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Abstract—Underwater Acoustic Sensor Networks (UASNs)
are deployed for various underwater applications, such as
underwater creature tracking and tactical surveillance. Par-
ticularly, an UASN deployed in military applications could
be invaded by some underwater spy-robots which act as
eavesdroppers or hackers. An UASN is confronted with two
typical security threats: the eavesdroppers move around the
anchored nodes and eavesdrop on the communication channels
silently, and the data messages disseminated from the an-
chored nodes are probably stolen by these eavesdroppers; the
hackers disguise themselves and propagate the viruses to infect
the anchored nodes in a cascading manner. To reduce the theft
probability of data messages and the number of cascading
failures (the number of infected nodes) while maintaining the
required topology connectivity, an analysis framework is first
formulated to investigate the relations between the entropies
of degree distributions and the resistances of security threats,
and then the entropies of degree distributions are optimized to
resist the security threats through appropriately coordinating
the communication ranges of anchored nodes. We propose a
Topology Control Strategy based on Entropy Optimization
(TCSEO). In TCSEO, each anchored node independently
sets the initial communication range according to a binomial
distribution, and then the communications ranges of anchored
nodes are checked and adjusted to maintain the required
topology connectivity. Simulation results demonstrate the
preferable performance of TCSEO, i.e. TCSEO can reduce the
theft probability of data messages and the number of infected
nodes effectively, while the required topology connectivity is
maintained as much as possible.

Index Terms—underwater acoustic sensor network; topolo-
gy control; entropy optimization; data theft; cascading failure.

I. INTRODUCTION

Currently, Underwater Acoustic Sensor Networks
(UASNs) [1] have been applied into various underwater
applications, such as underwater creature tracking, tactical
surveillance, deep sea surveillance [2], and mineral
reconnaissance [3]. The sensor nodes are equipped with
floating buoys and are anchored to the underwater bottom
by ropes, as illustrated in Fig. 1. The measurements of
environmental events are monitored by the anchored nodes
and encapsulated into some data messages which will be
transferred to one of the surface sinks through several
transmission hops.

Fig. 1: Architecture of an UASN.

In underwater military applications, the data messages
could contain some confidential information, such as the
information regarding underwater tactical environments.
Some underwater spy-robots [4] could be dispatched by
enemy to invade an UASN, so as to steal the data messages
or infect the nodes with some viruses (programs). There are
two typical security threats in an UASN:

• Data thefts. Some underwater spy-robots termed
eavesdroppers move around anchored nodes and
eavesdrop on their communication channels. The
eavesdroppers are hardly perceived by anchored nodes
because the eavesdroppers do not actively communi-
cate with the anchored nodes and other eavesdroppers.
As illustrated in Fig. 2(a), an eavesdropper is adjacent
to an anchored node with in-degree k, and thus the
eavesdropper falls into the communication ranges of
(k + 1) different anchored nodes, i.e. the eavesdrop-
per could steal the data messages disseminated from
(k + 1) anchored nodes.

• Cascading failures. Some underwater spy-robots
termed hackers disguise themselves as ordinary n-
odes, and propagate some viruses to infect the an-
chored nodes. The viruses can be propagated by the
infected nodes as well, which gives rise to a cascading
failure phenomenon, as illustrated in Fig. 2(b).

To this end, the data messages should be prevented from
being stolen by the eavesdroppers, and the anchored nodes
should be protected from being infected by the hackers.
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Fig. 2: Data theft and cascading failure.

Some existing methodologies can help to resist these securi-
ty threats, e.g. the data messages could be encrypted before
the dissemination. Besides, some identity authentication
mechanisms (such as [5], [6]) could be introduced for
anchored nodes to identify the underwater spy-robots and
avoid the virus infections. However, a sophisticated encryp-
tion/decryption method or identity authentication mecha-
nism will give rise to a large computational cost, which is
typically intolerable due to the limited computational power
of anchored nodes.

Different from the above methodologies, this paper in-
vestigates a topology control approach to resist the security
threats including data thefts and cascading failures. The
topology control technique of UASNs is defined as the
art of coordinating the communication ranges of anchored
nodes to generate a preferable network topology. The
topology control approach is taken as an alternative
against the security threats, and it can be technically
combined with some lightweight encryption methods
and/or identity authentication mechanisms to resist the
security threats more effectively.

In this paper, we first analyze the probability distribution
of communication ranges of anchored nodes. The relations
between the entropies of degree distributions and the resis-
tances of security threats are specially exploited, and then
the entropies of degree distributions are optimized to resist
the data thefts and cascading failures through appropriately
coordinating the communication ranges of anchored nodes.
Thus, the theft probability of data messages and the number
of infected nodes can be reduced, while the required
topology connectivity is maintained as much as possible.

The remainder of this paper is organized as follows: Sec-
tion II briefly surveys some existing related studies. Section

III proposes a system model and a problem formulation.
Section IV gives an analysis framework for exploiting the
relations between the entropies of degree distributions and
the resistances of security threats. Section V presents a
Topology Control Strategy based on Entropy Optimization
(TCSEO). Simulation results for performance evaluation of
TCSEO are reported in Section VI. Finally, Section VII
concludes this paper.

II. RELATED WORK

A. Topology Control Methods in WSNs and UASNs

The topology control technique for Wireless Sensor
Networks (WSNs) has been extensively studied. For ex-
ample, Tan et al. present a topology control approach
for the energy-harvesting WSNs, and this approach allows
each node to adaptively adjust its transmission power and
effectively utilize the harvested energy [7]. Reference [8]
investigates a Topology Control algorithm with Lifetime
Extension (TCLE) which can construct dynamic network
topologies. The topologies obtained by TCLE can improve
the network lifetime significantly. In [9], a lightweight al-
gorithm for Adaptive Transmission Power Control (ATPC)
in WSNs is presented. In ATPC, the nodes build a model
for each neighbour to measure the correlation between
transmission power and link quality. Besides, a lifetime
optimization problem is formulated to find the suitable
topologies for network-coding-based WSNs [10].

Several topology control methods for UASNs that com-
bine the characteristics of acoustic communications and
underwater environments have been proposed, such as our
early work [11], where a Topology Control Strategy based
on Complex Network (TCSCN) is put forward to construct
a double clustering topology, and there are two kinds
of cluster-heads to ensure the connectivity and coverage,
respectively. Reference [12] formulates a game-theoretic
model for the topology control of nodes which are deployed
in a sparse underwater sensor network, and it proves
that the players can choose proper strategies to achieve
a socially optimal Stackelberg-Nash-Cournot equilibrium.
In [13], a single-leader and multi-followers Stackelberg
game is utilized to formulate the topology control problem
by exploiting the available communication opportunities.
Specifically, the mobile nodes and anchored nodes act as
leaders and followers, respectively. Zhang et al. propose
a vulnerability repair algorithm [14], where the coverage
matrix and the vulnerability edge nodes are applied to
determine whether the overlay vulnerability needs to be
repaired.

B. Topology Control Approaches against Security Threats

Some secure issues have been considered in the existing
topology control methods, such as [15], a distributed fault-
tolerant topology control algorithm is designed for hetero-
geneous WSNs. The ordinary nodes are connected with
the resource-rich nodes, and hence a k-vertex supernode-
connected network topology is generated to resist the
malicious attacks. In [16], an efficient Topology Control
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algorithm for node Mobility (TCM) is proposed, and a dig-
ital signature authentication based on error correction code
is adopted in TCM. In [17], an authenticated broadcasting
mechanism is introduced into the topology formation stage,
and two symmetric keys (a cluster key and a gateway key)
are locally distributed in the cluster constructions.

The cascading failure phenomenon of a scale-free topolo-
gy is investigated in [18], where the influence of nodal loads
on the cascading failures is analyzed, and the critical load-
triggering cascading failure can be obtained. Furthermore, a
model based on the node degree and betweenness centrality
is proposed in [19] to fortify the robustness of a scale-
free network against the cascading failures. Lal et al. [20]
provide a hybrid architecture including the physical layer
security, software defined networking, node cooperation,
cross-layering, context-awareness, and cognition. The net-
work topology can be adjusted to counteract any on-going
attacks. Reference [21] investigates the effects of topology
parameters and loads on the cascading failures. It derives
the structural features of scale-free topologies and the
capacity limits, through which the cascading fault tolerance
can be effectively enhanced. In [22], a robust optimization
formulation is presented to guarantee the robustness of
the network topologies against the uncertainty distributions.
Reference [23] develops a construction algorithm to gen-
erate a k-connected communication topology. Furthermore,
a distributed event-triggered controller is designed to guar-
antee the consensus under Mode-Switching DoS (MSDoS)
attacks.

C. Motivation of Our Work

In an UASN invaded by some underwater spy-robots
which act as eavesdroppers or hackers, the spy-robots
can steal the data messages or infect the anchored nodes.
As aforementioned above, the mechanisms of encryption
and identity authentication can help to resist the security
threats. However, the security threats cannot be completely
avoided by these mechanisms, due to the following facts:
(i) The anchored nodes are unconscious of the adjacent
eavesdroppers, and thus the theft probability of data mes-
sages cannot be reduced through intentionally avoiding
the message dissemination happening in the insecure areas
around eavesdroppers. (ii) The hackers are difficult to
be identified by the anchored nodes, because the hackers
disguise themselves as ordinary nodes.

Note that the theft probability of data messages and the
number of cascading failures (the number of infected nodes)
are affected seriously by the network topology, e.g. the data
messages are easier to be stolen when the communication
ranges of anchored nodes cover more eavesdroppers, and
the anchored nodes are easier to be infected when the com-
munication links are with less heterogeneity. In this paper,
we will prove that the network topology with homogeneous
in-degrees of anchored nodes is beneficial to reduce the
theft probability of data messages, and the network topolo-
gy with heterogeneous out-degrees of anchored nodes helps
to reduce the number of infected nodes.

Specifically, the entropies of degree distributions [24] (in-
cluding in-degree distribution and out-degree distribution)
are introduced to measure the heterogeneity of the network
topology, and then the relations between the entropies of
degree distributions and the resistances of security threats
are exploited to coordinate the communication ranges of
anchored nodes and generate a preferable network topology.

III. SYSTEM MODEL AND PROBLEM FORMULATION

TABLE I shows the list of notations used in the formu-
lation of topology control problem.

TABLE I: Main Notations

Parameter Description
r(i) Communication range of anchored node vi
d(i, j) Distance between two anchored nodes vi and vj

Pc(r(i), d(i, j))
Existence probability of the potential communication
link (i, j)

Ps(G(V,E)) Theft probability of data messages
Conn(G(V,E)) Topology connectivity

g(x · r0 )
Probability of the distance between two neighboring
nodes being x · r0

R(·) Probability density function of communication ranges
of anchored nodes

I(k)
Probability distribution function of in-degrees of
anchored nodes

Ei Entropy of in-degree distribution

O(k)
Probability distribution function of out-degrees of
anchored nodes

Eo Entropy of out-degree distribution
Nf (t) Number of infected nodes after t virus propagations

nf (t, ~)
Number of the ~-hop infected nodes after t virus
propagations

λi Setting of λ for reducing the theft probability

λo
Setting of λ for reducing the number of cascading
failures

λc
Setting of λ for maintaining the required topology
connectivity

λ̃ Optimal setting of λ

A. Anchored Nodes and Surface Sinks

There are N anchored nodes and M surface sinks. The
set of anchored nodes and surface sinks is denoted by
V = {v1, · · · , vN , s1, · · · , sM}, where the anchored nodes
v1, · · · , vN are uniformly deployed in underwater space D
(D ∈ R+3), and the surface sinks s1, · · · , sM are uniformly
berthed at the water surface. The topology of an UASN
is represented by a graph G(V,E), where the set of links
E ⊆ V × V.

Suppose there are χ underwater spy-robots which can
navigate freely in the underwater space D. Each spy-
robot could steal the data messages disseminated from
the anchored nodes or propagate the viruses to infect the
anchored nodes.

B. Potential Communication Links

The communication range of an anchored node vi is
denoted by r(i), and r(i) can be set to one of the com-
munication range levels: r0, 2r0, 3r0, · · · , rmax, where r0
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and rmax denote the minimum communication range and
the maximum communication range, respectively.

The distance between two anchored nodes vi and vj is
denoted by d(i, j). If r0 ≤ d(i, j) ≤ r(i), and then the
communication link (i, j) is considered to be a potential
communication link. A potential communication link is
defined as a communication link which is possible to exist
in the UASN, and the existence of the potential communica-
tion link is determined by the underwater acoustic channels,
as introduced in Section III.C.

C. Existences of Potential Communication Links

With regard to an anchored node vi, the
set of neighboring nodes is expressed as
{vj |vj ∈ V and d(i, j) ≤ rmax}, and the number of
neighboring nodes is K = 4π·rmax

3·N
3|D| − 1 when the

anchored nodes are uniformly deployed.
The probabilistic communication is a typical phe-

nomenon in underwater environments, and it is caused by
various factors, such as antenna directions/gains, transmit-
ting power, battery status, signal-to-noise ratio threshold,
and underwater obstacles, which make the acoustic waves
reflected, diffracted, or scattered underwater. According
to [25], [26], [27], Rayleigh fading is appropriate for de-
scribing the underwater acoustic channels, and the existence
of a potential communication link (i, j) is determined by
the following probability Pc(r(i), d(i, j)):

Pc(r(i), d(i, j)) =

{
0, if d(i, j) > r(i),

e
−
{

d(i,j)
r(i)

}K
·σ−2

, otherwise,
(1)

where σ denotes a Rayleigh fading parameter.
Fig. 3 illustrates the probabilistic communication phe-

nomenon in underwater environments, which indicates that
the existence probability of the potential communication
link (i, j) is increased with the increase of d(i,j)

r(i) .

Fig. 3: Probabilistic communication phenomenon.

Equation (1) implies that a potential communication link
could be unidirectional. Due to the unidirectional commu-
nication links between anchored nodes, we introduce the
concepts of in-degree and out-degree. An in-link of an
anchored node denotes a communication link from another
anchored node to itself, and the in-degree denotes the
number of its in-links. Likewise, an out-link of an anchored
node denotes a communication link from itself to another

anchored node, and the out-degree denotes the number of
its out-links.

For example, in Fig. 4, with regard to an anchored node
vi, there are three in-links (v1, vi), (v3, vi) and (v4, vi), and
four out-links (vi, v1), (vi, v2), (vi, v4) and (vi, v5). Thus,
the in-degree and out-degree of vi are equal to 3 and 4,
respectively.

Fig. 4: In-degree and out-degree.

D. Objective Function

To reduce the theft probability of data messages and the
number of infected nodes while maintaining the required
topology connectivity, the objective function is formulated
as follows:{

min Ps(G(V,E)),
min Nf (t),

s.t. Conn(G(V,E)) ≥ φ, (2)

where Ps(G(V,E)) denotes the theft probability of data
messages, and the expression of Ps(G(V,E)) will be given
in the next section. Nf (t) denotes the number of infected
nodes after t virus propagations. Conn(G(V,E)) denotes
the topology connectivity and is expressed as:

Conn(G(V,E)) = min
vi∈V

Conn(i), (3)

where Conn(i) denotes the maximum path connectivity
from vi to one of the surface sinks.

In (2), the constraint condition Conn(G(V,E)) ≥ φ
indicates that there is at least one available communication
path (with the maximum path connectivity larger than φ)
from each anchored node to one of the surface sinks, i.e.
∀vi ∈ V, there is Conn(i) ≥ φ.

IV. ANALYSIS FRAMEWORK

To simplify the further analysis, the maximum com-
munication range of each anchored node is divided into
several layers with the radius r0 , as depicted in Fig. 5. In
the communication range of rmax, the probability of the
distance between two neighboring nodes being x · r0 is
denoted by g(x · r

0
):

g(x · r0) =
(x · r0)3 − [(x− 1) · r0 ]3

rmax
3

, (4)

where x = 1, 2, · · · , rmax

r0
− 1.

To guarantee the communication range of each anchored
node fall into the range interval [r0 , rmax], we enable the
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Fig. 5: Layers of maximum communication range of an
anchored node.

communication ranges of anchored nodes to obey a bino-
mial distribution B

(
rmax

r0
, λ

)
, and the probability density

function R(x · r0) (1 ≤ x ≤ rmax

r0
) is defined as:

R(x · r0) =

(
rmax
r0
− 1

x− 1

)
· λx−1 · (1− λ)

rmax
r0

−x
, (5)

where 0 ≤ λ ≤ 1.

A. Data Theft vs. Entropy of In-degree Distribution

The probability distribution function of the in-degrees of
anchored nodes is denoted by I(k) (0 ≤ k ≤ K). The
expression of I(k) is given by:

I(k) =


rmax

r0∑
x=1

g(x · r0 ) ·

rmax
r0∑

κ=x

Pc(κ · r0 , x · r0 ) ·R(κ · r0 )




k

·


rmax

r0∑
x=1

g(x · r0 ) ·

1−

rmax
r0∑

κ=x

Pc(κ · r0 , x · r0 ) ·R(κ · r0 )





K−k

,

(6)

where
∑ rmax

r0
κ=x Pc(κ · r0 , x · r0) · R(κ · r0) denotes the

probability of a unidirectional communication link (with the
length equal to x·r0) existing in the UASN. The form of (6)
motivates us to construct I(k) as a geometric distribution:

I(k) = pi · qik, pi, qi ∈ (0, 1), (7)

and there is
∑K

k=0 I(k) = 1.
The probability that an eavesdropper around an anchored

node (with in-degree k) cannot break any data messages
disseminated from the (k+1) neighboring nodes (as shown
in Fig. 2(a)) is written as (1 − α)k+1, where α denotes
the probability of an eavesdropper successfully breaking
(deciphering) a data message.

Besides, the eavesdroppers navigate freely in the un-
derwater space, and thus each eavesdropper is assumed
to appear at any position with an equivalent probability.
Therefore, the theft probability (the probability of at least

a data message being stolen by eavesdroppers) is written
as:

Ps(G(V,E)) =
χ ·K
N
·

K∑
k=0

{
I(k) ·

[
1− (1− α)k+1

]}
. (8)

Lemma 1 proves that both Ei and Ps(G(V,E)) are
decreased with the reduction of qi.

Lemma 1: The theft probability of data messages is
increased with the increase of the entropy of in-degree
distribution.
Proof: The entropy of in-degree distribution is first given
by:

Ei = −
K∑

k=0

I(k) · ln I(k) = −pi ·
K∑

k=0

qi
k · (ln pi + k · ln qi)

= −pi ·


ln pi ·

1−qK+1
i

1−qi
+

ln qi ·
[

qi·(1−qKi )
(1−qi)2

− K·qK+1
i

1−qi

]  ,

(9)

and then the first-order partial derivative of Ei with respect
to qi is expressed as:

∂Ei

∂qi
=

− pi ·



ln pi ·
−(K+1)·qKi ·(1−qi)+1−qK+1

i
(1−qi)2

+

1
qi
·
[

qi·(1−qKi )

(1−qi)2
− K·qK+1

i
1−qi

]
+ ln qi· (1−qi)

2·(1−qKi −K·qKi )+2(1−qi)·qi·(1−qKi )

(1−qi)4

−K·(K+1)·qKi ·(1−qi)+K·qK+1
i

(1−qi)2




.

(10)

When K is large enough (i.e. the anchored nodes are
densely deployed), the equation

∑K
k=0 I(k) =

∑K
k=0 pi ·

qi
k = 1 yields that: pi ≈ 1− qi. Besides, the value of qiK

can be approximated to 0. Then, ∂Ei

∂qi
is approximatively

rewritten as:

∂Ei

∂qi
≈ −pi ·

[
ln pi + 1

(1− qi)2
+ ln qi ·

(1− qi)
2 + 2(1− qi) · qi
(1− qi)4

]
= − 1

1− qi
·
[
ln(1− qi) + 1 + ln qi ·

1 + qi
1− qi

]
> − 1

1− qi
· [ln(1− qi) + 1 + ln qi] > 0.

(11)

Note that the value of qi reflects the possibility of
generating communication links among neighboring nodes,
which is related to the communication ranges of anchored
nodes and the distances between anchored nodes, as de-
picted in (1). Thereby, (11) indicates that the entropy of
in-degree distribution is increased with the increase of
possibility of generating communication links.

Furthermore, the first-order partial derivative of
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Ps(G(V,E)) with respect to qi is written as:

∂Ps(G(V,E))
∂qi

=
χ ·K
N
·

K∑
k=0

{ [
k · qk−1

i − (k + 1) · qki
]

·
[
1− (1− α)k+1

] }

=
χ ·K
N
·



1−qi
qi
·
[

qi·(1−qKi )

(1−qi)2
− K·qK+1

i
1−qi

]
− 1−qi

qi
· (1− α)

·
{

qi·(1−α)·{1−[qi·(1−α)]K}
[1−qi·(1−α)]2

− K·[qi·(1−α)]K+1

1−qi·(1−α)

}
+(1− α) · 1−[qi·(1−α)]K+1

1−qi·(1−α)
− 1−qK+1

i
1−qi


.

(12)

By (12), we obtain that ∂Ps(G(V,E))
∂qi

≈ (1−α)−(1−α)2

1−[qi·(1−α)]2
>

0. Equations (11) and (12) imply that fewer data messages
are stolen along with a smaller entropy of in-degree
distribution. �

Lemma 1 also indicates that the network topology with
the homogeneous in-degrees of anchored nodes is beneficial
to reduce the theft probability of data messages. Thus, the
optimal value of qi for reducing the theft probability of data
messages can be calculated as the minimum solution of the
following equation set:{

pi =
1−qi

1−qiK+1 ,

qi =
1− K√pi

K√pi
.

(13)

B. Cascading Failure vs. Entropy of Out-degree Distribu-
tion

The probability distribution function of the out-degrees
of anchored nodes is denoted by O(k):

O(k) = Q̂k ·
(
1− Q̂

)K−k

=


rmax

r0∑
κ= 3

√
k
K

· rmax
r0

[
R(κ · r0)·∑κ

x=1 Pc(κ · r0, x · r0) · g(x · r0)

]
k

·

1−

rmax
r0∑

κ= 3
√

k
K

· rmax
r0

[
R(κ · r0)·∑κ

x=1 Pc(κ · r0, x · r0) · g(x · r0)

]
K−k

.

(14)

Note that the out-degree of each anchored node must be
greater than or equal to 1, because there must be at least one
available communication path to a surface sink, and there
is

∑K
k=1 O(k) = 1. The entropy of out-degree distribution

is defined by:

Eo = −
K∑

k=1

O(k) · lnO(k), (15)

and there is

∂Eo

∂Q̂
= −

K∑
k=1

 Q̂k ·
(
1− Q̂

)K−k

·[
k · ln Q̂+ (K − k) · ln

(
1− Q̂

)]
 > 0.

(16)

To measure the number of cascading failures, the number
of infected nodes after t virus propagations is given by:

Nf (t) =

t∑
~=1

nf (t, ~). (17)

With the virus propagations in the UASN, more anchored
nodes are probably infected by the hackers or other infected
ones. When t > 1, the expected number of the ~-hop
infected nodes is expressed as:

nf (t, ~) =


γ · χ ·K ·

[
1− Nf (t−1)

N

]
, if ~ = 1,

γ · nf (t− 1, ~− 1) ·
[
1− Nf (t−1)

N

]
·
∑K

k=1 k ·O(k) + nf (t− 1, ~), if 1 < ~ ≤ t,
0, if ~ > t,

(18)

where γ denotes the probability of an anchored node
being infected by neighboring hackers, and

[
1− Nf (t−1)

N

]
denotes the proportion of uninfected nodes after (t − 1)
virus propagations.

Lemma 2 proves that Nf (t) is decreased with the in-
crease of Q̂.

Lemma 2: The number of infected nodes is decreased
with the increase of the entropy of out-degree distribution.
Proof: When γ << 1, there is Nf (t−1)

N << 1. Thus,
∂nf (t,~)

∂Q̂
can be approximatively written as:

∂nf (t, ~)
∂Q̂

≈
0, if ~ = 1 or ~ > t,
nf (t−1,~)

∂Q̂
+ γ · nf (t− 1, ~− 1)

·
∑K

k=1

[
k · Q̂k−1 · (1− Q̂)K−k−1 ·

(
k −K · Q̂

)]
+γ · ∂nf (t−1,~−1)

∂Q̂
·
∑K

k=1 k ·O(k), if 1 < ~ ≤ t,

(19)

where
∑K

k=1

[
k · Q̂k−1 · (1− Q̂)K−k−1 ·

(
k −K · Q̂

)]
is smaller than 0, and hence we have that ∂nf (t,~)

∂Q̂
≤ 0.

Likewise, when N is large enough, there is ∂Nf (t)

∂Q̂
< 0,

which implies that fewer anchored nodes are infected
along with a larger entropy of out-degree distribution. �

Lemma 2 indicates that the network topology with the
heterogeneous out-degrees of anchored nodes can help to
reduce the number of infected nodes.

C. Optimal Setting of λ

According to the values of pi and qi obtained from (13),
the optimal value of λ for reducing the theft probability of
data messages is denoted by λi. λi can be obtained from
the following equation set:

pi =

1−
∑ rmax

r0
x=1

 g(x · r0)·∑ rmax
r0

κ=x

(
Pc(κ · r0 , x · r0)
·R(κ · r0)

) 
K

,

qi =

∑ rmax
r0

x=1

g(x·r0 )·
∑ rmax

r0
κ=x Pc(κ·r0 ,x·r0 )·R(κ·r0 )


∑ rmax

r0
x=1

g(x·r0 )·

1−
∑ rmax

r0
κ=x Pc(κ·r0 ,x·r0 )·R(κ·r0 )


,

∑K
k=0 pi · qi

k = 1.
(20)

Because Q̂ is increased with the increase of λ, and
hence the optimal value of λ for decreasing the number
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of cascading failures is denoted by λo, and λo is calculated
as the maximum solution of the following equation set:{ ∑K

k=1 O(k) = 1,∑K
k=1 k ·O(k) =

∑K
k=0 k · I(k).

(21)

Furthermore, λc denotes the minimum value of λ to
maintain the required topology connectivity. As illustrated
in Fig. 6, the lower anchored nodes typically have smaller
path connectivity than those of upper anchored nodes.
Therefore, the maximum path connectivity of a bottom n-
ode should be larger than the required topology connectivity
φ:

max
x=1,··· , rmax

r0


rmax

r0∑
κ=x

R(κ · r0) · Pc(κ · r0, x · r0)


H

x·r0

≥ φ,

(22)

where H denotes the water depth.

Fig. 6: Path connectivity of a bottom node.

Finally, the optimal setting of λ is denoted by λ̃ and
obtained by:

λ̃ = max {β · λi + (1− β) · λo, λc} , 0 ≤ β ≤ 1, (23)

where β is a weight to make a tradeoff between the
reduction of data thefts and the reduction of cascading
failures. Some numerical values of λ̃, λi, λo, and λc are
provided in Fig. 7, where the parameters are set according
to TABLE IV given in Section VI.

V. TOPOLOGY CONTROL STRATEGY BASED ON
ENTROPY OPTIMIZATION

Topology Control Strategy based on Entropy Optimiza-
tion (TCSEO) is specially designed to resist the security
threats of data thefts and cascading failures, while the
required topology connectivity is maintained as much as
possible. Note that TCSEO is a completely distributed s-
trategy, i.e. the global computations and message exchanges
are not required, and thereby the execution cost of TCSEO
is very low.

In TCSEO, each anchored node sets the initial communi-
cation range according to a binomial distribution. Then, the
communications ranges of anchored nodes are checked and

100 150 200 250 300 350 400 450 500
0.05

0.10

0.15

0.20

0.25

 

Number of anchored nodes

 
 
 c

Fig. 7: Numerical values of λ̃, λi, λo, and λc (when β=0.5).

adjusted to maintain the required topology connectivity, so
that there is at least an available communication path from
each anchored node to a surface sink. TABLE II provides
the symbols used in the description of TCSEO.

TABLE II: Symbols in TCSEO Description

Symbol Definition
r̂(i) Initial communication range of anchored node vi
path list(i) Communication path list of anchored node vi

path(i, k)
Communication path from anchored node vi to
surface sink sk

start msg Start message from a surface sink
path list msg Path list message of an anchored node

adjust msg
Adjust message from a lower anchored node to an
upper anchored node

random(0, tb) Random backoff time
tw Waiting time
tr Interval of topology reconstruction

A. Stage 1: Initial Communication Range Settings of An-
chored Nodes

Before setting the initial communication ranges of an-
chored nodes, a time synchronization process is first ac-
complished among anchored nodes and surface sinks.

Then, λ̃ is calculated by (23), and each anchored n-
ode vi independently sets the initial communication range
according to the binomial distribution B

(
rmax

r0
, λ̃

)
, i.e.

r̂(i) ∼ B
(

rmax

r0
, λ̃

)
, where r̂(i) denotes the initial com-

munication range of vi. Besides, the communication range
of each surface sink is set to rmax. An example of the
binomial distribution is given in Fig. 8.

Although the initial communication ranges of anchored
nodes are set to reduce the theft probability and the number
of infected nodes while maintaining the required topology
connectivity. However, due to the fact that each anchored
node sets the initial communication range independently,
the required topology connectivity of network topology
could not be guaranteed. Therefore, the communication
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Fig. 8: An example of the binomial distribution of commu-
nication ranges (when N = 200, φ = 0.8).

ranges of anchored nodes should be further checked and
adjusted, as introduced in Stage 3.

B. Stage 2: Information Exchanges

In Stage 2, the information regarding the initial
communication ranges of anchored nodes is exchanged,
and this stage is launched by surface sinks. Each
surface sink broadcasts a start msg in the maximum
communication range. Then, two cases are discussed as
follows:

Case i: Suppose an anchored node vi receives the first
start msg from a surface sink sk, and then the communi-
cation path list of vi is initialized as:

path list(i)← {(sk, vi), rmax, r̂(i)} . (24)

After a waiting period of tw, path list(i) should be
updated when the start msgs from other surface sinks
or the path list msgs from other anchored nodes are
received by vi.

Note that each path list msg includes the available
communication paths from the sender to surface sinks.
Then, after a random backoff time random(0, tb) to avoid
the communication collisions (tb denotes the maximum
backoff time), vi broadcasts a path list msg to the
neighboring nodes in the maximum communication range.

Case ii: If an anchored node does not receive any
start msgs, and when it receives the first path list msg
from a neighboring node (suppose vj receives the first
path list msg from vi), the communication path list of
vj is initialized as:

path list(j)← path list(i)
∪
{(vi, vj), r̂(i), r̂(j)} . (25)

Likewise, path list(j) will be updated after a waiting
period of tw.

The above process will be continued until the
path list msg of each anchored node has be initialized
and updated. The process of information exchanges in
TCSEO is shown in Fig. 9.

Fig. 9: Information exchanges.

C. Stage 3: Communication Range Adjustments

According the received path list msgs, each anchored
node selects the communication path with the maximum
path connectivity from itself to a surface sink. The pro-
cess of communication range adjustments is launched by
leaf nodes which do not receive any adjust msgs during
a waiting period of tw. An adjust msg is taken as a
request to upper anchored nodes for the adjustments of their
communication ranges.

Each leaf node calculates the maximum path connec-
tivity. For example, with regard to a leaf node vl, sup-
pose a communication path vl, vj , vi, · · · , sk is found in
path list(l) and is denoted by path(l, k). The maximum
path connectivity of vl is calculated by:

Conn(l)← max
path(l,k)∈path list(l)

∏
(j,i)∈path(l,k)

Pc(r̂(j), d(j, i)).

(26)

Then, three cases are discussed according to the value
of Conn(l):

Case i: If Conn(l) ≥ φ. We set r(l) ← r̂(l), where
r(l) denotes the adjusted communication range of vl.

Case ii: If Conn(l) < φ and Conn(l)· Pc(rmax,d(l,j))
Pc(r̂(l),d(l,j))

≥ φ. Then, r(l) is updated by:

r(l)← min

{
κ · r0

∣∣∣∣ Conn(l) · Pc(κ · r0, d(l, j))
Pc(r̂(l), d(l, j))

≥ φ

}
.

(27)

Case iii: If Conn(l)·Pc(rmax,d(l,j))
Pc(r̂(l),d(l,j))

< φ. We set r(l) ←
rmax, and Conn(l) is updated by:

Conn(l)← Conn(l) · Pc(rmax, d(l, j))

Pc(r̂(l), d(l, j))
. (28)
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After that, an adjust msg is sent from vl to vj .
Once receiving the adjust msg from vl, if Conn(l) ·
Pc(rmax,d(j,i))
Pc(r̂(j),d(j,i))

≥ φ, and then r(j) is updated by:

r(j)← min

{
κ · r0

∣∣∣∣ Conn(l) · Pc(κ · r0, d(j, i))
Pc(r̂(j), d(j, i))

≥ φ

}
.

(29)

If Conn(l)·Pc(rmax,d(j,i))
Pc(r̂(j),d(j,i))

< φ, we set r(j) ← rmax, and
then an adjust msg is sent from vj to vi for the further
adjustments of communication ranges of upper anchored
nodes.

The adjustment process will be repeated, until the
maximum path connectivity of each leaf node is not
smaller than φ, and thus the required topology connectivity
is maintained, as proven in Lemma 3.

Lemma 3: If the maximum path connectivity of each leaf
node is not smaller than φ, and then the required topology
connectivity is maintained.
Proof: With regard to each anchored node vo which is not
a leaf node, there is at least a leaf node (denoted by vl)
whose communication path passes through vo according
to the definition of leaf nodes, which indicates that there
is Conn(o) > Conn(l) ≥ φ. Hence, the maximum path
connectivity of each anchored node is not smaller than φ. �

An illustration of the communication range adjustments
is provided in Fig. 10, the communication path with the
maximum path connectivity is selected by a leaf node
vl, and the communication ranges of the anchored nodes
along this path are adjusted from vl to the surface sink sk
sequentially, until the inequality Conn(l) ≥ φ has been
satisfied.

Fig. 10: An illustration of communication range adjust-
ments.

Moreover, note that TCSEO will be re-executed at a
constant interval of tr, and thus the communication ranges
of anchored nodes are periodically reset and re-adjusted.
Such mechanism can balance the energy consumption

of anchored nodes and avoid the intentional threats of
eavesdroppers or hacks towards the anchored nodes with
large communication ranges. The pseudo-code of TCSEO
is depicted in Algorithm 1.

Algorithm 1 Pseudo-code of TCSEO

Input: : D,V, rmax.
Output: : G(V,E).

while at a constant interval of tr do
Time synchronization is accomplished.
for each surface sink sk ∈ {s1, · · · , sM} do
r(k)← rmax.

end for
for each anchored node vi ∈ {v1, · · · , vN} do
r̂(i) ∼ B

(
rmax

r0
, λ̃

)
.

end for
for each surface sink sk ∈ {s1, · · · , sM} do

A start msg is broadcasted.
end for
for each anchored node vi ∈ {v1, · · · , vN} do
path list(i) is initialized and updated.
A path list msg is sent to neighboring nodes.

end for
for each leaf node vl do

The communication path with the maximum path
connectivity is found.
if Conn(l) ≥ φ then
r(l)← r̂(l).

else
if Conn(l) · Pc(rmax,d(l,j))

Pc(r̂(l),d(l,j))
≥ φ then

r(l) is adjusted to the minimum communica-
tion range for Conn(l) ≥ φ.

else
r(l)← rmax.
An adjust msg is sent from vl to upper
anchored nodes along this communication
path.
while vj receives the adjust msg do

if Conn(l) · Pc(rmax,d(j,i))
Pc(r̂(j),d(j,i))

≥ φ then
r(j) is adjusted to the minimum com-
munication range for Conn(l) ≥ φ.

else
r(j)← rmax.
An adjust msg is sent from vj to upper
nodes along this communication path.

end if
G(V,E) is constructed.

end while
end if

end if
end for

end while

D. Complexity of TCSEO
TABLE III shows the communication complexity and

computational complexity of the proposed TCSEO.
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In Stage 1, the time synchronization such as TPSN
(Timing-sync Protocol for Sensor Networks) [28] is exe-
cuted among anchored nodes and surface sinks, and then
each anchored node independently sets the initial commu-
nication range. There are O(N + M)2 messages for the
time synchronization, and O(N +M) computations for the
communication range settings of anchored nodes.

Besides, λ̃ should be calculated by (13), where λi,
λo and λc are obtained from (20), (21) and (22),
respectively. Newton-Raphson method can be applied
to obtain λi, λo and λc. Thus, the computational
complexity for obtaining λi, λo and λc is written
as O

(
log

[(
rmax

r0
− 1

)
·K

])
, O

(
log

[(
rmax

r0
− 1

)
·K

])
and O

(
log

[(
rmax

r0
− 1

)
· Hr0

])
, respectively. Typically,

there is H
r0
,K << M,N , indicating that the computational

complexity of calculating λ̃ can be taken as a constant.
Therefore, the computational complexity of Stage 1 is
expressed as O(N +M).

In Stage 2, each surface sink broadcasts a start msg,
and each anchored node broadcasts a path list msg,
which indicates that a total of O(N + M) messages are
broadcasted. Because each anchored node is assumed to
have K neighboring nodes, in the worst case, an anchored
node could update its communication path list once it
receives a new path list msg from a neighboring node.
Due to the fact K << N , the computational complexity of
Stage 2 is written as O(N).

In Stage 3, each anchored node receives at most K
adjust msgs, which gives rise to a total of O(N) message
exchanges. With regard to each anchored node, the commu-
nication range is adjusted from r0 to rmax in the worst case.
There is rmax

r0
< H

r0
<< N , and thus the computational

complexity of Stage 3 is expressed as O(N).
Therefore, the communication complexity and computa-

tional complexity of TCSEO are written as O(N + M)2

and O(N +M), respectively.

TABLE III: Complexity of TCSEO

Stage Communication
Complexity

Computational
Complexity

1 O(N +M)2 O(N +M)
2 O(N +M) O(N)
3 O(N) O(N)
Total O(N +M)2 O(N +M)

VI. SIMULATIONS

In this section, TCSEO is evaluated by observing the
performance variations with respect to different parameters
and by comparing with other algorithms (TCLE, TCSCN,
and TCM). We develop a simulator using Python language
to assess the performance of TCSEO, and the main param-
eter settings are shown in TABLE IV.

A topology constructed by TCSEO is given in Fig. 11,
where the surface sinks are marked in black, and each
anchored node with the sum of in-degree and out-degree

TABLE IV: Simulation Parameters

Parameter Description Value

N Number of anchored nodes 200
M Number of surface sinks 15
χ Number of underwater spy-robots 5

|D| Size of deployment space
750×200
×25 m3

rmax Maximum communication range 150 m
r0 Minimum communication range 2 m
σ Rayleigh fading parameter 1.0
φ Required topology connectivity 0.8
β Tradeoff weight 0.5
tb Maximum backoff time 0.5 s
tw Waiting time 1.5 s
P0 Minimum signal power 0.07 w
ε Energy spreading factor 1.5
f Acoustic frequency 10 kHz
Suw Propagation speed of acoustic sound 1,500 m/s
Lm Size of each data message 500 B
B Channel capacity 8 kbps

α
Probability of an eavesdropper breaking
the captured data messages 0.45

γ
Probability of an anchored node being
infected by viruses 0.1

T Number of virus propagations 5
tr Interval of topology reconstruction 1,000 s

larger than 6 is marked in red. We observe that the
proportion of the anchored nodes with large in-degrees and
out-degrees is very small in Fig. 11.

A. Execution Time and Topology Connectivity

For each anchored node, the neighboring nodes must
be located in its maximum communication range, which
implies that the number of neighboring nodes K is not
large, and the number of anchored nodes on a commu-
nication path is not very large as well. Moreover, each
anchored node independently coordinates (sets and adjusts)
the communication range. To measure the execution time
of TCSEO, we observe the results of the average time for
an anchored node coordinating its communication range.

Fig. 12 illustrates that the average time for an anchored
node coordinating its communication range is slowly in-
creased with the increase of N , because more updates of
communication path lists and more adjustments of commu-
nication ranges could be required when the anchored nodes
are deployed more densely (i.e. there are more anchored
nodes on communication paths). Besides, a larger M pro-
longs the average time, and the reason is that more surface
sinks give rise to more available communication paths.
The above phenomena tally with the analysis conclusion
of Section V.D. Especially, note that the results in Fig. 12
fall into a small numerical interval [3.465,3.579], which
indicates that TCSEO has a preferable practicability in
terms of execution time.

Although TCSEO attempts to guarantee that each an-
chored node has at least one available communication path
to a surface sink (i.e. the maximum path connectivity is
larger than φ), the available communication paths may be
invalid due to underwater probabilistic communications. To
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Fig. 11: A topology constructed by TCSEO (when N = 200,M = 15).
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Fig. 12: Average time for an anchored node coordinating
communication range.

measure the quality of topology connectivity, the indexes
topology connectivity and average path connectivity are
observed. Specifically, the average path connectivity is
calculated as

∑
vi∈V Conn(i)

N . The simulation results are
given in Fig. 13.

Fig. 13 shows that the curve with a larger φ is generally
higher than that with a smaller one, which is attributed to
the fact that a larger φ gives rise to a larger λ̃, indicating that
the anchored nodes are endowed with larger communication
ranges, and thus the path connectivity is improved.

Besides, the curves in Fig. 13(a) and Fig. 13(b) fluctuate
with the increase of N , and this is because when the
anchored nodes are deployed more densely (N becomes
larger), more available communication paths from each
anchored node to surface sinks can be found to improve
the path connectivity. However, when the required topology
connectivity has been maintained, TCSEO will shorten
the communication ranges of anchored nodes to reduce
the theft probability of data messages and the number of
infected nodes.
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(a) Topology connectivity vs. N and φ
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Fig. 13: Topology connectivity and average path connec-
tivity.

B. Theft Probability

As depicted in Fig. 14(a), when N is fixed, the bar with
a larger φ is slightly higher than that with a smaller φ.
The reason is that a larger φ compels the anchored nodes
to increase their communication ranges to maintain the
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larger required path connectivity, and the data messages
disseminated from these anchored nodes are easier to be
stolen by eavesdroppers. Moreover, the bars first ascend
with the increase of N until N = 400, and then the bars
descend with the further increase of N , which indicates
that the communication ranges of anchored nodes will be
shortened when the number of anchored nodes is large
enough.

In Fig. 14(b), we observe that the theft probability of
data messages increases with the increase of χ or α,
due to the following reasons: (i) A larger χ implies that
more underwater spy-robots could invade the UASN and
navigate around the anchored nodes, and hence more data
messages could be stolen. (ii) A larger α indicates that
the underwater spy-robots are easier to break the captured
data messages. For example, the underwater spy-robots
have stronger computation power, or the data messages are
encrypted by a simpler rule.
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Fig. 14: Theft probability.

C. Number of Infected Nodes

In Fig. 15, two observations are obtained as follows: (i)
The number of infected nodes is almost linearly increased
with the increase of N or χ, which is attributed to the

fact that the anchored nodes or the underwater spy-robots
are assumed to be uniformly distributed in the UASN. (ii)
When the viruses are allowed to propagated during a longer
period (a larger T ), or the anchored nodes are infected by
the viruses more easily (a larger γ), more anchored nodes
are infected.

Note that a tiny increase in γ leads to a remarkable
increase in the number of infected nodes, which suggests
that it is very vital for the anchored nodes to identify the
hackers or the viruses, i.e. the number of infected nodes can
be reduced significantly through combining TCSEO with an
effective lightweight identity authentication mechanism.
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Fig. 15: Number of infected nodes.

D. Algorithm Comparisons

To further evaluate the merits of TCSEO, we compare
TCSEO with other algorithms (TCLE, TCSCN, and TCM).
These algorithms are compared in terms of average path
connectivity, theft probability, number of infected nodes,
energy consumption (calculated as [29]), and propagation
delay (calculated as [30]). The simulation results are pre-
sented in Fig. 16 and Fig. 17.

Fig. 16 indicates that TCSEO outperforms other algo-
rithms in terms of theft probability (in Fig. 16(b)) and
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number of infected nodes (in Fig. 16(c)) by an obvious
margin. The reason for these phenomena is that TCSEO
attempts to shorten the communication ranges of anchored
nodes, so as to reduce the theft probability of data messages
and the number of infected nodes through optimizing the
entropies of degree distributions, when the required topolo-
gy connectivity has been maintained. This mechanism can
prevent the data messages from being stolen by eavesdrop-
pers and protect the anchored nodes from being infected
by hackers as much as possible. Thus, the theft probability
of data messages and the number of infected nodes can
be reduced simultaneously, and the energy consumption is
decreased due to the shortened communication ranges of
anchored nodes, as shown in Fig. 17(a).

Fig. 16(a) and Fig. 17(b) illustrate the average path
connectivity and propagation delay, respectively. In order
to reduce the theft probability of data messages and the
number of infected nodes, TCSEO does not achieve the
best results in terms of average path connectivity and
propagation delay. For example, in Fig. 16(a), the curve of
TCSCN is higher than that of TCSEO when N ≤ 300, since
TCSCN allows some anchored nodes to adopt much larger
communication ranges, especially when the anchored nodes
are deployed sparsely. Hence, more available communica-
tion paths can be found in the topology constructed by
TCSCN, and the average path connectivity is accordingly
improved. Likewise, in Fig. 17(b), the propagation delay of
TCSCN is shorter than that of other algorithms.

Besides, the theft probability curve of TCM is much
lower than those of TCLE and TCSCN, and this is because
a digital signature authentication is applied in TCM.

The above simulation results suggest that the topology
constructed by TCSEO can reduce the theft ratio of data
messages and the number of infected nodes effectively,
while maintaining the required topology connectivity as
much as possible. Especially, the proper tradeoffs between
energy consumption and propagation delay can be made by
TCSEO.

VII. CONCLUSIONS

This study explores the topology control problem for the
UASNs invaded by some underwater spy-robots. To reduce
the theft probability of data messages and the number of
infected nodes while maintaining the required topology
connectivity, the relations between the entropies of degree
distributions and the resistances of security threats are
carefully investigated. Then, the entropies of degree distri-
butions are optimized to resist the security threats through
appropriately coordinating the communication ranges of
anchored nodes.

In the proposed Topology Control Strategy based on
Entropy Optimization (TCSEO), each anchored node inde-
pendently sets the initial communication range according to
a binomial distribution. Then, the communications ranges
of anchored nodes are checked and adjusted to maintain the
required topology connectivity as much as possible.

However, the movements of underwater spy-robots could
be more intelligent than the random movement assumption
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Fig. 16: Algorithm comparisons on average path connec-
tivity, theft probability, and number of infected nodes.

in this work, and the data messages will be stolen more
easily. Moreover, as mentioned above, an effective authen-
tication mechanism can help the anchored nodes to identify
the underwater spy-robots and avoid the virus infections.
Our future research will focus on investigating these issues.
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Fig. 17: Algorithm comparisons on energy consumption,
and propagation delay (fitted curves with 95% confidence
intervals).

APPENDIX

A. Energy Consumption

The energy consumption is mainly produced by the
sonars of anchored nodes due to the transmissions of a-
coustic waves, and the energy consumption of each message
dissemination (in Joule per byte) is calculated by:

E(r(i)) =
P0 · r(i)ε+1 · 10

r(i)·α(f)
10

Suw
, (30)

where P0 denotes the minimum received power level
to guarantee the quality of reception [29]. The energy
spreading factor and absorption coefficient are denoted
by ε(ε ∈ [1, 2]) and α(f), respectively. Suw denotes the
propagation speed of acoustic sound.

The absorption coefficient for the frequency range of
interest is calculated according to Thorp’s expression [29]:

α(f) =
0.11f2

1 + f2
+

44f2

4100 + f2
+ 2.75 · 10−4f2 + 0.003, (31)

where α(f) is in dB/km, and f is in kHz.

The total energy consumption is calculated as the sum
of energy consumption of all anchored nodes:

Etotal =

N∑
i=1

E(r(i)). (32)

B. Propagation Delay

The propagation delay on a communication link (i, j) is
expressed as [30]:

TD(i, j) =
Lm

B
+

d(i, j)

Suw
, (33)

where Lm denotes the size of a data message, and B
denotes the channel capacity which is in bits per second.
The propagation delay consists of channel preparation delay
and transmission delay. Lm

B denotes the channel preparation
delay which is the period of a data message being prepared
on channels, and d(i,j)

Suw
denotes the transmission delay of

acoustic wave propagation.
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