process a transfer learning technique, i.e., PDS (Post
Decision State) scheme [272] is used. The proposed algorithm
is described as follows (see Algorithm 3): at each time slot k,
the IoT device observes the current state s(k) that depends
on the new generated healthcare data size and its priority,
the state of the current radio channel, the current renewable
energy generated, the previous computation records in the
buffer, and battery level of the IoT device. After evaluating
the healthcare data of size Ck1 , the IoT device calculates the
priority of the healthcare data denoted by χk, and evaluates
the channel power gain denoted by hk. Based on historical
data and the previous offloading experiences, the IoT device

computes the amount of the harvested energy denoted by ρk

and evaluates the current battery level bk. Hence, the state
is selected as s(k) = {Ck1 , χk, hk, ρk, Ck0 , bk}, where Ck0
indicates the healthcare data records in the buffer. Finally, the
offloading policy x(k) = [xk0 , x

k
1 ] is chosen with probability

(1 − ε) and other feasible offloading decisions are randomly
selected with a small probability. The simulation results show
that the proposed RL-based mechanism converges faster than
the CMDP-based method proposed in [271]. For instance,
when the required privacy of the user is equal to 11, the
proposed algorithm saves 40% of time slots to meet this
requirement compared to the CMDP-based approach. Com-
pared with the CMDP-based method, the proposed algorithm
also saves 9.63% of the energy consumption cost and reduces
68.79% of the computation latency while improving 36.63%
of the privacy level for a larger time slot.

Another idea aiming at maximizing the user privacy level
while minimizing the offloading latency and energy consump-
tion in a MEC-based blockchain network is introduced in
[273]. When compared to the previous work, the authors
of [273] address not only the computation tasks offloading
problem but also the blockchain mining tasks offloading issue.
In the MEC-based blockchain network, each miner (i.e, mobile
user) can offload its IoT processing and mining tasks to the
MEC server. To achieve this goal, the authors propose a DRL-
based algorithm that can efficiently find optimal offloading
actions without any prior knowledge of the environment
dynamics. The authors first propose a QL-based offloading
algorithm that enables miners to obtain optimal offloading
decisions (see Algorithm 4). An ε-greedy policy is used to
balance the exploration/exploitation and to update the QL. At
each time step, the miner selects an offloading action based
on the blockchain state and evaluates the privacy value and
system costs (lines 6-12). After performing each action, the
miner goes to the next step and updates the new state (lines
13-15). This process is repeated until the optimal offloading
policy is obtained. To overcome the slow convergence of
the QL-based algorithm for a larger state-action, the authors
propose another algorithm called DRLO that uses a DNN to
approximate the Q-values instead of using the traditional Q-
table. The simulation results show that the DRLO algorithm
obtains a better long-term reward compared to the conventional
QL-based method. For instance, when the trade-off value is
equal to 0.8, the experiment results proves that the convergence
of the DRLO algorithm is 9% higher than that of the QL-based
scheme. The experiment results also prove that the DRLO
algorithm outperforms the benchmark algorithms in terms of
offloading cost, energy consumption, and privacy-preserving.
For example, for mining 100 kb blockchain transactions, the
privacy level of the DRLO algorithm is 5.5% better than the
conventional QL-based approach and 13.4% better than the
CMDP-based method proposed in [271].

E. Lessons Learned from ML/DL-based Task Offloading

A summary of studies on ML and DL for task offloading in
MEC is illustrated in Table XI. The majority of ML and DL-
based offloading decision algorithms aim to minimize latency

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 25

TABLE XI: Summary of Studies on ML and DL for Task Offloading in MEC

Ref. Learning Type Algorithm Mathematical Model Simulation Tools Optimization Criteria

2020, [266] Deep RL DRL Game + POMDP Python-Based Minimize the energy consumption and delay cost.

2019 [274] SL SVM - - Maximize the throughput.

2020, [273] Deep RL QL+DQN MDP - Maximize the user privacy level while minimizing the offloading latency
and energy consumption of the mobile user device.

2018, [262] RL QL Game theory MATLAB Minimize the energy of the mobile device.

2019, [269] Deep RL DDQN MDP Tensorflow Trade-off analysis between the execution delay, task drops, queueing delay,
failure penalty, and execution cost.

2020, [261] RL CART MDP Cloudsim Minimize the energy consumption and response time.

2017, [271] RL QL CMDP - Protect the mobile’ user location and usage pattern privacy while minimiz-
ing the delay and energy consumption of the offloaded tasks.

2019, [270] RL QL+TL+PDS MDP - Protect both the user location privacy and the usage pattern privacy while
minimizing the computation latency and the energy consumption cost of
healthcare IoT devices.

2019, [260] RL DRL + DNN - - Minimize the energy consumption while satisfying the slowdown.

2019, [12] DRL Seq2Seq MDP - Minimize the latency of the application.

2020, [258] Deep RL PPO + CNN + DNN MDP Tensorflow Minimize the long-term cost defined as a trade-off between task latency
and energy consumption.

2021, [256] MRL Seq2Seq NN MDP Tensorflow Minimizes the total latency.

2020, [257] Deep RL DNN MIP non-convex Tensorflow Minimize the latency while maximizing the weighted sum computation
rate of all offloaded devices.

Algorithm 4 QL-Based Task Offloading Algorithm for Mobile
Blockchain Networks Proposed in [273]

1: Input: blockchain transaction data, channel states, and
actions;

2: Output: Optimal offloading policy;
3: Initialize the learning parameters α, γ, and ε;
4: Initialize Q(s, a) value function, and Q-table Q(s0, a0)
5: Set t=1;
6: while t ≤ T do
7: Observe blockchain transaction (Dt

1, D
t
0);

8: Estimate the channel gain state gt, and set st =
{Dt

1, D
t
0, g

t};
9: Select a random action at with probability ε, otherwise
at = argmaxQ(st, a, θ);

10: Offload data processing task xt(Dt
1 + Dt

0) to edge
server or execute xt(Dt

1 +Dt
0) locally on mobile device;

11: Calculate the reward rt = P t(s, a) + Rminingn +
Ct(s, a); . Rminingn mining reward of miner n

12: Estimate the privacy level P t(s, a) and the system cost
Ct(s, a);

13: set st+1 = {Dt+1
1 , Dt+1

0 , gt+1};
14: update Q(st, at) using Bellman equation (2);
15: t← t+ 1;
16: end while

or to find a proper trade-off between the energy consumption
at the IoT device and the latency. Besides, most of the studies
use the DRL method or a combination of ML and DL methods
to solve the offloading problem because these approaches
converge faster than the standard reinforcement learning.

From the surveyed papers focused on task offloading, we
learned the following key facts:
• Designing an efficient task offloading scheme is a

crucial challenge in MEC systems. The main reason is
that, although tasks offloading to MEC servers minimizes
the energy consumption of the IoT device since the
execution does not have to be done locally, it also incurs

additional execution delays, including the time to send the
offloaded tasks to the MEC server, the time to execute
the offloaded tasks on the server, and the time to send
the execution results back to the IoT device. Especially,
there is a trade-off between the energy consumption of the
IoT device and the execution delay. For this reason, the
majority of the surveyed works aim to find a mechanism
that minimizes the energy consumption of the IoT device
while satisfying the execution delay.

• The performance of an ML/DL-based offloading
method is strongly related to the methods used to train
the optimal offloading policy. The reason is that the
training method determines the long-term reward (i.e., the
objective function). Also, the works that used two training
methods (e.g., [76]) outperform those that use a single
training method (e.g., [274]) because with two training
models, each model can train its optimal offloading policy
to cooperatively optimize the long-term reward.

• For delay-sensitive and real-time applications,
ML/DL-based methods outperform the traditional
methods for task offloading in MEC. Traditional
offloading techniques (e.g., approximation, heuristic, and
meta-heuristic) are computationally expensive. Therefore,
they are not suitable for delay-sensitive and real-time
IoT applications (e.g., online gaming, virtual reality,
and augmented reality). Also, compared to traditional
offloading approaches, the ML/DL-based offloading
methods have the ability to predict both the delay
sensitivities of each application and the MEC servers’
computation capabilities by learning from historical
data and previous offloading experiences. For instance,
the DRL-based offloading algorithm outperforms
the heuristic HEFT-based and Round-Robin-based
algorithms in terms of latency [12].

• The DRL-based offloading algorithm converges faster
than the traditional RL-based algorithm when the
number of states and actions spaces is large. This is
due to the fact that the traditional RL method uses Q-

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 26

table to approximate the Q-values, while the DRL method
uses neural networks (e.g., DNN or DQN) to approximate
the Q-values [273]. Therefore, for large state and action
spaces, the RL method leads to a long convergence time
compared to the DRL-based method.

• Transfer learning (TL) can significantly accelerate the
training process and improve the performance of a
DL-based offloading algorithm. The reason is that the
TL method can learn from an existing offloading model to
solve a similar offloading problem [275]. In the training
phase of TL, the offloading model is divided into multiple
sub-offloading models, where each sub-offloading model
can learn from other similar sub-offloading models to
accelerate its learning process. Transfer learning requires
only small targeted training datasets to obtain high ac-
curacy [276]. Therefore, TL reduces the re-training time
and consumes less amount of bandwidth.

VII. ML/DL-BASED METHODS FOR TASK SCHEDULING
IN MEC

In this section, we survey state-of-the-art ML and DL
methods for task scheduling in MEC. The main objective
of the works focused on the ML/DL-based methods for task
scheduling is to minimize the execution time (VII-A), to
minimize energy consumption while satisfying response time
(VII-B), to find a proper trade-off between response time and
utilization costs of MEC resources (VII-C), and to minimize
the communication cost (VII-D).

A. Minimization of Execution Time

One of the advantages of ML and DL techniques for task
scheduling problems is their ability to minimize the appli-
cation’s tasks execution time by predicting the computation
capabilities of the target environment. To minimize the total
execution time (or makespan), the authors of [277] propose
a two-phase learning-based algorithm, which schedules the
data-intensive tasks into a cluster of resources. Firstly, the
algorithm selects the cluster containing the nodes with the
lowest data communication cost. Then, an adaptive assignment
policy based on Q-learning is used to select a proper node in
the selected cluster. The adaptive assignment policy comprises
one global broker agent that selects the cluster with minimum
data communication cost, and several local broker agents
within the selected clusters which select the proper node that
will execute the task. The experimental results show that the
Q-learning-based scheduling algorithm outperforms the HCS
[278] algorithm in terms of makespan for different workloads
configuration.

The minimization of the execution time is also the main
goal in [244]. This is achieved by an algorithm called QL-
HEFT that combines the Q-learning algorithm and HEFT
algorithm. The QL-HEFT algorithm has two main phases: a
task prioritization phase for obtaining an optimal task order
using the Q-learning method as described in Algorithm 5, and
a processor selection phase for selecting the suitable server that
will execute the ready task. Firstly, the QL-HEFT algorithm
uses the Q-learning method to obtain an optimal task order by

Algorithm 5 The QL-HEFT Algorithm [244]
Input: Tasks graphs;
Output: Makespan;

1: Initialize Q-table, learning rate, and discount factor;
2: Calculate the immediate reward (ranku);
3: repeat(for each episode)
4: Randomly select an entry task as current task Tc;
5: repeat(for each episode)
6: Randomly choose a legal task (expected Tc) as the

next task Tnext;
7: Update Q(Tc, Tnext) by Eq. (2)
8: Tc ← Tnext;
9: until Tnext is terminal;

10: Obtain a task order according to the updated Q-table;
11: Allocate a processor to each task;
12: Obtain the Makespan;
13: until convergence (makespan no longer changes);

sorting the original order, i.e., the HEFT-based task order. A
random selection approach is used to establish enough training
in the state s and transfer to the state s′ (line 4). After the
agent selects an action a in the state s, the QL approach is
used to update the corresponding Q-value Q(s, a) in a Q-
table (line 7). The iteration process continues until a final Q-
table is obtained. After obtaining the optimal task order, the
task with the highest priority is executed on the server that
achieves its minimum earliest finished time (line 11). The QL-
HEFT algorithm is compared with HEFT D, HEFT U, and
CPOP algorithms using CloudSim. The experimental results
show that the QL-HEFT algorithm outperforms these three
algorithms in terms of makespan and speedup. The drawback
of the QL-HEFT algorithm is that it requires a specific learning
rate and discount factor to converge to the optimal solution,
which is time-consuming.

While the authors of [244] use the QL method to prioritize
the tasks, in [279], the authors propose a novel scheduling
method called DeepSoCS that can learn the best task prioriti-
zation by using DRL. DeepSoCS comprises two main phases,
namely the task ordering phase and the server selection phase.
DeepSoCS employs the server selection strategy of the HEFT
algorithm, i.e., the server that achieves the earliest finish time
executes the ready task. In the task prioritization phase, two
Message Passing Neural Networks (MPNNs) capture the task’s
features (i.e., task dependencies and communication costs).
The first one denoted as g1 takes a DAG as an input and
calculates the task’s features by considering information about
its neighbor edges. The second one denoted as g2 captures
all task’s features and takes jobs as inputs, then computes
local and global features of the jobs. Next, tasks’ features are
constructed by the forward task information. Finally, a task
is selected by using a conventional policy network which is
defined as the probability of taking an action a in a state s. The
experimental results show that the DeepSoCS outperforms the
heuristic HEFT algorithm in terms of makespan and robustness
under noise condition.

Another approach aiming at minimization of the task execu-

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 27

tion time is proposed in [280]. Compared to the previous work,
the authors of [280] propose a scheduling algorithm based
on Deep-Q-Network (DQN) called RLTS. The algorithm has
three main phases including task ordering, state transition, and
task scheduling training process. The application’s tasks are
ordered based on the upward rank value (as in HEFT [281]).
In the state transition phase, after the action a is executed,
i.e., after a task is allocated on the server a, the state space
(i.e., the task’s start time and finished time) change from the
present state s to the next state s′. Then the reward at state
s is calculated. In the task scheduling process, the DQN-
based scheduling algorithm uses neural networks to calculate
the action-value function rather than updating the Q-table by
the Q-learning approach. Two neural networks namely target
Q-network and evaluated Q-network are used. The output of
each neural network is the probability to choose an action.
A started episode with an empty state space represents that
the tasks are assigned on the servers. For each task, an action
(server) is selected by ε-greed policy, which selects the optimal
server with probability 1− ε and selects a random server with
probability ε. Then, the reward and the next state are obtained.
The simulation results show that the proposed RLTS algorithm
outperforms the HEFT and PEFT [109] algorithms in terms
of makespan. For instance, when the number of tasks is equal
to 100, the RLTS algorithm outperforms the HEFT algorithm
and PEFT algorithm by 20% and 16%, respectively.

In [251], the authors propose a new cluster scheduler
framework called “Spear” for dependent tasks scheduling to
minimize the makespan. For this purpose, Spear uses “Monte
Carlo Tree Search (MCTS)” and “Deep Reinforcement Learn-
ing (DRL)”. The MCTS is a search approach for sequential
decision-making problems where the result is a win or loss.
MCTS keeps a state tree, where the nodes represent a path
of actions and the edges indicate individual actions. In Spear,
a neural network is first designed to represent a scheduling
policy. Then, the network is trained to minimize the makespan.
In the DRL model, a neural network takes as input a list
of ready tasks and the state of the cluster, then provides a
scheduling action. The DRL method comprises three phases:
state, action, and reward. In the state phase, Spear first adopts
the b-level approach as a task prioritization scheme. Since
the b-level only obtains information about the execution time
of the tasks, the b-load, which accumulates the load of the
tasks is also considered. The b-load is defined as the product
of the task execution time and the resource demands. In the
action phase, once the DRL agent is called for an action, it
draws one action from the actions space. Then, the tasks in
the cluster are executed for one time slot. Finally, in the last
phase, the agent received -1 reward each time the processing
action is selected in order to obtain the scheduling length.
The total accumulated reward is equal to the negative of the
given graph makespan. The experimental results show that
Spear outperforms the Graphene [282] algorithm in terms of
makespan. For instance, on average, Spear surpasses Graphene
by 90% in terms of makespan. In terms of algorithms running
time Spear outperforms Graphene algorithm since the average
running time of Spear is 500 seconds and the one of Graphene
is 1000 seconds.

The drawback of the above-surveyed scheduling algorithms
is that they consider only the makespan as a performance
metric, but other metrics such as cost and robustness need to be
considered to improve the convergence of the algorithm. For
this reason, the authors of [283] present a multi-agent Deep-
Q-network (DQN) algorithm with reinforcement learning for
multi-objective application scheduling to minimize both the
execution time and cost. To achieve this goal, a Markov Game
Model (MGM) is used, which considers the scheduling goals
as two agents. Each agent determines its actions based on a
neural network by mixing the output of the neural network
with random actions to sample its training data.

The authors of [245] address not only the makespan min-
imization but also the response time and robustness of the
algorithm. To this end, they propose an online Q-learning
scheduling algorithm that can adapt the task arrival and
execution processes automatically. The scheduling problem
is formulated as an MDP and solved by QL approach. The
algorithm has three main phases: initialization, action selection
for a task, and learning. The first stage aims to initialize
the “discounted accumulative reward (DAR)” of each action.
DAR is an objective function used in MDP problem which
considers forthcoming allocations into account. The second
phase aims to allocate a task to the processing units. If
the task is explored with an ε-greedy exploration probability
value pe, the allocation is performed randomly. Otherwise, the
allocation is performed using the learning scheme. Finally, the
learning phase determines the estimated expected reward of an
allocation and the estimated expected reward of a certain task
type. The experimental results show that the online Q-learning
scheduling algorithm outperforms the Min–Min, Min–Max,
Suffrage, and ECT algorithms in terms of response time and
robustness.

B. Minimization of Energy Consumption While Satisfying Re-
sponse Time

The scheduling and resource allocation problem in IoT
devices is addressed in [284] with the objective to minimize
the energy consumption at the IoT device while satisfying
the response time. The authors formulate the problem as an
MDP problem and solved it using a reinforcement learning
approach. Particularly, they present an algorithm called DA-
DRLS that takes the advantage of DNN and RL. The algorithm
can rapidly adapt to a sudden change in the IoT device
requirements by continuously observing “demand drift” and
dynamically updating the scheduling policy. Simulation results
show that the proposed algorithm outperforms the benchmark
algorithms in terms of energy consumption (reduces by 36.7%)
and response time (reduces by 59.7%). It also increases
the resource utilization by at least 10.4% compared to the
benchmark methods.

The optimization of both the energy consumption and
application performance is the main objective in [285]. This
is pursued by an algorithm called ISVM-Q that combines
the Q-learning and SVM methods for scheduling the ap-
plication tasks in the wireless sensor network (WSN). The
WSN comprises n sensor nodes which are always learning

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 28

until the ending learning condition is reached. The SVM
model is improved by using a linear basis function to get
the current state of the system, and the Q-value (i.e., the
output of the improved SVM model) is obtained by estimating
the regression model. Then, the algorithm selects an action
that corresponds to the current estimated Q-value. Finally, the
selected action is executed to get the corresponding reward,
and the Q-value is updated. Experiment results show that
the ISVM-Q algorithm outperforms the baseline algorithms
in terms of energy consumption and application performance.
For instance, the performance of ISVM-Q is 0.55% higher
than that of the IQ algorithm proposed in [286].

The minimization of the execution time of the task and
energy consumption is the main goal in [287]. The authors
investigate the task allocation problem for Multi-task Transfer
Learning (MTL) in edge computing. The main idea consists
of dividing a machine learning-based application into multiple
machine learning tasks, where each task can learn from
other tasks to improve its performance. To achieve this goal,
they propose a “Data-driven Cooperative Task Allocation”
approach based on clustered reinforcement learning (CRL)
and SVM models. They formulated the problem as an MDP
< S,A,P, r, λ >, where S, A, P , r, and λ denote the states;
actions; transition probability reward function, and discount
factor for future rewards, respectively. The CRL model makes
allocation decisions based on the relation between the obser-
vations of the current environment and those previously seen.
Concerning the SVM model, it predicts the task importance
and dynamically adjusts the CRL model allocation decisions
based on real-time data. The experiment results show that
the proposed mechanism reduces the processing time by 3.24
times and saves energy consumption by 48.4%.

C. Trade-off Between Response Time and Resource Utilization
Costs

In [288], the authors address the task scheduling problem
with the objective to minimize the task response time while
maximizing the VM resources utilization. This is achieved
by an algorithm based on queueing theory [289] and re-
inforcement learning schemes. Since the M/M/1 queueing
system is hard to analyze in a cloud/edge environment (due
to the complexity and dynamicity of the system), the authors
propose a new queueing model divided into three submodels,
namely, the task scheduling submodel (TSSM), task execution
submodel (TESM), and task transmission submodel (TTSM).
The TSSM receives user tasks (requests) and pushes them
into a global queue Gq using FIFO approach. Then, the task
dispatcher implemented in TSSM pushes user tasks to the
corresponding buffer queue of the TESM module, which is
then assigned to the VMs resided in TESM. Next, the VM
submits the execution results to TTSM module. Finally, the
TTSM module transmits the execution results to the requesting
users. The main objective of the task dispatcher is to schedule
the tasks in Gq to VM resources. This is accomplished by
a Q-Learning approach which continuously interacts with
the environment to obtain the optimal policy. The proposed
method called Q-sch is compared with the random scheduling

scheme (i.e., users tasks are randomly scheduled to the VMs),
equal scheduling scheme (i.e., users tasks are ordered then
scheduled to the VMs), and mix-scheduling scheme (i.e.,
a user’s task is first randomly scheduled to a VM. If the
remaining buffer memory of the VM is equal to zero, then
rescheduling the task to the VMs by maximizing the rest
buffer memory). In terms of response time, the experiment
results show that the Q-sch algorithm outperforms the random
scheduling, mix-scheduling, and equal scheduling schemes by
1.85%, 2.45%, and 4%, respectively, when the task arrival
rate varies. The results also prove that the Q-sch algorithm
improves the resource utilization while reducing the average
response time. The drawback of the proposed approach is that
it used a random scheduler, i.e., the first Come First Serve
(FCFS) approach to process user requests. However, the FCFS
scheme is inappropriate in a cloud/edge environment because
the performance of a cloud/edge platform depends on how
well it can satisfy users’ requirements specified in the SLA.

When compared to the previous work, the objective of [248]
is to minimize not only the CPU utilization cost but also
the Ram utilization cost. The authors use a DRL approach
to model the task scheduling problem. In this approach, the
state represents an “offloaded task”, the action represents a
VM, and the reward represents the task execution cost on
the VM. A manager node observes the resource utilization
of each VM to populate the reward values of each action.
Then, the manager uses the DRL algorithm to assign the new
arrival task to the optimal VM. The proposed DRL approach
integrates a Long Short-Term Memory (LSTM) layer, which
keeps track of the long-term dependencies that exist between
the tasks’ requirements and VMs’ specifications. The DRL
approach integrated with LSTM helps to improve the decision-
making process and reduce the runtime of the DRL by storing
the long-term dependencies into the LSTM’s memory cell.
The experiments based on real-world datasets show that the
proposed method outperforms the Shortest Job First (SJF)
algorithm by 28.8%, the RR algorithm by 14%, and the PSO
algorithm by 14% in terms of CPU utilization. The results
also prove that the proposed algorithm minimizes the RAM
utilization cost by 31.25%, 25%, and 18.78% compared to the
SJF, RR, and PSO, respectively.

While energy consumption is not considered in the two
previous works, the main objective of [243] is to minimize
the energy consumption while reducing task response time and
maximizing CPU utilization. To this end, the authors propose
a Q-learning-based task scheduling algorithm in data centers
that has two main phases: task dispatcher for assigning user
requests to servers in the data center and task scheduling phase
for ordering the assigned tasks in each server. The dispatcher
(i.e., global scheduler) is implemented at the data center level,
where an M/M/S queueing system (i.e., a single queue with
more than one parallel server) is used to reduce the energy
consumption in the data center. In this M/M/S queueing model,
the task arrivals are supposed to follow the Poisson distribution
model, and the server’s service time follows a negative expo-
nential distribution. It is also supposed that the servers provide
the same type of services. The task dispatcher distributes
requests to the servers uniformly when all the servers in the

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 29

data center are treated as a whole. In this way, the average
task response time is shorter compared to M/M/1 queueing
system [290], which considers the servers in the data center
as independent. After a task is assigned to a server, it is first
pushed onto a queue Q, waiting to be scheduled to a specific
VM. A time window is used to determine when to process the
tasks in Q. For each time window, the scheduler first removes
all the tasks from the queue Q, then assigns each task to a
specific VM by pushing it to the buffer queue implemented
in that VM. A dynamic task prioritization approach based on
task laxity and task lifetime is used to order all the tasks in
Q, and a Q-learning-based approach is employed to reward
task assignments to simultaneously optimize the task response
time and CPU utilization. The Q-learning-based scheduler
continuously learns from the environment to obtain the optimal
policy that meets this objective. That is, if a is an action (i.e.,
assigning the task t to VMi), the scheduler will receive a
reward of 1 in case that (i) VMi can satisfy the deadline of
the task t; (ii) VMi is the VM with the smallest waiting time;
and (iii) VMi gives the best CPU utilization for the task t.

Another idea aiming at minimization of the MEC resource
utilization cost is introduced in [76]. Compared to the previous
studies, the authors of [76] also minimize the rate of missed
tasks. To this end, the authors propose a two-phase scheduling
algorithm based on deep learning. The first phase of the
algorithm determines the location to execute the task (i.e., on
edge or cloud). The second phase of the algorithm assigns the
task on the edge or cloud according to the execution location
determined at the first phase. To determine the location of the
task execution, i.e., whether the IoT task will be executed on
the edge or cloud nodes, three different clustering methods
based on self-organizing map method are used, namely “task
clustering by self-organizing map (SOM)”, “task clustering by
hierarchical self-organizing map (H-SOM)”, and “task cluster-
ing by autoencoder and self-organizing map (AE-SOM)”. The
SOM method directly sends the parameter of the tasks for
clustering. Concerning the H-SOM, it is used in every layer.
In AE-SOM method, the encoder extracts the task features
(e.g., task type, task priority, task privacy, task execution time,
etc.) before clustering. After the clustering step, the Earliest-
Deadline-First (EDF) algorithm is used to schedule the tasks
in each cluster to the edge or cloud nodes. The experimental
results show that the AE-SOM method has a better result in
terms of missed tasks rate. For instance, the AE-SOM method
is better than SOM method by 3.19% and H-SOM method by
4.23% in terms of missed task rate. In terms of memory and
bandwidth costs, the AE-SOM method has 305.75 (G$) less
than the SOM and H-SOM average cost.

D. Minimization of Communication Cost

In [291], the authors investigate a machine learning ap-
proach to predict the tasks execution time and the scheduling
failure probability. A Seq2Seq NN and RL approaches are used
to improve the scheduling decisions. The proposed method
can identify a near-optimal scheduling decision by presenting
all possible scheduling choices to the system. During the
task execution phase, a vector is generated for each possible

scheduling decision based on the task models and data sources.
The generated vector is then passed to the neural network for a
scheduling decision. This process is repeated until all tasks are
completed. The RL approach is compared with Round Robin
(RR), First Come First Served (FCFS), and Random (RN). The
authors use three bioinformatic applications to evaluate the
performance of the algorithms, namely pangenome analysis,
phylogenetic profiling, and metagenomics. The experimental
results based on the pangenome analysis application prove
that the RL approach is 20% faster than the FCFS algorithm.
The RL approach also has 50% lower network transfers than
the FCFS algorithm and achieves almost zero failed tasks.
For the phylogenetic profiling application, the RL approach is
25% faster than the RR algorithm in terms of execution time.
Finally, for the metagenomics application, the RL approach
is 16% faster than the FCFS algorithm and reduces by 24%
the network transfers cost compared to the FCFS algorithm.
In sum, the experimental results show that the scheduling
based on the RL approach outperforms the RR, FCFS, and
RN algorithms in terms of execution time and network traffic
cost.

In [292], the authors address the problem of N independent
wireless links scheduling in a dense wireless network with
the objective to maximize the sum-rate. The wireless link
scheduling problem consists of selecting a subset of links in
any given transmission time slot with the goal to maximize
a certain network service function of the reached long-term
average rates. To achieve this goal, the authors propose a deep
learning-based algorithm, which trains the optimal scheduling
policy based on the geographical locations of the neighboring
transmitters and receivers. Particularly, they propose a DNN
with three main phases: convolution phase, fully connected
phase, and feedback connection phase. The convolution aims
to capture the interference patterns of neighboring links us-
ing geographic location information. In this stage, a spatial
convolution approach is used to estimate the total interference
generated by the transmitter and the receiver. Concerning the
fully connected phase, it is responsible for capturing the non-
linear functional allocation of the optimized schedule. It takes
a vector of links as input and gives an output xi ∈ [0, 1], where
xi = 1 if the link is scheduled, and xi = 0 otherwise. Finally,
the feedback connection phase is proposed between each
iteration of the neural network to update the optimization’s
state. This phase is described as follows: after the execution
of (t− 1)th of the convolution phase and the fully connected
phase, the vector xi ∈ [0, 1] which represents the activation
status of the links is obtained. Then, a new convolution stage
and fully connected stage begin with density grids so that the
activation status for all N wireless links are updated for the
next interference estimations. Finally, the scheduling decisions
of the N links are determined after a fixed number of neural
network iterations by quantifying the x vector from the last
iteration into binary values.

E. Lessons Learned From ML/DL-based Task Scheduling in
MEC

A summary of studies on ML and DL for task scheduling in
MEC is illustrated in Table XII. The majority of ML/DL-based

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 30

TABLE XII: Summary of Studies on ML and DL for Task Scheduling in MEC

Ref. Learning Type Algorithm Mathematical Model Simulation Tools Optimization Criteria

2020, [293] SL CNN - - Security-awareness of deep network embedded de-
vices

2019, [291] SL+RL Seq2Seq - Okeanos Cloud Minimize the execution time, network traffic cost,
and failure rate

2021, [76] USL + SL SOM+AE - MATLAB Minimize the rate of missed tasks and cost

2020, [280] RL DQN - - Minimize the execution time and running time

2019, [292] USL DNN - - Maximize the sum-rate

2020, [287] RL + SL SVM + Clustered RL MDP AIOPS Minimize the execution time and energy consump-
tion

2019, [285] RL + SL QL + SVM - - Minimize the energy consumption while maximizing
the application performance

2014, [245] RL QL MDP MATLAB Minimize the response time

2018, [277] RL QL - OptorSim Minimize the execution time

2016, [294] RL QL - CloudSim Minimize the execution time

2020, [243] RL QL Queueing theory CloudSim Minimize the energy consumption while reducing
task response time and maximizing CPU utilization

2019, [284] RL DRL MDP Python-based Minimize the energy consumption at the IoT device
while satisfying the response time

2019, [283] RL DQN Markov Game EC2 Cloud Minimize both the execution time and execution cost.

2020, [279] RL DRL POMDP DS3 Minimize the execution time

2019, [251] RL DRL MCTS Python(Theano) Minimize the execution time and running time

2019, [248] RL+SL DRL+LSTM MDP Python-Based Minimize the CPU utilization cost and Ram utiliza-
tion cost

2019, [244] RL Q-Learning - CloudSim Minimize the execution time.

scheduling methods aim to minimize the application execution
time or to find a trade-off between response time and resource
utilization costs. Besides, most of the studies used QL and
DRL methods to solve the task scheduling problem.

From the surveyed papers focused on ML/DL for task
scheduling in MEC, we learned the following main lessons:
• For a large dataset, ML/DL-based scheduling meth-

ods outperform the traditional heuristic scheduling
methods. The first reason is that the performance of a
learning method strongly depends on the amount and
quality of the training dataset. The second reason is that
the ML/DL methods can predict and extract the task’s
features (e.g., task dependencies, communication costs,
and QoS requirements) by learning from previous experi-
ences [295]. Therefore, ML/DL methods can provide the
optimal task priority order, which can significantly reduce
the scheduling length (makespan). Also, DL methods, in
particular, differential neural computer (DNC) is capable
of training and remembering previous hidden states of
inputs data. Hence, DNC can accelerate the learning
process and enable the agent to continue learning policy
when the network is uncertain and time-varying.

• Dividing an ML-based application into multiple ma-
chine learning tasks can significantly improve the
scheduling decision. In this way, each ML-task can learn
from each other to improve its reward. For instance, by
dividing the scheduling problem of multi-task transfer
learning in MEC into clustered reinforcement learning
(CRL) and SVM models, the processing time and energy
consumption is reduced [287]. Furthermore, the CRL
model can make scheduling decisions based on the re-
lation between each cluster, while the SVM model can
predict the task’s features and dynamically adjusts the

CRL model scheduling decisions.
• The efficiency of ML/DL-based scheduling schemes

is strongly related to the type of algorithms used
for both task prioritization and server selection. For
instance, when a Q-Learning method is used to calculate
the task priority and the earliest finish time (EFT) is used
to select a server for a task, the convergence rate of the
algorithm is lower as proved in [244]. This is due to
the fact that the Q-learning algorithm uses a Q-table to
calculate the action-value function, in which each Q-value
must converge before attaining the optimal policy. On the
other hand, when the upward rank value [281], i.e., the
critical path approach is used to calculate the task priority,
and a DQN method is used to select a server for a task, the
convergence rate is higher [280]. Therefore, it is crucial
to choose the appropriate ML/DL method for both task
prioritization and server selection.

• The running time of DRL-based mechanisms for task
scheduling can be significantly reduced by integrating
the LSTM method in the learning process. The reason
is that LSTM can predict the long-term dependencies that
exist between the task’s QoS and the specifications of
the MEC servers by exploring its memory cell, in which
the previous long-term dependencies have been stored.
This is also proved in [296], where an automated task
scheduling method based on DRL and LSTM has been
proposed to minimize both the CPU utilization cost and
Ram utilization cost.

VIII. ML AND DL-BASED METHODS FOR JOINT
RESOURCE ALLOCATION IN MEC

While the above surveyed works address the task offloading
problem and the task scheduling problem separately, this

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 31

section surveys current works addressing the joint resource
allocation (i.e., joint task offloading and scheduling) problem
in MEC using ML/DL techniques. The offloading decision
directly impacts the scheduling strategy because the offloaded
tasks have different QoS requirements (e.g, latency, security,
execution time, etc.), and the MEC resources are limited [4].
Furthermore, the task offloading decision in MEC impacts
the application transmission delay and power consumption,
which leads to an extra scheduling length. Hence, it is vi-
tal to jointly address the task offloading problem and task
scheduling problem. We classify the research in this area into
studies focused on minimization of the energy consumption
(VIII-A), minimization of the execution delay under energy
constraints (VIII-B), minimization of latency (VIII-C), and
privacy-preserving (VIII-D).

A. Minimization of Energy Consumption

In [11], the authors investigate the joint task resource allo-
cation problem in MEC. They consider a MEC system with N
mobile users with M independent tasks to be offloaded to the
edge servers to minimize the overall offloading cost in terms of
energy consumption, computation cost, and delay cost. In this
regard, the authors propose a DQN-based joint task offloading
and bandwidth allocation algorithm. The authors formulate
the problem as a DQN problem with state space, action
space, and reward function. The state space is considered as a
1× (NM + 2N) vector, which involves all users’ offloading
decisions xnm and the bandwidth allocations. That is, the
offloading decision space xnm ∈ {0, 1} for n = 1, 2, ...N and
m = 1, 2, ...M . Concerning the action space, it is defined as an
index selection, which determines how the offloading decision
is changed. This index also indicates if the uplink and down-
link bandwidth is increased or decreased for mobile users.
Finally, the reward of the state-action pair is rs,a ∈ {1,−1, 0}.
The experimental results show that the proposed DQN-based
algorithm outperforms the MUMTO algorithm [297] in terms
of overall offloading cost and convergence.

While in [11] the application’s tasks are considered as
independent, the dependent tasks offloading decision and the
resource allocation in MEC is investigated in [1]. The main
objective in [1] is to simultaneously minimize the task exe-
cution time and energy consumption of the mobile device. To
achieve this goal, the authors first formulate the problem as
a mixed-integer optimization problem, then propose a DRL-
based algorithm with deep neural networks (DNNs) to learn
the optimal allocation between the states and the actions. The
wireless channels and edge CPU frequency represent the state,
and the task offloading decisions represent the actions. The
DRL uses the actor-critic learning scheme, which trains a DNN
periodically in the actor-network from past experiences to
learn the optimal allocation between the states and the actions.
The proposed DRL-based algorithm has two main phases:
the task offloading action generation based on DNN, and the
offloading policy updating. To generate an offloading decision,
the output of the DNN (i.e., offloading action) is first quantified
into candidate offloading actions. Then, the critic network
evaluates the performance of the candidate actions. Next, the

candidate action with the lowest energy-time cost is selected as
the solution. After generating the candidate offloading actions,
the energy-time cost (ETC) of each action is evaluated, and the
best offloading action is selected. Finally, the optimal actions
learned in the offloading action generation phase are used to
update the parameters of the DNN. Simulation results show
that the proposed DRL-based algorithm attains up to 99.1%
of the optimal ETC.

The authors of [298] investigate a joint resource allocation
algorithm for hybrid mobile edge computing (H-MEC) sys-
tems. The H-MEC comprises ground stations (GSs), ground
vehicles (GVs), and unmanned aerial vehicles (UAVs), all
with MEC-enhanced to enable IoT devices to offload their
computationally intensive tasks. The authors proposed a DL-
based online offloading algorithm called “H2O” with the
objective to minimize the energy consumption of all IoT
devices. The H2O algorithm has two main phases: the offline
training phase and the online optimization phase. The offline
training step which requires high computation and storage
capacities is performed in the remote cloud. To find a training
sample, which is required to train the DNN, they first propose a
clustering method called “large-scale path-loss fuzzy c-means
(LS-FCM)” to find the positions of UAVs and GVs. The
UAVs and GVs are then deployed based on their locations.
Compared to the conventional FCM method [299], the LS-
FCM approach does not allow some GS cluster centers to par-
ticipate in the iteration process. Then, a PSO-based algorithm
called “U-PSO” is applied to solve the offloading decision
and resource allocation problems. After that, a supervised
learning algorithm is used to train the DNN that can be used
when the number of IoT devices varies. Next, the trained
DNN is implemented for online decisions. That is, after an
UE processes its membership values, the DNN outputs its
offloading decision and resource allocation results. Compared
to the previous work, the H2O algorithm uses both DL and
meta-heuristic approaches. Moreover, it exploits the advantage
of the PSO algorithm in giving global optimal solutions and
uses the advantage of DNN in speeding up the real-time
decision. Also, compared to traditional DL-based methods that
need to input the information of all UEs, the H2O is efficient
in hybrid MEC networks with a large number of IoT devices
and UEs. The experiment results show that the H2O has better
efficiency and accuracy compared to the random offloading,
greedy offloading, and standard PSO offloading approaches.

The drawback of both above-mentioned works on joint
resource allocation is that they do not consider the user’s
QoE. For this reason, the authors of [300] introduce a DRL-
based method to address the joint offloaded task scheduling
and resource allocation in vehicular networks. Compared to the
previous work, the main goal of [300] is to minimize not only
the execution delay but also the energy consumption while
maximizing the user’s QoE. Due to the complexity of the
joint offloading and scheduling problem, the authors divide
the problem into two sub-problems: vehicle offloading task
scheduling and decision of resource allocation. The first sub-
problem is solved by a two-sided matching method with the
aim to maximize the total utilities reflecting the user’s QoE
level. An algorithm called “Dynamic V2I Matching (DVIM)”

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 32

is introduced to find the optimal match. The DVIM algorithm
first initializes the forbidden list (i.e., offloading tasks rejected
by an RSU) and accepted list (i.e., offloading tasks accepted
by an RSU). Then, each vehicle i calculates its utility ui,k if
its task is offloaded to RSU k. Next, all vehicles make their
preference RSU list Pi in descending order of ui,k. After
that, the vehicles that have been matched with less than qv
RSUs submit offloading requests to the preferred RSU in Pi.
The selected RSU is then removed from the preference list.
After the vehicles submit their requests, the RSUs accept those
requests that increase the overall utility values. The vehicles
continue submitting requests until their preference lists are
empty. Concerning the second sub-problem, it is solved by
an improved DRL method called MADD. The MADD algo-
rithm first initializes the experience replay buffer D with N
transitions, the action-value function Q with random weight θ,
and the target Q-network, which gives the temporal difference
(TD) target. Then, it schedules the offloading requests. For
each phase, a random RSU is selected from the available
list with probability ε. Otherwise, the RSU with the largest
Q-value is selected using a greedy approach. After that, the
immediate reward rt and the next state are observed. In the
NN training phase, a DQN randomly samples a transition
from the buffer D. For each sample, if the next state is the
last state, then the TD target is rj . Otherwise, the DQN is
used to calculate the TD target. Then, the gradient descent
method is used to update the Q-network parameters. Finally,
the TD target network parameters and the random probability
ε are updated every step to accelerate the convergence speed.
Simulation results show that the DVIM and MADD algorithms
outperform the baseline algorithms. For instance, in terms of
utilities, the DVIM algorithm is 20% better than the greedy
algorithm and 50% better than the random algorithm. In terms
of average QoE, the MADD algorithm outperforms the DQN
method by 15%, the Q-learning method by 25%, and the
greedy method by 35%.

In [301], the authors use three learning techniques, namely
LA, LSTM, and RL to address the joint computation of-
floading and resource provisioning problems in an edge-
cloud environment. The main objective is to maximize the
CPU utilization while minimizing the execution time and
energy consumption. To this end, the authors first propose a
learning automata (LA)-based algorithm to make a decision
about offloading the incoming workload tasks to the edge
servers or cloud servers. If the task is to be computed in
the edge environment, the master edge server submits the job
to the slave servers. For n numbers of requests as input, the
LA-based algorithm first initializes the actions probabilities
denoted by P (1), P (2), . . . , P (n), which are equal. Then,
the first action “a” is selected randomly. In each period,
“a” number of requests are executed in the edge server and
cloud server. If the total execution time of the “a” number
of requests in the edge server is less than the one in the
cloud server, then the selected action is penalized, and the
corresponding probability is reduced, while the remaining
actions probabilities are increased. Otherwise, the selected
action is rewarded. Finally, the algorithm selects the optimal
action, which corresponds to the number of requests that can

be executed in the cloud server. After the procedure of the LA-
based algorithm for the offloading decision, LSTM, and QL
techniques are used for resource provisioning. In particular,
LSTM model is used to predict the future number of requests,
while the QL is used to find a suitable number of edge servers
required to process the dynamic workloads. The experimental
results based on real workloads from [301] show that the
proposed hybrid learning technique can reduce the average
execution time by up to 8.3% compared with the fuzzy-based
offloading (FO) algorithm proposed in [302], and by up to
11.3% compared to the post-decision state (PDS)-based online
learning algorithm presented in [303].

B. Minimization of Execution Delay under Energy Constraints

The task offloading to the MEC servers reduces the en-
ergy consumption of the IoT device since the execution is
done on the remote edge servers. On the other hand, the
task offloading, especially in ultra-dense networks also incurs
additional execution delays, which include the delay to send
the application to MEC servers and the delay to receive results
of the computation from the MEC servers [304]. Therefore,
it is vital to investigate the trade-off between task execution
delay and energy consumption of IoT devices.

The authors of [305] present a joint task offloading and
scheduling decision mechanism to minimize the energy con-
sumption of the application while satisfying the overall execu-
tion delay. The optimization problem is formulated as a Lya-
punov optimization problem. To solve the problem, an online
Q-learning algorithm is proposed. It first transforms the joint
problem of task offloading and scheduling into Lyapunov drift-
plus-penalty (LDPP) optimization, which is a popular method
used for the optimization of queueing networks and stochas-
tic systems [306]. Then, the algorithm obtains the optimal
offloading mechanism using a QL-based offloading method.
The QL-based offloading method is formulated as MDP. It first
initializes the offloading vector of all tasks with random values.
Then, the state transition is decided, either by choosing the task
that has the highest reward LDPP value with a probability
1−δ or by choosing a task randomly with a probability δ. The
next phase of the QL-based offloading method is the action
selection policy. To select an action, the agent first identifies a
set of actions with a positive Q-value. If there is no action with
a positive Q-value, an action is chosen randomly. Otherwise,
it uses ε-greedy policy to choose an action. Furthermore,
given a state, the agent with ε-greedy policy chooses the
action with the maximum Q-value with a probability 1 − ε,
and chooses a random action with a probability ε, where ε
is very small. Next, the Q-matrix is updating by a positive
or negative reward generated by the state transitions. Finally,
the optimal offloading decision is obtained when the reward
function cannot generate any positive reward. After obtaining
the optimal offloading policy, the next stage of the algorithm
is the scheduling and migration decision to improve resource
utilization. To this end, a Lagrange migration (L-migration)
method is introduced. The L-migration method first calculates
the edge premigration cost also called “premigration marginal
migration cost (MMC)”. After that, the sum of the minimal

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 33

MMC and transmission cost is compared with the maximal one
to decide whether to start the migration. If this sum is greater
or equal to the maximal MMC value, then no migration is
required. Otherwise, the algorithm starts the iterative process
to determine the optimal migration policy. The task with the
lowest delay requirements has higher priority to migrate in
order to avoid migration congestion delay for delay-sensitive
tasks. It is then assigned to the edge node with the highest
load rate. The simulation results show that the proposed joint
offloading and scheduling algorithm outperforms the delay-
optimal algorithm [307] (which only considers the delay
cost of task offloading ignoring the energy consumption), the
energy-optimal algorithm [303] (that only considers the energy
cost ignoring delay cost), and T2E algorithm [308] (that only
focuses on delay optimization between the edge and terminal
layer ignoring energy constraints) in terms of energy-saving
while achieving low delay cost.

The minimization of the application execution delay while
saving the battery power of the mobile user’s equipment is
the main goal in [309]. When compared to the previous study,
the authors of [309] integrate SDN and MEC to propose
a novel software-defined edge cloudlet (SDEC) framework
for task offloading and scheduling. Particularly, QL and co-
operative Q-learning (C-QL) schemes are proposed to solve
the joint task offloading and scheduling problem in SDEC.
The QL scheme aims to minimize the total execution delay
(Sumdelay), while the C-QL aims to reduce the search time of
the optimal resource scheduling. Like most of the RL learning
approaches, the proposed QL scheme also has three main
elements, including the set of states S, the set of actions A,
and reward R. S comprises two components: the Sumdelay of
the system and the available computation resource capability
Cavail of the MEC server. The set of actions A performed
by the agent is the resource allocation v and the computation
ratio α. After executing an action a in each time step, the agent
obtains a reward R(s; a). Then, each state-action pair obtains
a long-term reward Q(s; a). After that, the agent computes
and stores Q(s; a) in a Q-table. This iteration is repeated
until the Q-learning method converges to the optimal value
of Q. Concerning the C-QL scheme, it allows agents to learn
from each other in order to reduce the search time in the
proposed QL scheme. Furthermore, the C-QL scheme reduces
the communication time among the base stations by sharing
useful information among them. Simulation results show that
the proposed scheme reduces the execution delay by up to
62.10%. Also, the proposed C-Q-learning scheme achieves
better performance than other benchmark approaches in terms
of delay requirements.

Another idea aiming at minimization of the execution de-
lay of the mobile application while minimizing the energy
consumption is introduced in [310]. Compared to the previ-
ous study that used LTE as wireless technology, [310] uses
Narrowband-IoT (NB-IoT) to transmit data to the base station
(BS). The optimization problem is formulated as a continuous-
time MDP (CTMDP) model, where the states of the system
transit only when a packet (arrival/departure) event occurs,
but not at every time slot. To solve the problem, the authors
propose a combination of methods including approximate

dynamic programming (ADP), temporal-difference learning
(TDL), and semi-gradient descent (SGD). The main idea of the
TDL method is to make the learner’s current prediction for the
current input pattern more closely match the next prediction at
the next time step [311]. While most of the RL approaches are
based on Q-value, the proposed algorithm uses TDL with a
post-decision state (PDS). The main advantage of the PDS
is that it does not require information about the transition
probabilities to find the optimal action to take. It also has a
much smaller state-space compared to Q-value. The proposed
algorithm applies uniformization to the CTMDP model to
avoid a heavy signaling overhead of the IoT devices. Particu-
larly, the proposed algorithm has five main steps: initialization,
local state updating, optimal control action, post-decision local
state updating, and per-node value functions updating. The first
phase initializes the per-node value functions Vn,k of each IoT
device n, where k denotes the index of the decision epoch.
Then, when an event ek (i.e., packet arrival or departure)
occurs at the IoT device, the BS fixes k = k + 1, and the
kth decision epoch begins. The BS notifies the second and
third IoT devices to update their local states. Based on the
event ek an action is determined. After that, each IoT device
updates its post-decision local state. Finally, each IoT device
updates its per-node value function under the PDS.

C. Minimization of the Latency
The latency minimization of IoT users in large-scale MEC

networks is the main goal in [312]. Toward this end, a
DRL algorithm is proposed, which comprises three methods,
namely 2r-SAE, ASA, and 2p-ER. The 2r-SAE is a stacked
autoencoder approach, which provides quality data to the DRL
model by compressing and representing the high dimensional
data. Hence, the 2r-SAE can reduce the state space and
improve the learning efficiency of the DRL. Concerning the
ASA method, it tries to find the optimal action for the DRL
model to produce an offloading decision with the observed
state. The 2p-ER is introduced to enhance the learning process
of DNN in the DRL model. In the proposed DRL algorithm,
the agent interacts with the environment in discrete decision
epochs. At each epoch t, the agent takes an action based
on the state st, then the environment generates a reward rt.
After that, the ASA is introduced to find the optimal action
a∗t and the state–action pairs (ht, a

∗
t ) are putted into the

experience replay (ER) for DNN (agent) learning. Next, a
batch of transitions is selected from the buffer by priority.
Moreover, the transition which induces evident loss function
decrease will have higher priority, while the transition which
cannot enhance the performance of DNN will have the lower
priority. Simulation results prove that the proposed algorithm
outperforms existing benchmarks in terms of latency.

A joint spectrum allocation and scheduling in V2V broad-
cast communications is proposed in [313]. The main objective
is to address the strict latency constraints on V2V links while
minimizing the interference to V2I links. To this end, the
authors propose a DRL mechanism, where a DQN is used
to find the optimal policy for the problem. The simulation
results show that each vehicle satisfies the latency constraints
and minimizes the interference to V2I links.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 34

The minimization of the task’s offloading latency is also the
main objective in [314]. Toward this end, the authors propose
an online learning algorithm based on the Multi-Armed Ban-
dits (MAB) framework by jointly optimize the task offloading
decision and the spectrum scheduling decision. The simulation
results show that the proposed algorithm is better than the
UCB algorithm [315] in terms of performance delay. Another
MAB-based learning algorithm for tasks-intensive offloading
and balancing in MEC-enabled vehicular networks is proposed
in [316]. The proposed algorithm enables individual MEC
servers to learn global knowledge iteratively. Multiple players
compete for multiple arm machines, where each player selects
one of the arm machines and accordingly obtains a reward.

D. Privacy Preserving

In [252], the authors address three main issues faced by
existing methods for computation offloading and resource
allocation in MEC. These issues include security and privacy,
cooperative computation offloading, and dynamic optimiza-
tion. To address the first two issues, they employ blockchain
technology, in particular, a consensus approach to ensure data
security, and use cooperative communication to offload the
computation tasks from mobile devices to the MEC system.
Concerning the dynamic optimization problem, a Markov de-
cision process (MDP) is formulated and a deep reinforcement
learning algorithm is proposed to solve the MDP problem.
Particularly, an algorithm based on “asynchronous advantage
actor-critic (A3C)” reinforcement learning is proposed to solve
the problem. A3C is a fast parallel reinforcement learning
method that utilizes multiple CPU threads on a single machine
to learn more intelligently and efficiently. The experimental
results show that the proposed algorithm converges fast and
performs better than the fixed block size (FBS) and fixed block
interval (FBT) schemes.

E. Lessons Learned From ML/DL-based Joint Resource Allo-
cation

A comprehensive summary of studies on ML/DL for joint
resource allocation in MEC is given in Table XIII. The
majority of ML/DL-based Joint Task Offloading and Schedul-
ing (JTOS) methods in MEC aim to minimize the energy
consumption of the IoT device or to minimize the execution
delay while satisfying the energy constraints. Most of the
works in this area formulated the problem as an MDP problem.
Then, the MDP problem is solved using DRL techniques to
find the optimal JTOS decisions. Besides, the majority of the
proposed mechanisms are implemented using Tensorflow.

After deeply surveying the works addressing joint resource
allocation issues in MEC, we list the following key lessons:
• The performance of the ML/DL-based algorithm for

joint resource allocation strongly depends on both the
offloading policy and the scheduling policy used by
the algorithm. This is due to the fact that the offloading
results depend on the target computing edge servers
capabilities that are responsible to schedule and execute
the offloaded tasks.

• A combination of learning techniques can significantly
improve the joint resource allocation algorithm be-
cause each learning method can accomplish a specific
task to maximize the long-term reward. For instance, it
is proved in [298] that by combining the DNN, clustering,
and PSO methods, the joint resource allocation algorithm
obtains better efficiency and accuracy compared to the
greedy, random, and PSO algorithms.

• Stacked autoencoder (SAE) is an efficient method for
latency minimization in large-scale MEC networks
because it can collect a good quality training data required
by the DL-based method. Indeed, the SAE method can
compress and represent the high-dimensional data gen-
erated by IoT devices. Hence, it can reduce the state
space and provide quality data to the DL method used
for the joint resource allocation [312]. Therefore, it can
accelerate the learning process.

• To provide better QoS/QoE for the end-users, it is
crucial to execute the DL training process on the
remote cloud because the DL training procedure requires
powerful computing resources. Furthermore, by executing
the offloading and scheduling training procedures in the
cloud servers, we are saving the limited resources of
edge servers to meet the QoS (e.g., for delay-sensitive
applications) and QoE (e.g., video quality received by
end-users).

• The efficiency of ML and DL methods for joint
resource allocation is strongly related to the type
of task being offloading in the sense that the training
of dependent tasks (i.e., tasks graph) is more complex
than the training of independent tasks. Indeed, in the
case of dependent tasks, the task dependencies must
be preserved during both the offloading and scheduling
process. Furthermore, if a task ti preceding a task tk
is offloaded to the MEC server for training (due to
IoT device resource constraints), the result must be sent
back to the IoT device before considering the task tk.
One possible solution to this challenge is gathering all
dependent tasks to the same MEC server as proposed in
[12].

F. Summary of ML/DL-based Resource Allocation in MEC

In summary, ML and DL methods enable efficient resource
allocation in MEC by their ability to predict both the task’s
features (e.g., QoS, QoE, security, privacy requirements, etc.)
and the target MEC resource capabilities. Particularly, DL
and DRL can extract complex features from large amounts of
high-dimensional data generated by IoT devices. Furthermore,
with the recent progress in mobile communication such as
5G and beyond, it is crucial to embed artificial intelligence
(AI) into MEC systems. Current ML and DL algorithms are
good approaches to address the resource allocation problem in
MEC networks. ML-based mechanisms for resource allocation
require datasets to train from. Then, the trained model is
applied to the real dataset to achieve the optimal resource
allocation policy. However, the trained model may not be
adapted well to the entire features and properties of the data.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 35

TABLE XIII: Summary of Studies on ML and DL for Joint Resource Allocation in MEC

Ref. Learning Type Algorithm Problem formulation Simulation Tools Optimization Criteria

2020, [1] DRL DNN Mixed integer optimization TensorFlow Minimize the task execution time and energy consumption of the
mobile device

2019, [11] RL DQN - TensorFlow Minimize the execution time, energy consumption, and delay Cost

2020, [301] RL + SL LA + QL + LSTM - iFogSim Maximize the CPU utilization while minimizing the execution time
and energy consumption

2020, [305] RL QL Lyapunov theory + MDP MATLAB Minimize the energy consumption of the application while satisfying
the overall execution delay.

2020, [309] RL Q-Learning - OpenAI Gym Minimize the execution delay of the mobile application while saving
battery power of the mobile device.

2019, [310] RL TD-learning MDP - Minimize the execution delay of the mobile application while mini-
mizing the energy consumption.

2020, [298] SL DNN + PSO MINLP - Minimize the energy consumption of all user devices.

2018, [313] Deep RL DQN+DNN MDP - Minimize the latency on V2V links while minimizing the interference
to V2I links.

2019, [317] RL MADL+D3QN Game+MDP - Maximize the long-term downlink utility while satisfying the UE’s
QoS requirements.

2019, [318] Deep RL DQN - Tensorflow Maximize both the short-term reward and long-term reward of the
DQN model.

2020, [194] SL DNN Queueing theory - Minimize the end-to-end inference delay of DL tasks.

2019, [319] RL QL MDP - Minimize the power consumption while maximizing the system
throughput.

2020, [312] USL AE +SA + DNN - - Minimize the latency of IoT users.

2019, [300] Deep RL DDQN MDP Tensorflow Minimize the execution delay and the energy consumption while
maximizing the user’s QoE.

2020, [252] RL DRL MDP + A3C Tensorflow Protect data security while maximizing the computation rate and
throughput of blockchain systems.

Hence, DL techniques have been used to address some of the
limitations of ML mechanisms.

Nevertheless, the application of ML and DL techniques
for resource allocation brings new challenges that need to
be addressed. In particular, these techniques require a large
amount and good quality of datasets to learn from, which
are often scarce and also difficult to generate. For instance,
the training model of the DRL-based task offloading method
in large-scale MEC networks requires quality data from the
IoT users to improve the learning efficiency [312]. Also,
although some datasets can be available online, their privacy
protection must be considered during the learning process.
Therefore, data generation and privacy-preserving are other
issues that need to be addressed to develop efficient ML/DL-
based resource allocation algorithms.

Another challenge is that the collected dataset cannot be
generalized for all types of MEC tasks because different tasks
have different structures, attributes, and requirements. For
instance, in most research papers, MEC tasks are considered
as bag of tasks (BoT), where the tasks are independent, and
each task has its input location id, input size, number of task
execution instructions. Other studies considered the MEC tasks
as dependent tasks represented by a Direct Acyclic Graph
(DAG) G = (T,E), where T is a set of t tasks, and E is a
set of e edges. Each task t represents a set of instructions that
must be executed on the same computing resource. Each edge
corresponds to the precedence constraints among the tasks.
Therefore, the collected dataset from different sources cannot
be generalized to all MEC tasks due to the heterogeneity and
distributed features of the datasets sources. Consequently, it is
challenging to find a unified task model for resource allocation
in MEC.

Additionally, the ML/DL training models are rarely static.
Therefore, the models may need to be retrained on slightly

changed datasets (e.g., when datapoints have been added or
deleted) [320]. Generally, a ML/DL model need to be retrained
from scratch when the data distributions have deviated sig-
nificantly from those of the original training dataset. This is
known as model drift. In terms of latency and promptness,
model retraining at the edge of the networks has the advan-
tage of reducing the communication bandwidth and latency
between the IoT device and the remote server since it does
not require submitting data from IoT networks to the cloud
[321]. However, it is expensive to retrain models from scratch.
The training model needs to be refined and adapted with the
new sub-dataset when the new dataset is similar to the dataset
observed in the past on which the model was trained.

The main reason a model needs to be retrained is that the en-
vironment in which the model is being predicted keeps chang-
ing, and consequently the dataset changes, causing model drift.
Nevertheless, how and why the dataset changes depend on the
use case, such as small dataset and adversarial environments.
For instance, if initially the model wasn’t trained with a dataset
large enough the model accuracy may vary significantly
between training and testing. Therefore, the model can be
retrained with a training dataset that contains new observations
and increases its size. In an adversarial environment (e.g.,
intrusion and fraud detection), where the environment behavior
is actively trying to reduce the rewards given to the agent,
model retraining becomes much more crucial. Hence, models
retraining mechanisms capable of considering the adversarial
environment should be further investigated.

The next section discusses challenges and future research
directions in detail.

IX. CHALLENGES AND FUTURE RESEARCH DIRECTIONS

In this section, we discuss key challenges and potential
future research directions of applying ML and DL techniques

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 36

for resource allocation in MEC.

A. Trade-off Between Large-Scale Training Datasets and
Computation Delay

The main challenge of DL algorithms is that they require
enough high-quality training datasets, which are difficult to
collect or generate, and also may not be available. Indeed,
the training dataset needs to be collected from multiple IoT
devices, which is challenging due to the heterogeneity and
distributed features of these devices [322]. One possible solu-
tion is to move the trained model to mobile devices. However,
most IoT devices have limited battery capacity and compu-
tation/storage capabilities to execute deep learning models
which required high computation and storage capabilities. It
is for this reason that many studies have proposed methods
to offload the trained model to the edge servers rather than
running it on mobile devices. For instance, DNNOff [193]
aims to automatically determine the DNN models that should
be offloaded to the edge servers.

Also, large training datasets are required to well analyze
and compare the efficiency of different related DL-based RA
methods. For example, it is proved in many studies (e.g., [244])
that different learning algorithms can provide similar perfor-
mance for small datasets. On the other hand, high dimensional
datasets for model training can lead to unacceptable delays
because the training process of DL algorithms, in particular,
DRL algorithms is computationally intensive [34]. Therefore, a
vital research direction is the trade-off analysis between large-
scale training datasets and computation delay. One potential
solution is the compression of the training dataset as proposed
in [312], where the authors use a stacked autoencoder to
compress and represent the high-dimensional dataset.

B. Trade-off Between Convergence Rate and Time Complexity

The acceleration of the convergence rate of a training
model is one of the most challenging issues of ML and DL
techniques. Furthermore, RL-based methods require a large
number of datasets, which increases the number of states and
actions spaces, and therefore leads to a slow convergence
rate. To solve this challenge, existing studies combine RL
and DL methods. For instance, the work in [76] exploits
the features of the autoencoder method in an RL model
to accelerate the convergence speed of the traditional RL
algorithm. By combining autoencoder and RL, the encoder
can extract the task’s features (e.g., task type, task priority,
task execution time, etc.). Then, the feature obtained by the
encoder can help the RL algorithm to find the best action in
a given state, instead of using the traditional Q-table, which
suffers from a slow convergence rate. On the other hand,
the combination of different learning methods may increase
the algorithm time complexity, which will lead to a high
computation delay. However, a learning method that leads to
high time complexity is not suitable for delay-sensitive and
real-time applications (e.g., video streaming). Consequently,
researchers need to investigate new mechanisms that accelerate
the convergence rate of RL-based methods while minimizing
the time complexity.

C. Deep Learning Models Caching

Most of the studies that focused on content caching ap-
proaches used deep learning to improve the traditional caching
strategies. Furthermore, few works have investigated strategies
to cache the DNN model at the edge of the network. However,
DNN model caching at the edge network may enhance the
learning process and reduce inference time. Indeed, caching
the DNN model on the edge node reduces the volume of
input data that needs to be sent to the remote cloud server
and therefore reduces the inference latency [198]. Therefore,
researchers need to investigate novel DNN model caching
approaches instead of DL methods to improve traditional
content caching approaches. A recent study on DNN model
caching is CacheNet [199], which caches the low-complexity
DNN models on IoT devices, and the high-complexity DNN
models on edge/cloud servers.

D. Integration of Blockchain and ML/DL for Resource Allo-
cation in MEC

Blockchain can be defined as a distributed data structure
consisting of a chain of blocks that keeps records of all
transactions in the blockchain network while ensuring security
[323]. Each block is identified by a unique cryptography hash
function. The blockchain network comprises nodes that record
the same transactions. Due to its security and decentralization
features, blockchain technology has been used in many areas,
including banking systems [324], finance [325], cloud com-
puting [326], healthcare applications [327], and MEC [328].
The most well-known application of blockchain technology
is the Bitcoin created by Satoshi Nakamoto in 2008 [329].
Blockchain technology can also be used to solve the security
and privacy challenges of resource allocation in MEC. A
recent investigation towards this approach is introduced in
[252], where a consensus approach is used to ensure data
security. The authors of [330] depicts the limitations of edge
intelligence (EI) and why blockchain technology could benefit
from EI.

The integration of blockchain and ML/DL may improve the
resource allocation method in terms of different metrics. On
the one hand, the main challenge of ML/DL techniques is that
they require enough high-quality training datasets which need
to be collected from multiple distributed IoT devices. Also, the
training datasets may contain security-sensitive information
which make the training and inference more challenging since
the data privacy must be considered during the learning and
inference processes. Hence, Blockchain technology can be
regarded as a complementary technology to solve the above
challenge due to its decentralized, privacy persevering, and
secure features. Particularly, distributed training and inference
can be performed securely.

On the other hand, Blockchain also faces many challenges
when it comes to performing edge intelligence, such as storage
load, transaction capacity, and fault tolerance, which prevent
many blockchain systems from being implemented [330].
Blockchain also faces a technical challenge when it comes
to performing ML/DL tasks in the edge network, such as
the training and inference. Hence, DL techniques can benefit

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 37

blockchain for resource utilization. Specially, since a DL
technique can predict data, it may also facilitate the prediction
of computational tasks that a miner (or a consensus node)
needs to offload to the edge/cloud server.

Therefore, the integration of blockchain and ML/DL for
resource allocation in MEC is feasible due to the impor-
tant current interest in blockchain and ML/DL techniques.
Nevertheless, few studies have focused on the integration of
lightweight blockchain (i.e., a blockchain that can be applied
on resource-constrained devices without affecting the security
features [331]) and DL techniques. Consequently, a vital future
research direction is the development of mechanisms based
on lightweight blockchain and DL for resource allocation in
large-scale MEC networks.

E. Resource Allocation under Time-Varying Wireless Channel
Conditions

Most of the surveyed works ignored the time-varying
wireless channel state information (CSI) in joint resource
allocation. However, the CSI significantly impacts the joint
resource allocation decision of a wireless-powered MEC sys-
tem because of the uncertain channel. The existing methods
focused either on task offloading under CSI or task scheduling
under CSI ignoring the joint resource allocation problem under
CSI. Therefore, ML/DL algorithms for joint task offloading
and scheduling in MEC networks with time-varying wireless
channels should be further investigated. A recent study towards
this approach is presented in [257].

F. Considering More Computing Resources

Most of the existing ML/DL-based mechanisms for resource
allocation in MEC define the target computation resource only
in terms of CPU processing capacity. However, ML tech-
niques, in general, and DRL techniques in particular, require
more computation resources such as memory and storage to
obtain a high accuracy model. Particularly, the training model
of a DRL algorithm might have specific memory requirements
that the target MEC servers have to meet in order to execute
the model. Hence, one topic of interest is the investigation
of ML/DL-based algorithms that consider more computing
resources constraints such as memory, storage, and bandwidth.

G. Resource Allocation on Hybrid Architectures

Many studies assumed that the target MEC system com-
prises a bounded number of similar processors (i.e., related
CPU resources). However, nowadays more and more high-
performance computing systems use hybrid architectures (i.e.,
unrelated resources), such as multicore and accelerators like
GPU. These novel architectures have introduced new resource
allocation issues. For instance, how to jointly select the
required CPU and GPU resources to execute the offloaded
task or the training model is a big challenge. In particular,
DL algorithms require GPU-enabled servers to accelerate the
training model [332]. Therefore, it is vital to investigate
mechanisms that can jointly share the hybrid computation
resources (i.e., CPU and GPU) to both the offloaded task and
the training model.

H. Resource Allocation in MEC for ML/DL

In the literature, the majority of works applied ML/DL
techniques to improve traditional resource allocation methods
without investigating how resource allocation mechanisms in
MEC can improve ML/DL techniques. Indeed, since ML/DL
are increasingly integrated into MEC, it is vital to investigate
resource allocation methods (i.e., offloading, caching, and
scheduling), which can accelerate the learning process and the
convergence of ML/DL methods. Also, when a DL algorithm
is implemented on a resource-constraint IoT device, some
DL tasks, in particular, delay-intensive tasks (e.g., visual
target tracking, online video editing) cannot be processed on
the IoT device because they require a lot of computational
resources. Therefore, a potential future research direction is the
application of offloading, caching, and scheduling techniques
to improve ML/DL methods. A recent work towards this
approach is presented in [333]. The authors proposed a novel
DL task distributed framework, where the lower layers of the
convolutional neural network (CNN) model are executed on
the unmanned aerial vehicles, while the higher layers of the
CNN model are offloaded to the MEC server.

I. Deep Learning Inference on Resource-Constrained Devices

Most of the surveyed papers focused on the deep learning
training phase to obtain the optimal resource allocation policy,
ignoring the inference (prediction) phase of DL. While DL
training “teaches” a DNN using datasets to perform an AI
task, DL inference, on the other hand, uses a trained DNN
model to make predictions on new data that the model has
never seen before [86]. DL inference is usually a production
phase where a model is deployed to predict real-world datasets.
The DL inference is computationally expensive because of the
high dimensional data and millions of operations that need to
be performed on the data [33]. In addition, most DL models
are offloaded and executed in cloud data centers because they
require more computation resources that resource-constrained
devices cannot provide. However, offloading and executing DL
models on the cloud servers or MEC servers [194] cannot
satisfy the delay requirement of real-time services such as real-
time video analytics and intelligent manufacturing. Therefore,
a vital research direction is to propose novel DL models that
can be embedded in resource-constrained IoT devices while
considering the trade-off between the DL inference accuracy
and latency.

J. Federated Deep Transfer Learning

Although transfer learning (TL) can significantly accelerate
the training process by using knowledge of an existing trained
model, it can negatively impact the learning performance
of a target domain if there is a high dissimilarity between
the source domain and the target domain. This issue called
negative transfer, is one of the most challenging problems
in TL [334]. Negative transfer reduces the accuracy of a
machine learning model after retraining. It is mainly caused by
a poor dependency between the source and the target domains.
To overcome this issue, deep transfer learning (DTL) has

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 38

been introduced as a new paradigm that uses DL methods to
perform an efficient knowledge transfer (i.e., positive transfer)
[335]. Indeed, DL has a strong dependence on large training
datasets compared to traditional ML techniques because it
requires a huge amount of data to understand and extract
the hidden patterns. Hence, the utilization of DL to perform
TL tasks (i.e., DTL) can significantly mitigate the negative
transfer issue. Also, DTL has been proved to achieve high
prediction accuracy in various research fields including fault
diagnosis in manufacturing for cross-domain prediction [336],
medical (e.g., magnetic resonance imaging (MRI), classifi-
cation for covid-19 disease [337]), machine fault diagnosis
[338], and networking [339]. However, its application for
resource allocation in MEC is still limited. Further research
on resource allocation in MEC needs to investigate new DTL
mechanisms that consider not only the negative transfer issue
but also the challenges of IoT data scarcity and privacy faced
by deep learning techniques. A key research direction is the
combination of federated learning (to address the privacy and
security issues) and DTL (to solve the datasets scarcity and
the negative transfer issues), which we called federated deep
transfer learning (FDTL).

X. CONCLUSION

This paper provides a comprehensive survey and tutorial of
ML and DL methods for resource allocation problems in MEC.
We first present tutorials that demonstrate the advantages of
applying ML and DL techniques in MEC. Then, we discuss
potential technologies for quickly running ML and DL tasks
(e.g., training and inference) in MEC. We also discuss and
summarize key ML and DL methods and their importance for
resource allocation in MEC. Afterward, we provide a compre-
hensive and in-depth survey of recent works that applied ML
and DL techniques to address the resource allocation problem
in MEC from three aspects including task offloading problem,
task scheduling problem, and joint resource allocation prob-
lem. Furthermore, the state-of-the-art ML/DL-based resource
allocation techniques are reviewed and classified within the
scope of this study. Finally, we present an extensive list
of challenges and future research directions related to the
application of ML and DL for resource allocation in MEC.
This survey provides an effective manual that can motivate
readers to advance this research field, and help them to well
understand how and when ML/DL-based resource allocation
techniques perform better than the traditional methods.

REFERENCES

[1] J. Yan, S. Bi, and Y. J. A. Zhang, “Offloading and re-
source allocation with general task graph in mobile edge
computing: A deep reinforcement learning approach,”
IEEE Trans Wireless Commun, vol. 19, no. 8, pp. 5404–
5419, 2020.

[2] GSMA, “Iot in the 5g era opportunities
and benefits for enterprises and consumers.”
[Online]. Available: https://www.gsma.com/iot/wp-
content/uploads/2019/11/201911-GSMA-IoT-Report-
IoT-in-the-5G-Era.pdf

[3] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta,
and D. Sabella, “On multi-access edge computing: A
survey of the emerging 5g network edge cloud architec-
ture and orchestration,” IEEE Commun. Surveys Tuts.,
vol. 19, no. 3, pp. 1657–1681, 2017.

[4] H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ay-
oubi, and C. Assi, “Dynamic task offloading and
scheduling for low-latency iot services in multi-access
edge computing,” IEEE J Sel Areas Commun, vol. 37,
no. 3, pp. 668–682, 2019.

[5] P. Mach and Z. Becvar, “Mobile edge computing: A
survey on architecture and computation offloading,”
IEEE Commun. Surveys Tuts., vol. 19, no. 3, pp. 1628–
1656, 2017.

[6] ETSI, “Multi-access edge computing.” [Online]. Avail-
able: https://www.etsi.org/technologies/multi-access-
edge-computing

[7] N. Boyd, “Mobile edge computing vs multi-access
edge computing,” Mar. 2018. [Online]. Available:
https://www.sdxcentral.com/edge/definitions/mobile-
edge-computing-vs-multi-access-edge-computing/

[8] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila,
and T. Taleb, “Survey on multi-access edge computing
for internet of things realization,” IEEE Commun. Sur-
veys Tuts., vol. 20, no. 4, pp. 2961–2991, 2018.

[9] C. o. M. I. Alex Reznik, “Mec proof of concept.”
[10] M. Rodriguez and R. Buyya, “A taxonomy and survey

on scheduling algorithms for scientific workflows in
iaas cloud computing environments,” Concurr. Comput.
Pract. E., vol. 29, no. 8, 2017.

[11] L. Huang, X. Feng, C. Zhang, L. Qian, and Y. Wu,
“Deep reinforcement learning-based joint task offload-
ing and bandwidth allocation for multi-user mobile edge
computing,” Digit Commun Netw, vol. 5, no. 1, pp. 10
– 17, 2019.

[12] J. Wang, J. Hu, G. Min, W. Zhan, Q. Ni, and N. Geor-
galas, “Computation offloading in multi-access edge
computing using a deep sequential model based on
reinforcement learning,” IEEE Commun Mag, vol. 57,
no. 5, pp. 64–69, 2019.

[13] F. Rebecchi, M. Dias de Amorim, V. Conan, A. Pas-
sarella, R. Bruno, and M. Conti, “Data offloading tech-
niques in cellular networks: A survey,” IEEE Commun.
Surveys Tuts., vol. 17, no. 2, pp. 580–603, 2015.

[14] R. V. Lopes and D. Menascé, “A taxonomy of job
scheduling on distributed computing systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 12, pp. 3412–
3428, 2016.

[15] E. Nunes, M. Manner, H. Mitiche, and M. Gini, “A
taxonomy for task allocation problems with temporal
and ordering constraints,” Rob. Auton. Syst., vol. 90,
pp. 55–70, 2017.

[16] N. C. Luong, P. Wang, D. Niyato, Y. Wen, and Z. Han,
“Resource management in cloud networking using eco-
nomic analysis and pricing models: A survey,” IEEE
Commun. Surveys Tuts., vol. 19, no. 2, pp. 954–1001,
2017.

[17] K. Wang, Q. Zhou, S. Guo, and J. Luo, “Cluster frame-

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 39

works for efficient scheduling and resource allocation
in data center networks: A survey,” IEEE Commun.
Surveys Tuts., vol. 20, no. 4, pp. 3560–3580, 2018.

[18] E. Ivashko, I. Chernov, and N. Nikitina, “A survey of
desktop grid scheduling,” IEEE Trans Parallel Distrib
Syst, vol. 29, no. 12, pp. 2882–2895, 2018.

[19] L. F. Bittencourt, A. Goldman, E. R. Madeira, N. L. da
Fonseca, and R. Sakellariou, “Scheduling in distributed
systems: A cloud computing perspective,” Comput Sci
Rev, vol. 30, pp. 31 – 54, 2018.

[20] D. Xu, Y. Li, X. Chen, J. Li, P. Hui, S. Chen, and
J. Crowcroft, “A survey of opportunistic offloading,”
IEEE Commun. Surveys Tuts., vol. 20, no. 3, pp. 2198–
2236, 2018.

[21] M. Kumar, S. Sharma, A. Goel, and S. Singh, “A com-
prehensive survey for scheduling techniques in cloud
computing,” J Netw Comput Appl, vol. 143, pp. 1 – 33,
2019.

[22] A. Arunarani, D. Manjula, and V. Sugumaran, “Task
scheduling techniques in cloud computing: A literature
survey,” Future Generat. Comput. Syst., vol. 91, pp. 407
– 415, 2019.

[23] M. Adhikari, T. Amgoth, and S. N. Srirama, “A survey
on scheduling strategies for workflows in cloud environ-
ment and emerging trends,” ACM Comput Surv, vol. 52,
no. 4, Aug. 2019.

[24] B. Wang, C. Wang, W. Huang, Y. Song, and X. Qin, “A
survey and taxonomy on task offloading for edge-cloud
computing,” IEEE Access, vol. 8, pp. 186 080–186 101,
2020.

[25] H. Lin, S. Zeadally, Z. Chen, H. Labiod, and L. Wang,
“A survey on computation offloading modeling for edge
computing,” J Netw Comput Appl, vol. 169, p. 102781,
2020.

[26] M. H. Hilman, M. A. Rodriguez, and R. Buyya, “Mul-
tiple workflows scheduling in multi-tenant distributed
systems: A taxonomy and future directions,” ACM Com-
put Surv, vol. 53, no. 1, Feb. 2020.

[27] Q.-H. Nguyen and F. Dressler, “A smartphone per-
spective on computation offloading—a survey,” Comput
Commun, vol. 159, pp. 133 – 154, 2020.

[28] A. Islam, A. Debnath, M. Ghose, and S. Chakraborty,
“A survey on task offloading in multi-access edge
computing,” J Syst Architect, vol. 118, p. 102225, 2021.

[29] S. Yang, F. Li, S. Trajanovski, R. Yahyapour, and X. Fu,
“Recent advances of resource allocation in network
function virtualization,” IEEE Trans Parallel Distrib
Syst, vol. 32, no. 2, pp. 295–314, 2021.

[30] S. Chen, Q. Li, M. Zhou, and A. Abusorrah, “Recent
advances in collaborative scheduling of computing tasks
in an edge computing paradigm,” Ah S Sens, vol. 21,
no. 3, p. 779, 2021.

[31] Y. Xu, G. Gui, H. Gacanin, and F. Adachi, “A survey
on resource allocation for 5g heterogeneous networks:
Current research, future trends, and challenges,” IEEE
Commun. Surveys Tuts., vol. 23, no. 2, pp. 668–695,
2021.

[32] C. Zhang, P. Patras, and H. Haddadi, “Deep learning

in mobile and wireless networking: A survey,” IEEE
Commun. Surveys Tuts., vol. 21, no. 3, pp. 2224–2287,
2019.

[33] J. Chen and X. Ran, “Deep learning with edge comput-
ing: A review,” Proc IEEE, vol. 107, no. 8, pp. 1655–
1674, 2019.

[34] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C.
Liang, Q. Yang, D. Niyato, and C. Miao, “Federated
learning in mobile edge networks: A comprehensive
survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 3,
pp. 2031–2063, 2020.

[35] F. Hussain, S. A. Hassan, R. Hussain, and E. Hossain,
“Machine learning for resource management in cellular
and iot networks: Potentials, current solutions, and open
challenges,” IEEE Commun. Surveys Tuts., vol. 22,
no. 2, pp. 1251–1275, 2020.

[36] A. Shakarami, M. Ghobaei-Arani, and A. Shahidinejad,
“A survey on the computation offloading approaches
in mobile edge computing: A machine learning-based
perspective,” Comm Com Inf Sc, vol. 182, p. 107496,
2020.

[37] M. McClellan, C. Cervelló-Pastor, and S. Sallent, “Deep
learning at the mobile edge: Opportunities for 5g net-
works,” Appl. Sci., vol. 10, no. 14, p. 4735, 2020.

[38] A. Shakarami, M. Ghobaei-Arani, M. Masdari, and
M. Hosseinzadeh, “A survey on the computation of-
floading approaches in mobile edge/cloud computing
environment: a stochastic-based perspective,” J Grid
Comput, pp. 1–33, 2020.

[39] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan,
and X. Chen, “Convergence of edge computing and
deep learning: A comprehensive survey,” IEEE Com-
mun. Surveys Tuts., vol. 22, no. 2, pp. 869–904, 2020.

[40] D. Xu, T. Li, Y. Li, X. Su, S. Tarkoma, T. Jiang,
J. Crowcroft, and P. Hui, “Edge intelligence: Archi-
tectures, challenges, and applications,” arXiv preprint
arXiv:2003.12172, 2020.

[41] Y. Liu, M. Peng, G. Shou, Y. Chen, and S. Chen,
“Toward edge intelligence: Multiaccess edge computing
for 5g and internet of things,” IEEE Int. Things J., vol. 7,
no. 8, pp. 6722–6747, 2020.

[42] F. Saeik, M. Avgeris, D. Spatharakis, N. Santi, D. De-
chouniotis, J. Violos, A. Leivadeas, N. Athanasopoulos,
N. Mitton, and S. Papavassiliou, “Task offloading in
edge and cloud computing: A survey on mathemati-
cal, artificial intelligence and control theory solutions,”
Comm Com Inf Sc, vol. 195, p. 108177, 2021.

[43] Q. Luo, S. Hu, C. Li, G. Li, and W. Shi, “Resource
scheduling in edge computing: A survey,” IEEE Com-
mun. Surveys Tuts., pp. 1–1, 2021.

[44] Y. Jiang, “A survey of task allocation and load balancing
in distributed systems,” IEEE Trans Parallel Distrib
Syst, vol. 27, no. 2, pp. 585–599, 2016.

[45] Q.-V. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Le,
L. B. Le, W.-J. Hwang, and Z. Ding, “A survey of
multi-access edge computing in 5g and beyond: Fun-
damentals, technology integration, and state-of-the-art,”
IEEE Access, vol. 8, pp. 116 974–117 017, 2020.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 40

[46] Y. Mao, C. You, J. Zhang, K. Huang, and K. B.
Letaief, “A survey on mobile edge computing: The
communication perspective,” IEEE Commun. Surveys
Tuts., vol. 19, no. 4, pp. 2322–2358, 2017.

[47] N. F. V. ETSI, “Network functions virtualisation (nfv),”
https://portal.etsi.org/nfv/nfv white paper.pdf.

[48] R. Sairam, S. S. Bhunia, V. Thangavelu, and M. Gu-
rusamy, “Netra: Enhancing iot security using nfv-based
edge traffic analysis,” IEEE Sensors J, vol. 19, no. 12,
pp. 4660–4671, 2019.

[49] A. Pastor, A. Mozo, D. R. Lopez, J. Folgueira, and
A. Kapodistria, “The mouseworld, a security traffic
analysis lab based on nfv/sdn,” in Proc. 13th Int. Conf.
Availability Rel. Secur., 2018, pp. 1–6.

[50] M. Pattaranantakul, R. He, Q. Song, Z. Zhang, and
A. Meddahi, “Nfv security survey: From use case
driven threat analysis to state-of-the-art countermea-
sures,” IEEE Commun. Surveys Tuts., vol. 20, no. 4,
pp. 3330–3368, 2018.

[51] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten,
F. De Turck, and R. Boutaba, “Network function virtual-
ization: State-of-the-art and research challenges,” IEEE
Commun. Surveys Tuts., vol. 18, no. 1, pp. 236–262,
2016.

[52] T. Wang, J. Zu, G. Hu, and D. Peng, “Adaptive service
function chain scheduling in mobile edge computing via
deep reinforcement learning,” IEEE Access, vol. 8, pp.
164 922–164 935, 2020.

[53] L. Linguaglossa, S. Lange, S. Pontarelli, G. Rétvári,
D. Rossi, T. Zinner, R. Bifulco, M. Jarschel, and
G. Bianchi, “Survey of performance acceleration tech-
niques for network function virtualization,” Proc IEEE,
vol. 107, no. 4, pp. 746–764, 2019.

[54] P. Shantharama, A. S. Thyagaturu, and M. Reisslein,
“Hardware-accelerated platforms and infrastructures for
network functions: A survey of enabling technologies
and research studies,” IEEE Access, vol. 8, pp. 132 021–
132 085, 2020.

[55] R. Riggio, S. N. Khan, T. Subramanya, I. G. B. Yahia,
and D. Lopez, “Lightmano: Converging nfv and sdn
at the edges of the network,” in NOMS 2018 - 2018
IEEE/IFIP Netw. Operations Manage. Symp., 2018, pp.
1–9.

[56] C.-L. I, S. Kuklinskı́, and T. Chen, “A perspective of
o-ran integration with mec, son, and network slicing in
the 5g era,” IEEE Netw., vol. 34, no. 6, pp. 3–4, 2020.

[57] A. Reznik, L. M. C. Murillo, Y. Fang, W. Featherstone,
M. Filippou, F. Fontes, F. Giust, Q. Huang, A. Li,
C. Turyagyenda et al., “Cloud ran and mec: A perfect
pairing,” ETSI White paper, no. 23, pp. 1–24, 2018.

[58] Z. Lv and W. Xiu, “Interaction of edge-cloud computing
based on sdn and nfv for next generation iot,” IEEE
Internet Things J, vol. 7, no. 7, pp. 5706–5712, 2020.

[59] B. Blanco, J. O. Fajardo, I. Giannoulakis, E. Kafetzakis,
S. Peng, J. Pérez-Romero, I. Trajkovska, P. S. Kho-
dashenas, L. Goratti, M. Paolino et al., “Technology
pillars in the architecture of future 5g mobile networks:
Nfv, mec and sdn,” Comput. Standards & Interfaces,

vol. 54, pp. 216–228, 2017.
[60] E. Schiller, N. Nikaein, E. Kalogeiton, M. Gasparyan,

and T. Braun, “Cds-mec: Nfv/sdn-based application
management for mec in 5g systems,” Comm Com Inf
Sc, vol. 135, pp. 96–107, 2018.

[61] P. Shantharama, A. S. Thyagaturu, N. Karakoc, L. Fer-
rari, M. Reisslein, and A. Scaglione, “Layback: Sdn
management of multi-access edge computing (mec) for
network access services and radio resource sharing,”
IEEE Access, vol. 6, pp. 57 545–57 561, 2018.

[62] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang,
X. Shao, M. Reisslein, and H. ElBakoury, “Ultra-low
latency (ull) networks: The ieee tsn and ietf detnet
standards and related 5g ull research,” IEEE Commun.
Surveys Tuts., vol. 21, no. 1, pp. 88–145, 2019.

[63] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza,
“A survey of machine learning techniques applied to
self-organizing cellular networks,” IEEE Commun. Sur-
veys Tuts., vol. 19, no. 4, pp. 2392–2431, 2017.

[64] Q. Mao, F. Hu, and Q. Hao, “Deep learning for intelli-
gent wireless networks: A comprehensive survey,” IEEE
Commun. Surveys Tuts., vol. 20, no. 4, pp. 2595–2621,
2018.

[65] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and
M. Guizani, “Deep learning for iot big data and stream-
ing analytics: A survey,” IEEE Commun. Surveys Tuts.,
vol. 20, no. 4, pp. 2923–2960, 2018.

[66] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang,
Y.-C. Liang, and D. I. Kim, “Applications of deep rein-
forcement learning in communications and networking:
A survey,” IEEE Commun. Surveys Tuts., vol. 21, no. 4,
pp. 3133–3174, 2019.

[67] Y. Liu, F. R. Yu, X. Li, H. Ji, and V. C. M. Leung,
“Blockchain and machine learning for communications
and networking systems,” IEEE Commun. Surveys Tuts.,
vol. 22, no. 2, pp. 1392–1431, 2020.

[68] Y. Sun, J. Liu, J. Wang, Y. Cao, and N. Kato, “When
machine learning meets privacy in 6g: A survey,” IEEE
Commun. Surveys Tuts., vol. 22, no. 4, pp. 2694–2724,
2020.

[69] M. A. Al-Garadi, A. Mohamed, A. K. Al-Ali, X. Du,
I. Ali, and M. Guizani, “A survey of machine and deep
learning methods for internet of things (iot) security,”
IEEE Commun. Surveys Tuts., vol. 22, no. 3, pp. 1646–
1685, 2020.

[70] S. Dong, P. Wang, and K. Abbas, “A survey on deep
learning and its applications,” Comput Sci Rev, vol. 40,
p. 100379, 2021.

[71] F. Tang, B. Mao, Y. Kawamoto, and N. Kato, “Survey
on machine learning for intelligent end-to-end commu-
nication toward 6g: From network access, routing to
traffic control and streaming adaption,” IEEE Commun.
Surveys Tuts., vol. 23, no. 3, pp. 1578–1598, 2021.

[72] M. S. Murshed, C. Murphy, D. Hou, N. Khan, G. Anan-
thanarayanan, and F. Hussain, “Machine learning at
the network edge: A survey,” ACM Computing Surveys
(CSUR), vol. 54, no. 8, pp. 1–37, 2021.

[73] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg,

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 41

T. Verbelen, and J. S. Rellermeyer, “A survey on
distributed machine learning,” ACM Comput Surv,
vol. 53, no. 2, Mar. 2020. [Online]. Available:
https://doi.org/10.1145/3377454

[74] I. Portugal, P. Alencar, and D. Cowan, “The use of
machine learning algorithms in recommender systems:
A systematic review,” Expert Syst Appl, vol. 97, pp. 205
– 227, 2018.

[75] D. Ucci, L. Aniello, and R. Baldoni, “Survey of ma-
chine learning techniques for malware analysis,” Com-
put. & Secur., vol. 81, pp. 123 – 147, 2019.

[76] S. Shadroo, A. M. Rahmani, and A. Rezaee, “The two-
phase scheduling based on deep learning in the internet
of things,” Comm Com Inf Sc, vol. 185, p. 107684, 2021.

[77] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A
survey of the recent architectures of deep convolutional
neural networks,” Artif Intell Rev, vol. 53, no. 8, pp.
5455–5516, 2020.

[78] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Im-
agenet classification with deep convolutional neural
networks,” Adv. Neural Inf. Process. Syst., vol. 25, 2012.

[79] K. Simonyan and A. Zisserman, “Very deep convo-
lutional networks for large-scale image recognition,”
arXiv preprint arXiv:1409.1556, 2014.

[80] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Ra-
binovich, “Going deeper with convolutions,” in 2015
IEEE Conf. Comput. Vision Pattern Recognit. (CVPR),
2015, pp. 1–9.

[81] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proc. IEEE Conf.
Comput. Vision Pattern Recognit. (CVPR), June 2016.

[82] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf,
W. J. Dally, and K. Keutzer, “Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and¡ 0.5 mb model
size,” arXiv preprint arXiv:1602.07360, 2016.

[83] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko,
W. Wang, T. Weyand, M. Andreetto, and H. Adam,
“Mobilenets: Efficient convolutional neural networks
for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[84] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg,
P. Sidike, M. S. Nasrin, M. Hasan, B. C. Van Essen,
A. A. Awwal, and V. K. Asari, “A state-of-the-art survey
on deep learning theory and architectures,” Electronics,
vol. 8, no. 3, p. 292, 2019.

[85] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model
compression and hardware acceleration for neural net-
works: A comprehensive survey,” Proc IEEE, vol. 108,
no. 4, pp. 485–532, 2020.

[86] “Deep learning training vs deep learning infer-
ence,” https://premioinc.com/blogs/blog/deep-learning-
training-vs-deep-learning-inference.

[87] B. Taylor, V. S. Marco, W. Wolff, Y. Elkhatib, and
Z. Wang, “Adaptive deep learning model selection on
embedded systems,” ACM SIGPLAN Notices, vol. 53,
no. 6, pp. 31–43, 2018.

[88] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya,

“An online algorithm for task offloading in heteroge-
neous mobile clouds,” ACM Trans Internet Technol,
vol. 18, no. 2, Jan. 2018.

[89] P. Lin, Q. Song, F. R. Yu, D. Wang, and L. Guo, “Task
offloading for wireless vr-enabled medical treatment
with blockchain security using collective reinforcement
learning,” IEEE Internet Things J, pp. 1–1, 2021.

[90] A. Samanta, Z. Chang, and Z. Han, “Latency-oblivious
distributed task scheduling for mobile edge computing,”
in 2018 IEEE Global Commun. Conf. (GLOBECOM),
2018, pp. 1–7.

[91] J. Huang, S. Li, and Y. Chen, “Revenue-optimal task
scheduling and resource management for iot batch jobs
in mobile edge computing,” Peer-to-Peer Netw. Appl.,
no. 8, 2020.

[92] Y. Cui, D. Zhang, T. Zhang, P. Yang, and H. Zhu,
“A new approach on task offloading scheduling for
application of mobile edge computing,” in 2021 IEEE
Wireless Commun. Netw. Conf. (WCNC), 2021, pp. 1–6.

[93] X. Jiang, F. R. Yu, T. Song, and V. C. M. Leung, “A
survey on multi-access edge computing applied to video
streaming: Some research issues and challenges,” IEEE
Commun. Surveys Tuts., vol. 23, no. 2, pp. 871–903,
2021.

[94] E. Coffman, J. Csirik, G. Galambos, S. Martello, and
D. Vigo, Bin Packing Approximation Algorithms: Survey
and Classification, 01 2012, p. (to appear).

[95] P. Festa, “A brief introduction to exact, approximation,
and heuristic algorithms for solving hard combinatorial
optimization problems,” in 2014 16th Int. Conf. Trans-
parent Opt. Netw. (ICTON). IEEE, 2014, pp. 1–20.

[96] J. Shen, N. Yi, B. Wu, W. Jiang, and H. Xiang, “A
greedy-based resource allocation algorithm for multicast
and unicast services in ofdm system,” in 2009 Int. Conf.
Wireless Commun. Signal Process., 2009, pp. 1–5.

[97] Y. Fan, L. Wang, W. Wu, and D. Du, “Cloud/edge
computing resource allocation and pricing for mobile
blockchain: An iterative greedy and search approach,”
IEEE Trans Comput Social Syst, vol. 8, no. 2, pp. 451–
463, 2021.

[98] F. Wei, S. Chen, and W. Zou, “A greedy algorithm
for task offloading in mobile edge computing system,”
China Commun, vol. 15, no. 11, pp. 149–157, 2018.

[99] M. T. Islam, A.-E. M. Taha, S. Akl, and S. Choudhury,
“A local search algorithm for resource allocation for
underlaying device-to-device communications,” in 2015
IEEE Global Commun. Conf. (GLOBECOM), 2015, pp.
1–6.

[100] Q. Wei, W. Sun, B. Bai, L. Wang, E. G. Ström, and
M. Song, “Resource allocation for v2x communications:
A local search based 3d matching approach,” in 2017
IEEE Int. Conf. Commun. (ICC), 2017, pp. 1–6.

[101] A. L. Stolyar, “Greedy primal-dual algorithm for
dynamic resource allocation in complex networks,”
Queueing Syst, vol. 54, no. 3, pp. 203–220, 2006.

[102] M. Chen and J. Huang, “Optimal resource allocation for
ofdm uplink communication: A primal-dual approach,”
in 2008 42nd Annu. Conf. Inf. Sci. Syst., 2008, pp. 926–

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 42

931.
[103] Y.-H. Chiang, T. Zhang, and Y. Ji, “Joint cotask-aware

offloading and scheduling in mobile edge computing
systems,” IEEE Access, vol. 7, pp. 105 008–105 018,
2019.

[104] V. T. Chakaravarthy, A. R. Choudhury, S. Gupta, S. Roy,
and Y. Sabharwal, “Improved algorithms for resource
allocation under varying capacity,” in Eur. Symp. Algo-
rithms. Springer, 2014, pp. 222–234.

[105] K. Mukherjee, P. Dutta, G. Raravi, T. Rajasubramaniam,
K. Dasgupta, and A. Singh, “Fair resource allocation
for heterogeneous tasks,” in 2015 IEEE Int. Parallel
Distrib. Process. Symp., 2015, pp. 1087–1096.

[106] Wikipedia, “Heuristic.” [Online]. Available:
https://en.wikipedia.org/wiki/Heuristic

[107] D. Ouelhadj and S. Petrovic, “A survey of dynamic
scheduling in manufacturing systems,” J. Scheduling,
vol. 12, no. 4, pp. 417–431, 2009.

[108] H. Djigal, J. Feng, and J. Lu, “Task scheduling for
heterogeneous computing using a predict cost matrix,”
in Proc. 48th Int. Conf. Parallel Process.: Workshops,
ser. ICPP 2019. New York, NY, USA: ACM, 2019,
pp. 25:1–25:10.

[109] H. Arabnejad and J. G. Barbosa, “List scheduling
algorithm for heterogeneous systems by an optimistic
cost table,” IEEE Trans Parallel Distrib Syst, vol. 25,
no. 3, pp. 682–694, 2014.

[110] H. Djigal, J. Feng, and J. Lu, “Performance evalu-
ation of security-aware list scheduling algorithms in
iaas cloud,” in 2020 20th IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing
(CCGRID), 2020, pp. 330–339.

[111] P. Paymard and N. Mokari, “Resource allocation in pd-
noma–based mobile edge computing system: Multiuser
and multitask priority,” Trans Emerg Telecommun Tech-
nologies, p. e3631, 2019.

[112] H. Djigal, F. Jun, J. Lu, and J. Ge, “Ippts: An efficient
algorithm for scientific workflow scheduling in het-
erogeneous computing systems,” IEEE Trans Parallel
Distrib Syst, pp. 1–1, 2020.

[113] H. Djigal, L. Liu, J. Luo, and J. Xu, “Buda: Budget and
deadline aware scheduling algorithm for task graphs in
heterogeneous systems,” in 2022 IEEE/ACM 30th In-
ternational Symposium on Quality of Service (IWQoS),
2022, pp. 1–10.

[114] A. Yoosefi and H. R. Naji, “A clustering algorithm
for communication-aware scheduling of task graphs on
multi-core reconfigurable systems,” IEEE Trans Parallel
Distrib Syst, no. 10, pp. 2718–2732, 2017.

[115] H. Kanemitsu, M. Hanada, and H. Nakazato,
“Clustering-based task scheduling in a large number of
heterogeneous processors,” IEEE Trans Parallel Distrib
Syst, vol. 27, no. 11, pp. 3144–3157, 2016.

[116] L. Dong, M. N. Satpute, J. Shan, B. Liu, Y. Yu,
and T. Yan, “Computation offloading for mobile-edge
computing with multi-user,” in 2019 IEEE 39th Int.
Conf. Distrib. Comput. Syst. (ICDCS), 2019, pp. 841–
850.

[117] J. L. de Souza Toniolli and B. Jaumard, “Resource
allocation for multiple workflows in cloud-fog
computing systems,” in Proc. 12th IEEE/ACM Int.
Conf. Utility Cloud Comput. Companion, ser. UCC
’19 Companion. New York, NY, USA: Association
for Computing Machinery, 2019, p. 77–84. [Online].
Available: https://doi.org/10.1145/3368235.3368846

[118] M. Y. Özkaya, A. Benoit, B. Uçar, J. Herrmann, and
Ü. V. Çatalyürek, “A scalable clustering-based task
scheduler for homogeneous processors using dag par-
titioning,” in IEEE Int. Parallel Distrib. Process. Symp.
(IPDPS). IEEE, 2019, pp. 155–165.

[119] A. Dogan and R. Ozguner, “Ldbs: A duplication based
scheduling algorithm for heterogeneous computing sys-
tems,” 2002, pp. 352 – 359.

[120] H. Chen, X. Zhu, D. Qiu, L. Liu, and Z. Du, “Schedul-
ing for workflows with security-sensitive intermediate
data by selective tasks duplication in clouds,” IEEE
Trans Parallel Distrib Syst, vol. 28, no. 9, pp. 2674–
2688, 2017.

[121] K. He, X. Meng, Z. Pan, L. Yuan, and P. Zhou, “A
novel task-duplication based clustering algorithm for
heterogeneous computing environments,” IEEE Trans
Parallel Distrib Syst, vol. 30, no. 1, pp. 2–14, Jan 2019.

[122] F. Wu, Q. Wu, and Y. Tan, “Workflow scheduling in
cloud: a survey,” J. Supercomput., vol. 71, no. 9, pp.
3373–3418, 2015.

[123] Y. Liu, L. Meng, and H. Tomiyama, “A genetic algo-
rithm for scheduling of data-parallel tasks on multicore
architectures,” IPSJ Trans. Syst. LSI Des. Methodol.,
vol. 12, pp. 74–77, 2019.

[124] S. Basu, M. Karuppiah, K. Selvakumar, K.-C. Li, S. H.
Islam, M. M. Hassan, and M. Z. A. Bhuiyan, “An
intelligent/cognitive model of task scheduling for iot
applications in cloud computing environment,” Future
Gener. Comput. Syst, vol. 88, pp. 254–261, 2018.

[125] R. L. Kadri and F. F. Boctor, “An efficient genetic algo-
rithm to solve the resource-constrained project schedul-
ing problem with transfer times: The single mode case,”
Eur J Oper Res, vol. 265, no. 2, pp. 454–462, 2018.

[126] M. Nouiri, A. Bekrar, A. Jemai, S. Niar, and A. C.
Ammari, “An effective and distributed particle swarm
optimization algorithm for flexible job-shop scheduling
problem,” J. Intell. Manuf., vol. 29, no. 3, pp. 603–615,
2018.

[127] Q. You and B. Tang, “Efficient task offloading using
particle swarm optimization algorithm in edge comput-
ing for industrial internet of things,” J Cloud Comput,
vol. 10, no. 1, pp. 1–11, 2021.

[128] R. S. Elhabyan and M. C. Yagoub, “Two-tier particle
swarm optimization protocol for clustering and routing
in wireless sensor network,” J. Netw. Comput. Appl.,
vol. 52, pp. 116 – 128, 2015.

[129] W. Deng, J. Xu, and H. Zhao, “An improved ant colony
optimization algorithm based on hybrid strategies for
scheduling problem,” IEEE Access, vol. 7, pp. 20 281–
20 292, 2019.

[130] Y. Moon, H. Yu, J.-M. Gil, and J. Lim, “A slave

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 43

ants based ant colony optimization algorithm for task
scheduling in cloud computing environments,” Human-
centric Comput. Inf. Sciences, vol. 7, no. 1, p. 28, 2017.

[131] J. Meshkati and F. Safi-Esfahani, “Energy-aware re-
source utilization based on particle swarm optimization
and artificial bee colony algorithms in cloud comput-
ing,” J Supercomput, vol. 75, no. 5, pp. 2455–2496,
2019.

[132] S. Chai, Y. Li, J. Wang, and C. Wu, “A list simulated
annealing algorithm for task scheduling on network-on-
chip.” JCP, vol. 9, no. 1, pp. 176–182, 2014.

[133] C. Gallo and V. Capozzi, “A simulated annealing al-
gorithm for scheduling problems,” J Appl Math Phys,
vol. 7, no. 11, pp. 2579–2594, 2019.

[134] J. J. F. S. Avinash Dixit, “Game theory explained,”
https://www.pbs.org/wgbh/americanexperience/features
/nash-game/.

[135] W. Lu, W. Wu, J. Xu, P. Zhao, D. Yang, and L. Xu,
“Auction design for cross-edge task offloading in het-
erogeneous mobile edge clouds,” Computer Communi-
cations, vol. 181, pp. 90–101, 2022.

[136] W. Lu, S. Zhang, J. Xu, D. Yang, and L. Xu, “Truthful
multi-resource transaction mechanism for p2p task of-
floading based on edge computing,” IEEE Transactions
on Vehicular Technology, vol. 70, no. 6, pp. 6122–6135,
2021.

[137] J. Moura and D. Hutchison, “Game theory for multi-
access edge computing: Survey, use cases, and future
trends,” IEEE Commun. Surveys Tuts., vol. 21, no. 1,
pp. 260–288, 2019.

[138] X. Feng, Y. Liu, and S. Wei, “Livedeep: Online viewport
prediction for live virtual reality streaming using life-
long deep learning,” in 2020 IEEE Conf. Virtual Real.
3D User Interfaces (VR), 2020, pp. 800–808.

[139] C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury,
M. Dukhan, K. Hazelwood, E. Isaac, Y. Jia, B. Jia,
T. Leyvand, H. Lu, Y. Lu, L. Qiao, B. Reagen, J. Spisak,
F. Sun, A. Tulloch, P. Vajda, X. Wang, Y. Wang,
B. Wasti, Y. Wu, R. Xian, S. Yoo, and P. Zhang, “Ma-
chine learning at facebook: Understanding inference
at the edge,” in 2019 IEEE Int. Symp. High Perform.
Comput. Architecture (HPCA), 2019, pp. 331–344.

[140] S. Tuli, N. Basumatary, S. S. Gill, M. Kahani, R. C.
Arya, G. S. Wander, and R. Buyya, “Healthfog: An
ensemble deep learning based smart healthcare system
for automatic diagnosis of heart diseases in integrated
iot and fog computing environments,” Future Gener
Comp Sy, vol. 104, pp. 187–200, 2020.

[141] K. Chakrabarti, “Deep learning based offloading for
mobile augmented reality application in 6g,” Comput.
& Elect. Eng., vol. 95, p. 107381, 2021.

[142] Z. Wu and D. Yan, “Deep reinforcement learning-
based computation offloading for 5g vehicle-aware
multi-access edge computing network,” China Commun,
vol. 18, no. 11, pp. 26–41, 2021.

[143] A. Asheralieva and D. Niyato, “Learning-based mobile
edge computing resource management to support public
blockchain networks,” IEEE Trans. Mobile Comput.,

vol. 20, no. 3, pp. 1092–1109, 2021.
[144] X. Shen, J. Gao, W. Wu, K. Lyu, M. Li, W. Zhuang,

X. Li, and J. Rao, “Ai-assisted network-slicing based
next-generation wireless networks,” IEEE Open J. Veh.
Technol., vol. 1, pp. 45–66, 2020.

[145] M. H. Abidi, H. Alkhalefah, K. Moiduddin, M. Alazab,
M. K. Mohammed, W. Ameen, and T. R. Gadekallu,
“Optimal 5g network slicing using machine learning
and deep learning concepts,” Comput Standards Inter-
faces, vol. 76, p. 103518, 2021.

[146] V. P. Kafle, Y. Fukushima, P. Martinez-Julia, and
T. Miyazawa, “Consideration on automation of 5g
network slicing with machine learning,” in 2018 ITU
Kaleidoscope: Mach. Learn. a 5G Future (ITU K).
IEEE, 2018, pp. 1–8.

[147] Y. Liu, H. Lu, X. Li, Y. Zhang, L. Xi, and D. Zhao, “Dy-
namic service function chain orchestration for nfv/mec-
enabled iot networks: A deep reinforcement learning
approach,” IEEE Int. Things J., vol. 8, no. 9, pp. 7450–
7465, 2021.

[148] T. Subramanya, D. Harutyunyan, and R. Riggio, “Ma-
chine learning-driven service function chain placement
and scaling in mec-enabled 5g networks,” Comput.
Netw., vol. 166, p. 106980, 2020.

[149] B. Trinh and G.-M. Muntean, “A deep reinforcement
learning-based resource management scheme for sdn-
mec-supported xr applications,” in 2022 IEEE 19th
Annu. Consum. Commun. Netw. Conf. (CCNC), 2022,
pp. 790–795.

[150] C. Li, C. Qianqian, and Y. Luo, “Low-latency edge
cooperation caching based on base station cooperation
in sdn based mec,” Expert Syst. Appl., vol. 191, p.
116252, 2022.

[151] H. Zhang, R. Wang, W. Sun, and H. Zhao, “Mobil-
ity management for blockchain-based ultra-dense edge
computing: A deep reinforcement learning approach,”
IEEE Trans. Wireless Commun., vol. 20, no. 11, pp.
7346–7359, 2021.

[152] D. Wang, X. Tian, H. Cui, and Z. Liu, “Reinforce-
ment learning-based joint task offloading and migration
schemes optimization in mobility-aware mec network,”
China Commun., vol. 17, no. 8, pp. 31–44, 2020.

[153] A. Lekharu, M. Jain, A. Sur, and A. Sarkar, “Deep
learning model for content aware caching at mec
servers,” IEEE Trans Netw Service Manag, 2021.

[154] W.-C. Chien, H.-Y. Weng, and C.-F. Lai, “Q-learning
based collaborative cache allocation in mobile edge
computing,” Future Gener. Comput. Syst., vol. 102, pp.
603–610, 2020.

[155] L. Sun, L. Wan, and X. Wang, “Learning-based resource
allocation strategy for industrial iot in uav-enabled mec
systems,” IEEE Trans. Ind. Inf., vol. 17, no. 7, pp. 5031–
5040, 2021.

[156] H. Peng and X. Shen, “Multi-agent reinforcement learn-
ing based resource management in mec- and uav-
assisted vehicular networks,” IEEE J. Sel. Areas Com-
mun., vol. 39, no. 1, pp. 131–141, 2021.

[157] S. Vimal, M. Khari, N. Dey, R. G. Crespo, and

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 44

Y. Harold Robinson, “Enhanced resource allocation in
mobile edge computing using reinforcement learning
based moaco algorithm for iiot,” Comput. Commun.,
vol. 151, pp. 355–364, 2020.

[158] L. Liu, J. Feng, Q. Pei, C. Chen, Y. Ming, B. Shang,
and M. Dong, “Blockchain-enabled secure data sharing
scheme in mobile-edge computing: An asynchronous
advantage actor–critic learning approach,” IEEE Int.
Things J., vol. 8, no. 4, pp. 2342–2353, 2021.

[159] U. Majeed and C. S. Hong, “Flchain: Federated learn-
ing via mec-enabled blockchain network,” in 2019
20th Asia-Pacific Net. Operations Manage. Symp. (AP-
NOMS), 2019, pp. 1–4.

[160] Z. Mlika and S. Cherkaoui, “Network slicing with mec
and deep reinforcement learning for the internet of
vehicles,” IEEE Netw, vol. 35, no. 3, pp. 132–138, 2021.

[161] J. Du, F. R. Yu, G. Lu, J. Wang, J. Jiang, and X. Chu,
“Mec-assisted immersive vr video streaming over tera-
hertz wireless networks: A deep reinforcement learning
approach,” IEEE Int. Things J., vol. 7, no. 10, pp. 9517–
9529, 2020.

[162] S. Wan, L. Qi, X. Xu, C. Tong, and Z. Gu, “Deep
learning models for real-time human activity recogni-
tion with smartphones,” Mobile Netw. Appl., vol. 25,
no. 2, pp. 743–755, 2020.

[163] A. Feriani, A. Refaey, and E. Hossain, “Tracking pan-
demics: A mec-enabled iot ecosystem with learning
capability,” IEEE Int. Things Mag., vol. 3, no. 3, pp.
40–45, 2020.

[164] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge
distillation: A survey,” Int J Comput Vision, vol. 129,
no. 6, pp. 1789–1819, 2021.

[165] R. Reed, “Pruning algorithms-a survey,” IEEE Trans
Neural Netw, vol. 4, no. 5, pp. 740–747, 1993.

[166] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang,
“Pruning and quantization for deep neural network
acceleration: A survey,” Neurocomputing, vol. 461, pp.
370–403, 2021.

[167] J. Wang, L. Gou, W. Zhang, H. Yang, and H.-W.
Shen, “Deepvid: Deep visual interpretation and diag-
nosis for image classifiers via knowledge distillation,”
IEEE Trans Vis Comput Graphics, vol. 25, no. 6, 2019.

[168] E. Tanghatari, M. Kamal, A. Afzali-Kusha, and M. Pe-
dram, “Distributing dnn training over iot edge devices
based on transfer learning,” Neurocomputing, vol. 467,
pp. 56–65, 2022.

[169] Y. Lin, Y. Tu, and Z. Dou, “An improved neural
network pruning technology for automatic modulation
classification in edge devices,” IEEE Trans Veh Technol,
vol. 69, no. 5, pp. 5703–5706, 2020.

[170] Z. Zhou, H. Cai, S. Rong, Y. Song, K. Ren, W. Zhang,
Y. Yu, and J. Wang, “Activation maximization genera-
tive adversarial nets,” arXiv preprint arXiv:1703.02000,
2017.

[171] T. J. O’shea and N. West, “Radio machine learning
dataset generation with gnu radio,” in Proc. GNU Radio
Conf., vol. 1, no. 1, 2016.

[172] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P.

Graf, “Pruning filters for efficient convnets,” arXiv
preprint arXiv:1608.08710, 2016.

[173] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Net-
work trimming: A data-driven neuron pruning approach
towards efficient deep architectures,” arXiv preprint
arXiv:1607.03250, 2016.

[174] Y. Jiang, S. Wang, V. Valls, B. J. Ko, W.-H. Lee,
K. K. Leung, and L. Tassiulas, “Model pruning enables
efficient federated learning on edge devices,” arXiv
preprint arXiv:1909.12326, 2019.

[175] T. Choudhary, V. Mishra, A. Goswami, and J. Saranga-
pani, “A comprehensive survey on model compression
and acceleration,” Artif Intell Rev, vol. 53, no. 7, pp.
5113–5155, 2020.

[176] A. Berthelier, T. Chateau, S. Duffner, C. Garcia, and
C. Blanc, “Deep model compression and architecture
optimization for embedded systems: A survey,” J Signal
Process. Syst., vol. 93, no. 8, pp. 863–878, 2021.

[177] C. N. Coelho, A. Kuusela, S. Li, H. Zhuang, J. Ngadi-
uba, T. K. Aarrestad, V. Loncar, M. Pierini, A. A. Pol,
and S. Summers, “Automatic heterogeneous quantiza-
tion of deep neural networks for low-latency inference
on the edge for particle detectors,” Nature Mach. Intell.,
vol. 3, no. 8, pp. 675–686, 2021.

[178] A. Kwasniewska, M. Szankin, M. Ozga, J. Wolfe,
A. Das, A. Zajac, J. Ruminski, and P. Rad, “Deep
learning optimization for edge devices: Analysis of
training quantization parameters,” in IECON 2019 -
45th Annu. Conf. IEEE Ind. Electronics Soc., vol. 1,
2019, pp. 96–101.

[179] N. Tonellotto, A. Gotta, F. M. Nardini, D. Gadler, and
F. Silvestri, “Neural network quantization in federated
learning at the edge,” Inform Sciences, vol. 575, pp.
417–436, 2021.

[180] S. Merity, C. Xiong, J. Bradbury, and R. Socher,
“Pointer sentinel mixture models,” arXiv preprint
arXiv:1609.07843, 2016.

[181] S. Wiedemann, S. Shivapakash, D. Becking, P. Wiede-
mann, W. Samek, F. Gerfers, and T. Wiegand, “Fantas-
tic4: A hardware-software co-design approach for ef-
ficiently running 4bit-compact multilayer perceptrons,”
IEEE Open J Circuits Syst., vol. 2, pp. 407–419, 2021.

[182] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey
of model compression and acceleration for deep neural
networks,” arXiv preprint arXiv:1710.09282, 2017.

[183] L. Lai, N. Suda, and V. Chandra, “Cmsis-nn: Efficient
neural network kernels for arm cortex-m cpus,” arXiv
preprint arXiv:1801.06601, 2018.

[184] J. Lin, W.-M. Chen, Y. Lin, C. Gan, S. Han et al.,
“Mcunet: Tiny deep learning on iot devices,” Adv Neur
In, vol. 33, pp. 11 711–11 722, 2020.

[185] S. Mücke, N. Piatkowski, and K. Morik, “Hardware
acceleration of machine learning beyond linear algebra,”
in Joint Eur. Conf. Mach. Learn. Knowl. Discovery
Databases. Springer, 2019, pp. 342–347.

[186] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq:
Hardware-aware automated quantization with mixed
precision,” in Proc. IEEE/CVF Conf. Comput. Vision

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 45

Pattern Recognit., 2019, pp. 8612–8620.
[187] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m.

Hwu, and D. Chen, “Dnnbuilder: An automated tool for
building high-performance dnn hardware accelerators
for fpgas,” in 2018 IEEE/ACM Int. Conf. Computer-
Aided Des. (ICCAD). IEEE, 2018, pp. 1–8.

[188] S. Li, E. Hanson, X. Qian, H. H. Li, and Y. Chen,
“Escalate: Boosting the efficiency of sparse cnn accel-
erator with kernel decomposition,” in MICRO-54: 54th
Annu. IEEE/ACM Int. Symp. Microarchitecture, 2021,
pp. 992–1004.

[189] E. B. Moustafa, A. H. Hammad, and A. H. Elsheikh, “A
new optimized artificial neural network model to predict
thermal efficiency and water yield of tubular solar still,”
Case Stud. Thermal Eng., vol. 30, p. 101750, 2022.

[190] S. Mirjalili and A. Lewis, “The whale optimization
algorithm,” Adv. Eng. Softw., vol. 95, pp. 51–67, 2016.

[191] K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros,
and A. Cabellos-Aparicio, “Routenet: Leveraging graph
neural networks for network modeling and optimization
in sdn,” IEEE J. Sel. Areas Commun., vol. 38, no. 10,
pp. 2260–2270, 2020.

[192] W. Zhang, Z. Zhang, S. Zeadally, H.-C. Chao, and
V. C. M. Leung, “Masm: A multiple-algorithm service
model for energy-delay optimization in edge artificial
intelligence,” IEEE Trans Ind Informat, vol. 15, no. 7,
pp. 4216–4224, 2019.

[193] X. Chen, M. Li, H. Zhong, Y. Ma, and C.-H. Hsu,
“Dnnoff: Offloading dnn-based intelligent iot appli-
cations in mobile edge computing,” IEEE Trans Ind
Informat, vol. 18, no. 4, pp. 2820–2829, 2022.

[194] W. He, S. Guo, S. Guo, X. Qiu, and F. Qi, “Joint dnn
partition deployment and resource allocation for delay-
sensitive deep learning inference in iot,” IEEE Internet
Things J, vol. 7, no. 10, pp. 9241–9254, 2020.

[195] C. Kim, A. Dudin, O. Dudina, and S. Dudin, “Tandem
queueing system with infinite and finite intermediate
buffers and generalized phase-type service time distri-
bution,” Eur J Oper Res, vol. 235, no. 1, pp. 170–179,
2014.

[196] M. Gao, W. Cui, D. Gao, R. Shen, J. Li, and Y. Zhou,
“Deep neural network task partitioning and offloading
for mobile edge computing,” in 2019 IEEE Global
Commun. Conf. (GLOBECOM), 2019, pp. 1–6.

[197] M. Gao, R. Shen, L. Shi, W. Qi, J. Li, and Y. Li. (2021)
Task partitioning and offloading in dnn-task enabled
mobile edge computing networks.

[198] S. Venugopal, M. Gazzetti, Y. Gkoufas, and K. Katrinis,
“Shadow puppets: Cloud-level accurate {AI} inference
at the speed and economy of edge,” in USENIX Work-
shop Hot Topics Edge Comput. (HotEdge 18), 2018.

[199] Y. Fang, S. M. Shalmani, and R. Zheng, “Cachenet: A
model caching framework for deep learning inference
on the edge,” arXiv preprint arXiv:2007.01793, 2020.

[200] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar,
“Do cifar-10 classifiers generalize to cifar-10?” arXiv
preprint arXiv:1806.00451, 2018.

[201] X. Tang, X. Chen, L. Zeng, S. Yu, and L. Chen, “Joint

multiuser dnn partitioning and computational resource
allocation for collaborative edge intelligence,” IEEE
Internet Things J, vol. 8, no. 12, pp. 9511–9522, 2021.

[202] X. Chen, J. Zhang, B. Lin, Z. Chen, K. Wolter, and
G. Min, “Energy-efficient offloading for dnn-based
smart iot systems in cloud-edge environments,” IEEE
Trans Parallel Distrib Syst, vol. 33, no. 3, pp. 683–697,
2022.

[203] A. Qadeer and M. J. Lee, “Ddpg-edge-cloud: A deep-
deterministic policy gradient based multi-resource allo-
cation in edge-cloud system,” in 2022 Int. Conf. Artif.
Intell. Inf. Commun. (ICAIIC), 2022, pp. 339–344.

[204] F. Dai, G. Liu, Q. Mo, W. Xu, and B. Huang, “Task
offloading for vehicular edge computing with edge-
cloud cooperation,” World Wide Web, pp. 1–19, 2022.

[205] C. Shi, L. Chen, C. Shen, L. Song, and J. Xu, “Privacy-
aware edge computing based on adaptive dnn partition-
ing,” in 2019 IEEE Global Commun. Conf. (GLOBE-
COM), 2019, pp. 1–6.

[206] H.-S. Lee and D.-E. Lee, “Resource allocation in wire-
less networks with federated learning: Network adapt-
ability and learning acceleration,” ICT Express, vol. 8,
no. 1, pp. 31–36, 2022.

[207] J. Ren, H. Wang, T. Hou, S. Zheng, and C. Tang, “Fed-
erated learning-based computation offloading optimiza-
tion in edge computing-supported internet of things,”
IEEE Access, vol. 7, pp. 69 194–69 201, 2019.

[208] R. Yu and P. Li, “Toward resource-efficient feder-
ated learning in mobile edge computing,” IEEE Netw.,
vol. 35, no. 1, pp. 148–155, 2021.

[209] L. Zang, X. Zhang, and B. Guo, “Federated deep
reinforcement learning for online task offloading and re-
source allocation in wpc-mec networks,” IEEE Access,
vol. 10, pp. 9856–9867, 2022.

[210] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya,
T. He, and K. Chan, “Adaptive federated learning in
resource constrained edge computing systems,” IEEE
J. Sel. Areas Commun., vol. 37, no. 6, pp. 1205–1221,
2019.

[211] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Bea-
ufays, S. Augenstein, H. Eichner, C. Kiddon, and
D. Ramage, “Federated learning for mobile keyboard
prediction,” arXiv preprint arXiv:1811.03604, 2018.

[212] Y. LeCun et al., “Lenet-5, convolutional neural
networks,” URL: http://yann. lecun. com/exdb/lenet,
vol. 20, no. 5, p. 14, 2015.

[213] H. Qassim, A. Verma, and D. Feinzimer, “Compressed
residual-vgg16 cnn model for big data places image
recognition,” in 2018 IEEE 8th Annu. Comput. Com-
mun. Workshop Conf. (CCWC). IEEE, 2018.

[214] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning
face attributes in the wild,” in Proc. IEEE Int. Conf.
Comput. vision, 2015, pp. 3730–3738.

[215] T. O’shea and J. Hoydis, “An introduction to deep
learning for the physical layer,” IEEE Trans Cogn
Commun Netw, vol. 3, no. 4, pp. 563–575, 2017.

[216] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečnỳ,
H. B. McMahan, V. Smith, and A. Talwalkar, “Leaf:

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 46

A benchmark for federated settings,” arXiv preprint
arXiv:1812.01097, 2018.

[217] S. Ayyachamy, V. Alex, M. Khened, and G. Krishna-
murthi, “Medical image retrieval using resnet-18,” in
Med. Imag. 2019: Imag. Inf. Healthcare Res. Appl., vol.
10954. International Society for Optics and Photonics,
2019, p. 1095410.

[218] A. Krizhevsky, G. Hinton et al., “Learning multiple
layers of features from tiny images,” 2009.

[219] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei, “Imagenet: A large-scale hierarchical image
database,” in 2009 IEEE conf. comput. vision pattern
recognition. Ieee, 2009, pp. 248–255.

[220] J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar,
B. Kreis, J. Ngadiuba, M. Pierini, R. Rivera, N. Tran
et al., “Fast inference of deep neural networks in fpgas
for particle physics,” J Instrum, vol. 13, no. 07, p.
P07027, 2018.

[221] [Online]. Available: https://github.com/google/qkeras
[222] J. Ngadiuba, V. Loncar, M. Pierini, S. Summers,

G. Di Guglielmo, J. Duarte, P. Harris, D. Rankin,
S. Jindariani, M. Liu et al., “Compressing deep neural
networks on fpgas to binary and ternary precision with
hls4ml,” Mach Learn : Sci Technol, vol. 2, no. 1, p.
015001, 2020.

[223] H.-J. Jeong, H.-J. Lee, K. Yong Shin, Y. Hwan Yoo, and
S.-M. Moon, “Perdnn: Offloading deep neural network
computations to pervasive edge servers,” in 2020 IEEE
40th Int. Conf. Distrib. Comput. Syst. (ICDCS), 2020,
pp. 1055–1066.

[224] Y. Zheng, X. Xie, W.-Y. Ma et al., “Geolife: A collab-
orative social networking service among user, location
and trajectory.” IEEE Data Eng. Bull., vol. 33, no. 2,
pp. 32–39, 2010.

[225] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and
A. Chaintreau, “Crawdad dataset cambridge/haggle (v.
2006-09-15),” CRAWDAD wireless netw data arch,
2006.

[226] Z. Zhang, L. Tran, X. Yin, Y. Atoum, X. Liu, J. Wan,
and N. Wang, “Gait recognition via disentangled repre-
sentation learning,” in Proc. IEEE/CVF Conf. Comput.
Vision Pattern Recognit., 2019, pp. 4710–4719.

[227] S. Shahhosseini, D. Seo, A. Kanduri, T. Hu, S.-s. Lim,
B. Donyanavard, A. M. Rahmani, and N. Dutt, “Online
learning for orchestration of inference in multi-user end-
edge-cloud networks,” ACM Trans Embedded Comput
Syst (TECS), 2022.

[228] D. Xu, Q. Li, and H. Zhu, “Energy-saving computa-
tion offloading by joint data compression and resource
allocation for mobile-edge computing,” IEEE Commun
Lett, vol. 23, no. 4, pp. 704–707, 2019.

[229] T. T. Nguyen, V. N. Ha, L. B. Le, and R. Schober,
“Joint data compression and computation offloading in
hierarchical fog-cloud systems,” IEEE Trans Wireless
Commun, vol. 19, no. 1, pp. 293–309, 2020.

[230] C.-C. Lin, D.-J. Deng, Y.-L. Chih, and H.-T. Chiu,
“Smart manufacturing scheduling with edge computing
using multiclass deep q network,” IEEE Trans Ind

Informat, vol. 15, no. 7, pp. 4276–4284, 2019.
[231] X. Liu, J. Yu, J. Wang, and Y. Gao, “Resource alloca-

tion with edge computing in iot networks via machine
learning,” IEEE Internet Things J, vol. 7, no. 4, pp.
3415–3426, 2020.

[232] A. Kwasinski, W. Wang, and F. S. Mohammadi, “Rein-
forcement learning for resource allocation in cognitive
radio networks,” Mach. Learn. Future Wireless Com-
mun., pp. 27–44, 2020.

[233] H. Ghauch, H. Shokri-Ghadikolaei, G. Fodor, C. Fis-
chione, and M. Skoglund, “Machine learning for spec-
trum sharing in millimeter-wave cellular networks,”
Mach. Learn. Future Wireless Commun., pp. 45–62,
2020.

[234] N. C. Luong, Y. Jiao, P. Wang, D. Niyato, D. I. Kim, and
Z. Han, “A machine-learning-based auction for resource
trading in fog computing,” IEEE Commun Mag, vol. 58,
no. 3, pp. 82–88, 2020.

[235] Z. Al-Makhadmeh and A. Tolba, “Sraf: Scalable re-
source allocation framework using machine learning
in user-centric internet of things,” Peer-to-Peer Netw.
Appl., pp. 1–11, 2020.

[236] S. C. Rajanarayanan, R. Misra, and R. J. Pandya, “Ma-
chine learning oriented resource allocation to achieve
ultra low power, low latency and high reliability ve-
hicular communication networks,” in 2020 IEEE 17th
India Council Int. Conf. (INDICON), 2020, pp. 1–5.

[237] J. Liu, T. Yang, J. Bai, and B. Sun, “Resource alloca-
tion and scheduling in the intelligent edge computing
context,” Future Gener Comp Sy, vol. 121, pp. 48–53,
2021.

[238] C. Mechalikh, H. Taktak, and F. Moussa, “A fuzzy
decision tree based tasks orchestration algorithm for
edge computing environments,” in Adv. Inf. Netw. Appl.,
L. Barolli, F. Amato, F. Moscato, T. Enokido, and
M. Takizawa, Eds. Cham: Springer International
Publishing, 2020, pp. 193–203.

[239] H. Guo, J. Liu, and J. Lv, “Toward intelligent task
offloading at the edge,” IEEE Netw, vol. 34, no. 2, pp.
128–134, 2020.

[240] S. Imtiaz, H. Ghauch, G. P. Koudouridis, and J. Gross,
“Random forests resource allocation for 5g systems:
Performance and robustness study,” in 2018 IEEE Wire-
less Commun. Netw. Conf. Workshops (WCNCW), 2018,
pp. 326–331.

[241] M. E. Mavroforakis and S. Theodoridis, “A geometric
approach to support vector machine (svm) classifica-
tion,” IEEE Trans Neural Netw, vol. 17, no. 3, pp. 671–
682, 2006.

[242] S. Wang, M. Chen, C. Yin, W. Saad, C. S. Hong,
S. Cui, and H. V. Poor, “Federated learning for task
and resource allocation in wireless high altitude balloon
networks,” IEEE Internet Things J, pp. 1–1, 2021.

[243] D. Ding, X. Fan, Y. Zhao, K. Kang, Q. Yin, and J. Zeng,
“Q-learning based dynamic task scheduling for energy-
efficient cloud computing,” Future Gener Comp Sy, vol.
108, pp. 361 – 371, 2020.

[244] Z. Tong, X. Deng, H. Chen, J. Mei, and H. Liu,

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 47

“Ql-heft: a novel machine learning scheduling scheme
base on cloud computing environment,” Neural Comput.
Appl., pp. 1–18, 03 2019.

[245] Z. Tong, Z. Xiao, K. Li, and K. Li, “Proactive schedul-
ing in distributed computing—a reinforcement learning
approach,” J Parallel Distr Com, vol. 74, no. 7, pp. 2662
– 2672, 2014.

[246] T. Pham, J. J. Durillo, and T. Fahringer, “Predicting
workflow task execution time in the cloud using a two-
stage machine learning approach,” IEEE Trans on Cloud
Comput, vol. 8, no. 1, pp. 256–268, 2020.

[247] P. Yu, F. Zhou, X. Zhang, X. Qiu, M. Kadoch, and
M. Cheriet, “Deep learning-based resource allocation
for 5g broadband tv service,” IEEE Trans Broadcast,
vol. 66, no. 4, pp. 800–813, 2020.

[248] G. Rjoub, J. Bentahar, O. Abdel Wahab, and
A. Bataineh, “Deep smart scheduling: A deep learning
approach for automated big data scheduling over the
cloud,” in 2019 7th Int. Conf. Future Internet Things
Cloud (FiCloud), 2019, pp. 189–196.

[249] P. Goswami, A. Mukherjee, M. Maiti, S. K. S. Tyagi,
and L. Yang, “A neural network based optimal resource
allocation method for secure iiot network,” IEEE Inter-
net Things J, pp. 1–1, 2021.

[250] J. Shi, Q. Zhang, Y.-C. Liang, and X. Yuan, “Distributed
deep learning power allocation for d2d network based
on outdated information,” in 2020 IEEE Wireless Com-
mun. Netw. Conf. (WCNC), 2020, pp. 1–6.

[251] Z. Hu, J. Tu, and B. Li, “Spear: Optimized dependency-
aware task scheduling with deep reinforcement learn-
ing,” in 2019 IEEE 39th Int. Conf. Distrib. Comput.
Syst. (ICDCS), July 2019, pp. 2037–2046.

[252] J. Feng, F. Richard Yu, Q. Pei, X. Chu, J. Du, and
L. Zhu, “Cooperative computation offloading and re-
source allocation for blockchain-enabled mobile-edge
computing: A deep reinforcement learning approach,”
IEEE Internet Things J, vol. 7, no. 7, pp. 6214–6228,
2020.

[253] N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin, Q. Qiu, J. Tang,
and Y. Wang, “A hierarchical framework of cloud
resource allocation and power management using deep
reinforcement learning,” in 2017 IEEE 37th Int. Conf.
Distrib. Comput. Syst. (ICDCS), 2017, pp. 372–382.

[254] H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep rein-
forcement learning based resource allocation for v2v
communications,” IEEE Trans Veh Technol, vol. 68,
no. 4, pp. 3163–3173, 2019.

[255] W. Zhan, C. Luo, J. Wang, G. Min, and H. Duan, “Deep
reinforcement learning-based computation offloading in
vehicular edge computing,” in 2019 IEEE Global Com-
mun. Conf. (GLOBECOM). IEEE Press, 2019, p. 1–6.

[256] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Geor-
galas, “Fast adaptive task offloading in edge computing
based on meta reinforcement learning,” IEEE Trans
Parallel Distrib Syst, vol. 32, no. 1, pp. 242–253, 2021.

[257] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep rein-
forcement learning for online computation offloading
in wireless powered mobile-edge computing networks,”

IEEE Trans Mobile Comput, vol. 19, no. 11, pp. 2581–
2593, 2020.

[258] W. Zhan, C. Luo, J. Wang, C. Wang, G. Min, H. Duan,
and Q. Zhu, “Deep-reinforcement-learning-based of-
floading scheduling for vehicular edge computing,”
IEEE Internet Things J, vol. 7, no. 6, pp. 5449–5465,
2020.

[259] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,”
arXiv preprint arXiv:1707.06347, 2017.

[260] H. Meng, D. Chao, and Q. Guo, “Deep reinforcement
learning based task offloading algorithm for mobile-
edge computing systems,” in Proc. 2019 4th Int. Conf.
Math. Artif. Intell., ser. ICMAI 2019. New York, NY,
USA: Association for Computing Machinery, 2019, p.
90–94.

[261] D. Rahbari and M. Nickray, “Task offloading in mobile
fog computing by classification and regression tree,”
Peer-to-Peer Netw. Appl., vol. 13, no. 1, 2020.

[262] T. Q. Dinh, Q. D. La, T. Q. S. Quek, and H. Shin,
“Learning for computation offloading in mobile edge
computing,” IEEE Trans Commun, vol. 66, no. 12, pp.
6353–6367, 2018.

[263] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user
computation offloading for mobile-edge cloud comput-
ing,” IEEE/ACM Trans Netw, vol. 24, no. 5, pp. 2795–
2808, 2016.

[264] T. Yang, S. Gao, J. Li, M. Qin, X. Sun, R. Zhang,
M. Wang, and X. Li, “Multi-armed bandits learning for
task offloading in maritime edge intelligence networks,”
IEEE Trans. Veh. Technol., pp. 1–1, 2022.

[265] A. Slivkins, “Introduction to multi-armed bandits,”
arXiv preprint arXiv:1904.07272, 2019.

[266] Y. Zhan, S. Guo, P. Li, and J. Zhang, “A deep re-
inforcement learning based offloading game in edge
computing,” IEEE Trans Comput, vol. 69, no. 6, pp.
883–893, 2020.

[267] T. Bansal, J. Pachocki, S. Sidor, I. Sutskever, and
I. Mordatch, “Emergent complexity via multi-agent
competition,” arXiv preprint arXiv:1710.03748, 2017.

[268] S. Li, S. Bing, and S. Yang, “Distributional advantage
actor-critic,” arXiv preprint arXiv:1806.06914, 2018.

[269] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Ben-
nis, “Optimized computation offloading performance in
virtual edge computing systems via deep reinforcement
learning,” IEEE Internet Things J, vol. 6, no. 3, pp.
4005–4018, 2019.

[270] M. Min, X. Wan, L. Xiao, Y. Chen, M. Xia, D. Wu,
and H. Dai, “Learning-based privacy-aware offloading
for healthcare iot with energy harvesting,” IEEE Internet
Things J, vol. 6, no. 3, pp. 4307–4316, 2019.

[271] X. He, J. Liu, R. Jin, and H. Dai, “Privacy-aware
offloading in mobile-edge computing,” in GLOBECOM
2017 - 2017 IEEE Global Commun. Conf., 2017, pp.
1–6.

[272] X. He, H. Dai, and P. Ning, “Improving learning and
adaptation in security games by exploiting information
asymmetry,” in 2015 IEEE Conf. Comput. Commun.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 48

(INFOCOM), 2015, pp. 1787–1795.
[273] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Senevi-

ratne, “Privacy-preserved task offloading in mobile
blockchain with deep reinforcement learning,” IEEE
Trans Netw Service Manag, vol. 17, no. 4, pp. 2536–
2549, 2020.

[274] K. Wang, X. Yu, W. Lin, Z. Deng, and X. Liu, “Com-
puting aware scheduling in mobile edge computing
system,” Wirel Netw, pp. 1–17, 2019.

[275] N. Li, L. Hu, Z.-L. Deng, T. Su, and J.-W. Liu, “Re-
search on gru neural network satellite traffic prediction
based on transfer learning,” Kluw Commun, vol. 118,
no. 1, pp. 815–827, 2021.

[276] W. Sun, J. Liu, and Y. Yue, “Ai-enhanced offloading in
edge computing: When machine learning meets indus-
trial iot,” IEEE Netw, vol. 33, no. 5, pp. 68–74, 2019.

[277] M. H. Moghadam and S. M. Babamir, “Makespan
reduction for dynamic workloads in cluster-based data
grids using reinforcement-learning based scheduling,” J
Comput Sci, vol. 24, pp. 402 – 412, 2018.

[278] R.-S. Chang, J.-S. Chang, and S.-Y. Lin, “Job schedul-
ing and data replication on data grids,” Future Gener
Comp Sy, vol. 23, no. 7, pp. 846–860, 2007.

[279] T. T. Sung, J. Ha, J. Kim, A. Yahja, C.-B. Sohn,
and B. Ryu, “Deepsocs: A neural scheduler for het-
erogeneous system-on-chip (soc) resource scheduling,”
Electronics, vol. 9, no. 6, p. 936, 2020.

[280] T. Dong, F. Xue, C. Xiao, and J. Li, “Task schedul-
ing based on deep reinforcement learning in a cloud
manufacturing environment,” Concurrency Computa-
tion: Pract. Experience, vol. 32, no. 11, p. e5654, 2020.

[281] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-
effective and low-complexity task scheduling for hetero-
geneous computing,” IEEE Trans Parallel Distrib Syst,
vol. 13, no. 3, pp. 260–274, 2002.

[282] R. Grandl, S. Kandula, S. Rao, A. Akella, and
J. Kulkarni, “Graphene: Packing and dependency-aware
scheduling for data-parallel clusters,” in Proc. 12th
USENIX Conf. Operating Syst. Des. Implementation,
ser. OSDI’16. USA: USENIX Association, 2016, p.
81–97.

[283] Y. Wang, H. Liu, W. Zheng, Y. Xia, Y. Li, P. Chen,
K. Guo, and H. Xie, “Multi-objective workflow schedul-
ing with deep-q-network-based multi-agent reinforce-
ment learning,” IEEE Access, vol. 7, pp. 39 974–39 982,
2019.

[284] A. Chowdhury, S. A. Raut, and H. S. Narman, “Da-
drls: Drift adaptive deep reinforcement learning based
scheduling for iot resource management,” J Netw Com-
put Appl, vol. 138, pp. 51 – 65, 2019.

[285] Z. Wei, F. Liu, Y. Zhang, J. Xu, J. Ji, and Z. Lyu,
“A q-learning algorithm for task scheduling based on
improved svm in wireless sensor networks,” Comm Com
Inf Sc, vol. 161, pp. 138 – 149, 2019.

[286] K. Shah and M. Kumar, “Distributed independent rein-
forcement learning (dirl) approach to resource manage-
ment in wireless sensor networks,” in 2007 IEEE Int.
Conf. Mobile Adhoc Sensor Syst., 2007, pp. 1–9.

[287] Q. Chen, Z. Zheng, C. Hu, D. Wang, and F. Liu, “On-
edge multi-task transfer learning: Model and practice
with data-driven task allocation,” IEEE Trans Parallel
Distrib Syst, vol. 31, no. 6, pp. 1357–1371, 2020.

[288] Z. Peng, D. Cui, J. Zuo, Q. Li, B. Xu, and W. Lin,
“Random task scheduling scheme based on reinforce-
ment learning in cloud computing,” Cluster comput.,
vol. 18, no. 4, pp. 1595–1607, 2015.

[289] J. G. Shanthikumar, S. Ding, and M. T. Zhang, “Queue-
ing theory for semiconductor manufacturing systems: A
survey and open problems,” IEEE Trans Autom Sci Eng,
vol. 4, no. 4, pp. 513–522, 2007.

[290] H. Khazaei, J. Misic, and V. B. Misic, “Performance
analysis of cloud computing centers using m/g/m/m+r
queuing systems,” IEEE Trans Parallel Distrib Syst,
vol. 23, no. 5, pp. 936–943, 2012.

[291] A. M. Kintsakis, F. E. Psomopoulos, and P. A. Mitkas,
“Reinforcement learning based scheduling in a work-
flow management system,” Eng Appl Artif Intel, vol. 81,
pp. 94 – 106, 2019.

[292] W. Cui, K. Shen, and W. Yu, “Spatial deep learning
for wireless scheduling,” IEEE J Sel Areas Commun,
vol. 37, no. 6, pp. 1248–1261, 2019.

[293] J. Zhou, “Real-time task scheduling and network device
security for complex embedded systems based on deep
learning networks,” Microprocess Microsy, vol. 79, p.
103282, 2020.

[294] D. Cui, W. Ke, Z. Peng, and J. Zuo, “Multiple dags
workflow scheduling algorithm based on reinforcement
learning in cloud computing,” in Comput. Intell. Intell.
Syst., 2016, pp. 305–311.

[295] C. Morariu, O. Morariu, S. Răileanu, and T. Borangiu,
“Machine learning for predictive scheduling and re-
source allocation in large scale manufacturing systems,”
Comput Ind, vol. 120, p. 103244, 2020.

[296] G. Rjoub, J. Bentahar, O. Abdel Wahab, and
A. Saleh Bataineh, “Deep and reinforcement learning
for automated task scheduling in large-scale cloud com-
puting systems,” Concurrency Comput.: Pract. Experi-
ence, vol. 33, no. 23, p. e5919, 2021.

[297] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading
decision and resource allocation for multi-user multi-
task mobile cloud,” in 2016 IEEE Int. Conf. Commun.
(ICC), 2016, pp. 1–6.

[298] F. Jiang, K. Wang, L. Dong, C. Pan, W. Xu, and
K. Yang, “Deep-learning-based joint resource schedul-
ing algorithms for hybrid mec networks,” IEEE Internet
Things J, vol. 7, no. 7, pp. 6252–6265, 2020.

[299] M.-S. Yang, “A survey of fuzzy clustering,” Math
Comput modelling, vol. 18, no. 11, pp. 1–16, 1993.

[300] Z. Ning, P. Dong, X. Wang, J. J. P. C. Rodrigues, and
F. Xia, “Deep reinforcement learning for vehicular edge
computing: An intelligent offloading system,” ACM
Trans Intell Syst Technol, vol. 10, no. 6, Oct. 2019.

[301] A. Shahidinejad and M. Ghobaei-Arani, “Joint compu-
tation offloading and resource provisioning for e dge-
cloud computing environment: A machine learning-
based approach,” Softw. Pract. Experience, vol. 50,

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 49

no. 12, pp. 2212–2230, 2020.
[302] H. Flores and S. Srirama, “Adaptive code offloading

for mobile cloud applications: Exploiting fuzzy sets and
evidence-based learning,” in Proc. 4th ACM workshop
Mobile cloud comput. services, 2013, pp. 9–16.

[303] J. Xu, L. Chen, and S. Ren, “Online learning for
offloading and autoscaling in energy harvesting mobile
edge computing,” IEEE Trans on Cogn Commun Netw,
vol. 3, no. 3, pp. 361–373, 2017.

[304] J. Zhang, X. Hu, Z. Ning, E. C.-H. Ngai, L. Zhou,
J. Wei, J. Cheng, and B. Hu, “Energy-latency tradeoff
for energy-aware offloading in mobile edge computing
networks,” IEEE Internet Things J, vol. 5, no. 4, pp.
2633–2645, 2018.

[305] S. Xu, Q. Liu, B. Gong, F. Qi, S. Guo, X. Qiu,
and C. Yang, “Rjcc: Reinforcement-learning-based
joint communicational-and-computational resource al-
location mechanism for smart city iot,” IEEE Internet
Things J, vol. 7, no. 9, pp. 8059–8076, 2020.

[306] L. Bracciale and P. Loreti, “Lyapunov drift-plus-penalty
optimization for queues with finite capacity,” IEEE
Commun Lett, vol. 24, no. 11, pp. 2555–2558, 2020.

[307] G. Zhang, W. Zhang, Y. Cao, D. Li, and L. Wang,
“Energy-delay tradeoff for dynamic offloading in
mobile-edge computing system with energy harvesting
devices,” IEEE Trans Ind Informat, vol. 14, no. 10, pp.
4642–4655, 2018.

[308] C. J. Watkins and P. Dayan, “Q-learning,” Mach learn,
vol. 8, no. 3-4, pp. 279–292, 1992.

[309] N. Kiran, C. Pan, S. Wang, and C. Yin, “Joint resource
allocation and computation offloading in mobile edge
computing for sdn based wireless networks,” J Commun
Netw, vol. 22, no. 1, pp. 1–11, 2020.

[310] L. Lei, H. Xu, X. Xiong, K. Zheng, and W. Xiang,
“Joint computation offloading and multiuser scheduling
using approximate dynamic programming in nb-iot edge
computing system,” IEEE Internet Things J, vol. 6,
no. 3, pp. 5345–5362, 2019.

[311] G. Tesauro et al., “Temporal difference learning and
td-gammon,” Commun ACM, vol. 38, no. 3, pp. 58–68,
1995.

[312] F. Jiang, K. Wang, L. Dong, C. Pan, and K. Yang,
“Stacked autoencoder-based deep reinforcement learn-
ing for online resource scheduling in large-scale mec
networks,” IEEE Internet Things J, vol. 7, no. 10, pp.
9278–9290, 2020.

[313] H. Ye and G. Y. Li, “Deep reinforcement learning based
distributed resource allocation for v2v broadcasting,” in
2018 14th Int. Wireless Commun. Mobile Comput. Conf.
(IWCMC), 2018, pp. 440–445.

[314] K. Wang, Y. Tan, Z. Shao, S. Ci, and Y. Yang,
“Learning-based task offloading for delay-sensitive ap-
plications in dynamic fog networks,” IEEE Trans. Veh.
Technol., vol. 68, no. 11, pp. 11 399–11 403, 2019.

[315] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time
analysis of the multiarmed bandit problem,” Mach.
learn., vol. 47, no. 2, pp. 235–256, 2002.

[316] P. Dai, Z. Hang, K. Liu, X. Wu, H. Xing, Z. Yu,

and V. C. S. Lee, “Multi-armed bandit learning for
computation-intensive services in mec-empowered ve-
hicular networks,” IEEE Trans. Veh. Technol., vol. 69,
no. 7, pp. 7821–7834, 2020.

[317] N. Zhao, Y.-C. Liang, D. Niyato, Y. Pei, M. Wu, and
Y. Jiang, “Deep reinforcement learning for user asso-
ciation and resource allocation in heterogeneous cellu-
lar networks,” IEEE Trans Wireless Commun, vol. 18,
no. 11, pp. 5141–5152, 2019.

[318] F. Xu, F. Yang, S. Bao, and C. Zhao, “Dqn inspired joint
computing and caching resource allocation approach for
software defined information-centric internet of things
network,” IEEE Access, vol. 7, pp. 61 987–61 996, 2019.

[319] Y. Fan, Z. Zhang, and H. Li, “Message passing based
distributed learning for joint resource allocation in
millimeter wave heterogeneous networks,” IEEE Trans
Wireless Commun, vol. 18, no. 5, pp. 2872–2885, 2019.

[320] Y. Wu, E. Dobriban, and S. Davidson, “Deltagrad:
Rapid retraining of machine learning models,” in Int.
Conf. Mach. Learn. PMLR, 2020, pp. 10 355–10 366.

[321] R. Kolcun, D. A. Popescu, V. Safronov, P. Yadav, A. M.
Mandalari, Y. Xie, R. Mortier, and H. Haddadi, “The
case for retraining of ml models for iot device identi-
fication at the edge,” arXiv preprint arXiv:2011.08605,
2020.

[322] H. Djigal, F. Jun, and J. Lu, “Secure framework for
future smart city,” in 2017 IEEE 4th International
Conference on Cyber Security and Cloud Computing
(CSCloud), 2017, pp. 76–83.

[323] Z. Hong, Z. Wang, and W. Cai, “Blockchain-empowered
fair computational resource sharing system in the d2d
network,” Future Internet, vol. 9, p. 85, 11 2017.

[324] Y. Guo and C. Liang, “Blockchain application and out-
look in the banking industry,” Financial Innov., vol. 2,
no. 1, p. 24, 2016.

[325] A. Tapscott and D. Tapscott, “How blockchain is chang-
ing finance,” Harv Bus Rev, vol. 1, no. 9, pp. 2–5, 2017.

[326] X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat,
and L. Njilla, “Provchain: A blockchain-based data
provenance architecture in cloud environment with
enhanced privacy and availability,” in Proc. 17th
IEEE/ACM int. symp. cluster cloud grid comput. IEEE
Press, 2017, pp. 468–477.

[327] E. J. De Aguiar, B. S. Faiçal, B. Krishnamachari, and
J. Ueyama, “A survey of blockchain-based strategies for
healthcare,” ACM Comput Surv, vol. 53, no. 2, Mar.
2020.

[328] M. Liu, F. R. Yu, Y. Teng, V. C. M. Leung, and M. Song,
“Distributed resource allocation in blockchain-based
video streaming systems with mobile edge comput-
ing,” IEEE Transactions on Wireless Communications,
vol. 18, no. 1, pp. 695–708, 2019.

[329] J. Xie, H. Tang, T. Huang, F. R. Yu, R. Xie, J. Liu,
and Y. Liu, “A survey of blockchain technology applied
to smart cities: Research issues and challenges,” IEEE
Commun. Surveys Tuts., vol. 21, no. 3, pp. 2794–2830,
thirdquarter 2019.

[330] X. Wang, X. Ren, C. Qiu, Z. Xiong, H. Yao, and

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 



DJIGAL ET AL.: MACHINE AND DEEP LEARNING FOR RESOURCE ALLOCATION IN MULTI-ACCESS EDGE COMPUTING: A SURVEY 50

V. Leung, “Integrating edge intelligence and blockchain:
What, why, and how,” 2022.

[331] Y. Liu, K. Wang, Y. Lin, and W. Xu, “LightChain: A
lightweight blockchain system for industrial internet of
things,” IEEE Transactions on Industrial Informatics,
vol. 15, no. 6, pp. 3571–3581, 2019.

[332] A. Sufian, A. Ghosh, A. S. Sadiq, and F. Smarandache,
“A survey on deep transfer learning to edge computing
for mitigating the covid-19 pandemic,” J Syst Architect,
vol. 108, p. 101830, 2020.

[333] B. Yang, X. Cao, C. Yuen, and L. Qian, “Offloading op-
timization in edge computing for deep-learning-enabled
target tracking by internet of uavs,” IEEE Internet
Things J, vol. 8, no. 12, pp. 9878–9893, 2021.

[334] T. V. Phan, S. Sultana, T. G. Nguyen, and T. Bauschert,
“Qq - transfer: A novel framework for efficient deep
transfer learning in networking,” in 2020 Int. Conf. Artif.
Intell. Inf. Commun. (ICAIIC), 2020, pp. 146–151.

[335] S. J. Pan and Q. Yang, “A survey on transfer learning,”
IEEE Trans Knowl Data Eng, vol. 22, no. 10, pp. 1345–
1359, 2010.

[336] K. I-Kai Wang, X. Zhou, W. Liang, Z. Yan, and
J. She, “Federated transfer learning based cross-domain
prediction for smart manufacturing,” IEEE Trans Ind
Informat, pp. 1–1, 2021.

[337] Y. Pathak, P. Shukla, A. Tiwari, S. Stalin, S. Singh, and
P. Shukla, “Deep transfer learning based classification
model for covid-19 disease,” IRBM, 2020.

[338] S. Shao, S. McAleer, R. Yan, and P. Baldi, “Highly
accurate machine fault diagnosis using deep transfer
learning,” IEEE Trans Ind Informat, vol. 15, no. 4, pp.
2446–2455, 2019.

[339] R. Dong, C. She, W. Hardjawana, Y. Li, and B. Vucetic,
“Deep learning for radio resource allocation with di-
verse quality-of-service requirements in 5g,” IEEE
Trans Wireless Commun, vol. 20, no. 4, pp. 2309–2324,
2021.

Hamza Djigal received the BSc degree in mathe-
matics from Cheikh Anta Diop University, Dakar,
Senegal, in 2009, the MSc degree in software en-
gineering from Central China Normal University,
Wuhan, China, in 2014, and the PhD degree in
computer science and technology from Hohai Uni-
versity, Nanjing, China, in 2020. He is currently a
postdoctoral researcher with the School of Computer
Science, Nanjing University of Posts and Telecom-
munications, China. His main research interests in-
clude parallel and distributed computing, MEC, deep

learning, and resource allocation in heterogeneous MEC networks.

Jia Xu (SM’21) received the M.S. degree in School
of Information and Engineering from Yangzhou Uni-
versity, Jiangsu, China, in 2006 and the PhD. degree
in School of Computer Science and Engineering
from Nanjing University of Science and Technology,
Jiangsu, China, in 2010. He is currently a professor
in the School of Computer Science at Nanjing Uni-
versity of Posts and Telecommunications, China. He
was a visiting Scholar in the Department of Electri-
cal Engineering & Computer Science at Colorado
School of Mines from Nov. 2014 to May. 2015. His

main research interests include crowdsourcing, edge computing and wireless
sensor networks.

Linfeng Liu (M’13) received the B. S. and Ph.
D. degrees in computer science from the Southeast
University, Nanjing, China, in 2003 and 2008, re-
spectively. At present, he is a Professor in the School
of Computer Science and Technology, Nanjing Uni-
versity of Posts and Telecommunications, China.
His main research interests include the areas of
vehicular ad hoc networks, wireless sensor networks
and multi-hop mobile wireless networks. He has
published more than 80 peer-reviewed papers in
some technical journals or conference proceedings,

such as IEEE TMC, IEEE TPDS, ACM TAAS, IEEE TSC, IEEE TVT, IEEE
IoTJ, Computer Networks, Elsevier JPDC.

Yan Zhang (F’19) received the Ph.D. degree from
the School of Electrical and Electronics Engineering,
Nanyang Technological University, Singapore. He is
currently a Full Professor with the Department of
Informatics, University of Oslo, Oslo, Norway. His
research interests include next-generation wireless
networks leading to 5G beyond/6G, green and secure
cyber-physical systems (e.g., smart grid and trans-
port). Dr. Zhang is an Editor for several IEEE pub-
lications, including the IEEE COMMUNICATIONS
MAGAZINE, IEEE NETWORK, IEEE TRANSAC-

TIONS ON VEHICULAR TECHNOLOGY, IEEE TRANSACTIONS ON IN-
DUSTRIAL INFORMATICS, IEEE COMMUNICATIONS SURVEYS AND
TUTORIALS, and IEEE INTERNET OF THINGS JOURNAL. He is a Chair
in a number of conferences, including the IEEE GLOBECOM and IEEE
PIMRC. He is an IEEE Vehicular Technology Society Distinguished Lecturer.
He is a Fellow of IET. He is the Chair of IEEE Communications Society
Technical Committee on Green Communications and Computing. Prof. Zhang
was a recipient of the Highly Cited Researcher Award (Web of Science top
1% most cited) by Clarivate Analytics.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3199544

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on August 19,2022 at 04:57:27 UTC from IEEE Xplore.  Restrictions apply. 


