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A B S T R A C T

Task offloading is a promising technology to exploit the available resources in edge cloud efficiently. Many
incentive mechanisms for offloading systems have been proposed. However, most of existing works study the
centralized incentive mechanisms under the assumption that all mobile edge infrastructures are operated by
a central cloud. In this paper, we aim to design the auction-based truthful incentive mechanisms for heavily
loaded task offloading system in heterogeneous MECs. We first study the homogeneous MEC situation and
present a global auction executed in the central cloud as a benchmark. For the heterogeneous MEC situation, we
model the system as a dual auction framework, which enables the heterogeneous MECs to perform cross-edge
task offloading without the participation of central servers. Specifically, we design two dual auction models:
secondary auction-based model, which enables the system to offload tasks from a large-scale region in a single
auction, and double auction-based model, which is suitable for the time sensitive tasks. Then the auctions
for these two dual auction models are proposed. Through rigorous theoretical analysis, we demonstrate that
the proposed auctions achieve desirable properties of computational efficiency, individual rationality, budget
balance, truthfulness, and guaranteed approximation. The simulation results show that the secondary auction
and double auction can obtain 14.5% and 4.2% more social welfare than comparison algorithm on average,
respectively. In addition, the double auction has great advantage in terms of computation efficiency.
. Introduction

The pervasive proliferation of mobile devices enables mobile users
o enjoy many interesting and useful applications. Due to the limited
apacity of mobile devices and the increasing resource requirement
f applications, the computation and storage resources of mobile de-
ices become insufficient. With the large proliferation of time sensitive
ervices such as industrial IoT [1], real-time video/image process-
ng [2], and AR/VR applications [3], mobile edge computing has
merged to provide the computation and storage resources at the edge
f network [4].

Generally, the tasks are with different resource requirements, such
s CPU frequency, bandwidth, and storage. Task offloading to the
obile Edge Clouds (MEC) is an efficient way to improve the per-

ormance of system and reduce the resource consumption of mobile
evices [5]. A lot of efforts [6,7] have focused on developing multi-
ser task offloading system in MEC. Incentive mechanism is important
n most human involved systems [8–11]. For the task offloading system,
ncentive mechanism is crucial as the rational MECs will not provide the
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resources unless they can obtain sufficient compensation. Some recent
efforts [12–14] have focused on developing incentive mechanisms to
encourage edge cloud to participate in task offloading.

However, most of existing studies [15,16] consider that all MECs are
operated by the central cloud, which manages MECs as a central server,
and develop the centralized incentive mechanisms for task offloading.
In this paper, the MECs, which are operated by a single service provider
are termed homogeneous MECs. In real life, the MECs are operated
by different service providers. For example, the base stations and APs
are operated by different telecom companies, such as AT&T, Verizon,
Sprint and T-Mobile, even these edge infrastructures are close to each
other. The MECs are heterogeneous since they are operated by multiple
service providers. The centralized resource scheduling algorithms and
incentive mechanisms will not be effective in this heterogeneous MEC
scenario. There are two special issues in heterogeneous MEC task
offloading system:
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The first problem is the load migration among heterogeneous MECs.
With the development of emerging smart grid, intelligent transporta-
tion, industrial IoT, etc., task offloading is becoming more and more
pervasive. Load migration is indispensable for the heavily loaded task
offloading system. However, there is no central server in heterogeneous
MEC scenario, and the centralized load balancing mechanisms [17,18]
are invalid. The new load migration mechanism working on the edge
side is essential.

The second problem is the strategic behavior of heterogeneous
MECs. Since the MECs are operated by different service providers, who
usually compete with each other, the MECs may take strategic behavior
by submitting dishonest cost to maximize their utilities.

In this paper, we aim to design auction-based truthful incentive
mechanisms for heavily loaded task offloading system. We first study
the homogeneous MEC situation and present a global auction executed
in the central cloud as the benchmark of the auctions proposed in
heterogeneous MEC situation. For the heterogeneous MEC situation, we
model the system as a dual auction, which can achieve cross-edge task
offloading without the participation of central servers, to transfer the
task load to heterogeneous MECs through the profit-driven cooperation.
We further design two dual auction models for the heterogeneous MEC
scenario: secondary auction-based model and double auction-based
model. In secondary auction model, the idle MEC launches an auction
to sell its idle resources to the mobile users who failed in the local task
offloading. In double auction-based model, the busy MEC launches a
double auction to facilitate the transactions between the idle MECs and
mobile users.

The main contributions of this paper are as follows:

• We design the truthful incentive mechanisms for cross-edge task
offloading to stimulate the heterogeneous and strategic MECs.

• We design the system model for task offloading in homogeneous
MECs, and formulate the social optimal task offloading problem
to maximize the social welfare. We present a global auction as
the benchmark of the auctions proposed in heterogeneous MEC
situation.

• For the heterogeneous MECs, we model the task offloading system
as a dual auction, enabling the heterogeneous MECs to perform
cross-edge task offloading without the participation of central
servers. We present two dual auction models: secondary auction-
based model and double auction-based model. The secondary
auction-based model enables the system to offload tasks of mobile
users from a large-scale region in a single auction. The double
auction-based model can offload the tasks in time and is suitable
for the time sensitive tasks.

• We present the local auction, secondary auction, and double
auction for the task offloading in heterogeneous MECs. We show
that textcolorredthe local auction and secondary auction satisfy
the desirable properties of computational efficiency, individual
rationality, truthfulness, and approximation ratio. The double
auction can satisfy the properties of computational efficiency,
individual rationality, budget balance, and truthfulness.

The rest of the paper is organized as follows. We review the state-
of-art research in Section 2. Section 3 formulates the system models
and problems, and lists some desirable properties. Section 4, Sec-
tion 5, and Section 6 present the detailed design and analysis of our
auctions for homogeneous MEC model, secondary auction-based het-
erogeneous MEC model and double auction-based heterogeneous MEC
Model, respectively. Performance evaluation is presented in Section 7.
We conclude this paper in Section 8.

2. Related work

2.1. Resource scheduling in task offloading

The concept of task offloading was proposed as a promising solution

for emerging computation-intensive and real time services. Tran et al.
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consider the MEC enabled multi-cell wireless network and formulate
the problem of joint task offloading and resource allocation as a mixed
integer non-linear program under the constraints of computing re-
source and uplink transmission power [5]. They decompose the original
problem into a resource allocation problem with fixed task offloading
decision and a task offloading problem that optimizes the optimal-
value function corresponding to the resource allocation problem. Chen
et al. investigate the task offloading problem in ultra-dense network
and aim to minimize the delay while saving the battery life of user’s
equipment [16]. They formulate the task offloading problem as a
mixed integer non-linear program, and also transform the program into
two sub-problems (task placement sub-problem and resource allocation
sub-problem). Rahman et al. consider the task offloading in cloud
networked multi-robot systems [19]. They take the delay constraint,
the extra costs of data transmission and remote computation into
consideration. Then, an integrated framework, which owes a significant
improvement in overall system performance for cloud networked multi-
robot systems, is proposed. Guo et al. consider the energy-efficient com-
putation offloading under hard constraint of application completion
time [20].

However, the aforementioned works do not consider the load migra-
tion among the MECs. Since both the load and the available resources
are time varying in practice, cross-edge load migration is necessary in
task offloading systems.

2.2. Load balancing in task offloading

The load balancing mechanism aims at improving the overall work-
load of MEC system. Li et al. divide the MECs into three categories
(light-load MEC, normal-load MEC, and heavy-load MEC) and study
the balancing among different MECs to reduce the execution time of
tasks [18]. Laredo et al. investigate a self-organized critical approach
for dynamically load-balancing computational workload [21]. The pro-
posed model shows the features of load balancing and improves the
resource utilization. Zeng et al. try to minimize the total operating cost
in caching popular contents using load balancing [17]. They design an
online algorithm to solve the joint problem of content placement and
load balancing.

However, the works above mentioned do not consider the incentive
mechanism for the MECs. Since the MECs are operated by different
service providers, the MECs may take strategic behavior by submitting
dishonest cost to maximize their utilities.

2.3. Incentive mechanism for task offloading

Most of existing studies of incentive mechanism in MEC aim at
stimulating all parties to participant in the task offloading system.
Liu et al. consider the incentive mechanism between edge clouds
and central cloud [9]. They formulate the interactions among central
cloud and edge clouds as a Stackelberg game to maximize the utilities
of central cloud and edge clouds by obtaining the optimal payment
and computation offloading strategies. Li et al. propose an online
truthful mechanism for computation and communication resource al-
location [12]. In their system model, upon the arrival of a smartphone
user who requests task offloading, the base station needs to make a
decision right away without knowing any future information.

Auction is an efficient market mechanism to allocate the task and
determine the price and is widely used in crowdsensing, cloud com-
puting, and so on. Xu et al. focus on exploring truthful incentive
mechanisms for a novel and practical scenario of crowdsensing, where
the tasks are time window dependent, and the platform has strong
requirement of data integrity [22,23]. They formulate the problem as
the social optimization user selection problem and design two incentive
mechanisms. Tan et al. study a general online combinatorial auction
problem, in which a provider allocates multiple types of capacity-

limited resources to customers who arrive in a sequential and arbitrary
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manner [24]. Samimi et al. propose the combinatorial double auction
resource allocation, which solves the problem that most of the current
market-based resource allocation models are biased in favor of the
provider over the buyer in an unregulated trading environment [25].

Recently, auction has been used for task offloading in edge com-
puting. Habiba et al. propose a reverse auction framework based on
position auction, consisting of pricing, bidding strategy optimization,
and winner determination [26]. The auction aims to maximize the
utility of MEC through strategic participation and can obtain the desir-
able economical characteristics of envy-free and individual rationality.
Zhang et al. propose an auction scheme for computation resource
allocation in D2D-assisted MEC system [27].

However, aforementioned works study the centralized incentive
mechanisms under the assumption that all mobile edge infrastructures
are operated by the central cloud.

Overall, there is no off-the-shelf research in the literature, which
study the decentralized incentive mechanism for cross-edge task of-
floading in heterogeneous and strategic MECs.

3. System model and desirable properties

In this section, we consider two kinds of models for heavily loaded
task offloading systems: homogeneous MEC model and heterogeneous
MEC model. In homogeneous MEC model, all MECs are operated by
the same service provider, and the resources of homogeneous MECs are
scheduled by the uniform central cloud. In heterogeneous MEC model,
the MECs are operated by different service providers, i.e., there is no
uniform central cloud to schedule the resources for task offloading.
Different from most existing task offloading system, we model the
task offloading in heterogeneous MECs as a dual auction, allowing
the cooperative task offloading between the MECs. We consider that
each MEC is selfish to other MECs in heterogeneous MEC model when
bidding for an auction. Moreover, the required resources are always
more than the available resources provided in the designed auctions
since we consider the heavily loaded task offloading.

3.1. Homogeneous MEC model

We consider a task offloading system consisting of a central cloud,
a set of 𝑚 MECs 𝐸 = {𝑒1, 𝑒2,… , 𝑒𝑚}, and a set of 𝑛 mobile device users
𝑈 = {𝑢1, 𝑢2,… , 𝑢𝑛}. Let 𝑚 ≪ 𝑛 since we consider the heavily loaded task
offloading system.

Each user 𝑢𝑗 ∈ 𝑈 has a task 𝑡𝑗 , which is expected to be offloaded
to the MEC. We consider that the task is indivisible, and can only
be offloaded to at most one MEC. We denote the set of tasks as
𝑇 = {𝑡1, 𝑡2,… , 𝑡𝑛}. We consider that there are 𝑟 kinds of resources
in the MECs, denoted as 𝑅 = {1, 2,… , 𝑟}, such as internal storage,
external storage, CPU frequency, bandwidth, and GPU memory. Each
task 𝑡𝑗 has a resource requirement 𝒂𝒋= (𝑎1𝑗 , 𝑎

2
𝑗 ,… , 𝑎𝑟𝑗 ), where 𝑎𝑖𝑗 is

the requirement of any resource 𝑖 ∈ 𝑅. Specifically, if there is no
requirement of some resource, the corresponding requirement could
be set as zero. Note that the requirement of each kind of resources
is normalized by the benchmark unit. The benchmark units of every
kind of resources have the same value. For example, if the value of
1GB internal storage equals to the value of 100GB external storage, we
can set 1GB and 100GB as the benchmark units of internal storage and
external storage, respectively. Each MEC 𝑒𝑘 ∈ 𝐸 has a resource capacity
𝒅𝒌= (𝑑1𝑘 , 𝑑

2
𝑘 ,… , 𝑑𝑟𝑘), which is a vector of available resources. Similarly,

the resource capacity is also normalized by the benchmark unit.
We model the task offloading system as a sealed auction. First, each

user 𝑢𝑗 ∈ 𝑈 submits a bid 𝐵𝑗 = (𝑡𝑗 , 𝒂𝒋 , 𝑏𝑗 ) to one of available MECs
based on its location, preference and so on. 𝑏𝑖 is user 𝑢𝑗 ’s bid price,
i.e., the maximal price it can pay for offloading task 𝑡𝑗 . Each user 𝑢𝑗
also has a value 𝑣𝑗 for offloading task 𝑡𝑗 . We consider that 𝑣𝑗 is the
private information and is known only to user 𝑢𝑗 . Actually, the user

may have multiple tasks to be offloaded at same time. In this case, the

92
Fig. 1. Task offloading of homogeneous MEC model.

user can be viewed as multiple users, and each user bids for one task
independently.

We consider that the mobile users cannot communication with the
central cloud directly. After receiving the bids from users, each MEC
submits the bids and the resource capacity of itself to the central
cloud. We consider that the MECs are honest but rational to the users,
i.e., the MECs never tamper with bids of users. Given the user set 𝑈 ,
the bid profile B= (𝐵1, 𝐵2,… , 𝐵𝑛), and the resource capacity matrix 𝐃 =
(𝒅𝟏,𝒅𝟐,… ,𝐝𝐦), the central cloud calculates the winning set 𝑆 ∈ 𝑈 , the
resource allocation profile q= (𝑞1, 𝑞2,… , 𝑞𝑛), and the payment profile
p= (𝑝1, 𝑝2,… , 𝑝𝑛), where 𝑞𝑗 and 𝑝𝑗 , 𝑗 = 1, 2,… , 𝑛, are the allocated MEC
and the payment of user 𝑢𝑗 , respectively. Then the central cloud notifies
winners of the determination via MECs. Each winner 𝑢𝑗 pays 𝑝𝑗 to MEC
𝑞𝑗 , and offloads task 𝑡𝑗 to 𝑞𝑗 . Finally, 𝑞𝑗 returns the result to 𝑢𝑗 when it
completes 𝑡𝑗 . The whole process is illustrated by Fig. 1.

We define the utility of user 𝑢𝑗 as the difference between the value
and payment:

𝑢𝑡𝑗 =
{

𝑣𝑗 − 𝑝𝑗 , if 𝑢𝑗 ∈ 𝑆
0, otherwise

(1)

Specially, the utility of the losers would be zero because they pay
nothing and there is no value for them.

Note that 𝑏𝑗 can be different from the value 𝑣𝑗 because we consider
the users selfish. So, the users may take a strategic behavior by claiming
dishonest value to maximize their own utilities.

Sicne all MECs are operated by the same service provider in ho-
mogeneous MEC model, we define the utility of the central cloud as:

𝑢𝑡0 =
∑

𝑢𝑗∈𝑆
𝑝𝑗 (2)

Moreover, the social welfare is:

𝑢𝑡𝑠 = 𝑢𝑡0 +
∑

𝑢𝑗∈𝑆
𝑢𝑡𝑗 =

∑

𝑢𝑗∈𝑆
𝑣𝑗 (3)

The objective is maximizing the social welfare subject to the con-
straint that each task is offloaded to at most one MEC, and all the
resource requirements of winners can be satisfied. Although the value
𝑣𝑗 is only known by user 𝑢𝑗 , we will prove that claiming a different
value 𝑏𝑗 cannot help to increase the utility of user 𝑢𝑗 in our designed
mechanisms. So, we still use 𝑏𝑗 when we attempt to maximize the social
welfare. We call this problem as Global Social Optimal Task Offloading
(GSOTO) problem, which can be formulated as follows:

max
∑

𝑒𝑘∈𝐸

∑

𝑢𝑗∈𝑈
𝑏𝑗𝑦

𝑗
𝑘 (4)

𝑠.𝑡.
∑

𝑢𝑗∈𝑈
𝑎𝑖𝑗𝑦

𝑗
𝑘 ≤ 𝑑𝑖𝑘,∀𝑖 ∈ 𝑅,∀𝑒𝑘 ∈ 𝐸 (4-1)

∑

𝑒𝑘∈𝐸
𝑦𝑖𝑘 ≤ 1,∀𝑢𝑗 ∈ 𝑈 (4-2)

𝑦𝑖𝑘 ∈ {0, 1},∀𝑢𝑗 ∈ 𝑈,∀𝑒𝑘 ∈ 𝐸 (4-3)

where 𝑦𝑗𝑘 = 1 represents that task 𝑡𝑗 is offloaded to MEC 𝑒𝑘, and
𝑦𝑗𝑘 = 0 otherwise. The constraint (4–1) ensures that the total resource
requirement is no more than the resource capacity for every resource
in each MEC. The constraint (4–2) ensures that a task can only be
offloaded to at most one MEC, i.e., the task is indivisible.
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Fig. 2. Process of local auction.

3.2. Secondary auction-based heterogeneous MEC model

In this subsection, we consider that the MECs are operated by
different service providers. This means that there is no central cloud
to hold the auction. To address this problem, we model the task
offloading in heterogeneous MECs as a dual auction system consisting
of local auction and secondary auction. The secondary auction-based
heterogeneous MEC model enables the system to offload tasks of mobile
users from a large-scale region in a single auction. Thus, the secondary
auction-based heterogeneous MEC model is suitable for the large-scale
task offloading system.

First, the users submit their bids for task offloading to the corre-
sponding MECs. Different from the homogeneous MEC model, there
is no central controller in the heterogeneous MEC model. Thus, the
users cannot communicate with the MECs in other areas. However, the
MECs can communicate with each other through backbone network.
For example, the base stations are interconnected by the backbone
network, even they are operated by different service providers. Since
the MECs are operated by different service providers, the MECs always
do not share the revenue with other MECs. At the beginning of task
offloading, these heterogeneous MECs have conflicts of interest, and
they all want to obtain the tasks to get the payment from the users.
Thus, they will never offload the local tasks to other MECs, and cannot
be controlled by any central controller.

Since there is no central controller, each MEC executes a local
auction independently. We denote the user set and the corresponding
bid profile of any MEC 𝑒𝑘 as 𝑈𝑘 and 𝐁𝐤, respectively. Each MEC 𝑒𝑘
calculates the winner set 𝑆𝑘 ⊆ 𝑈𝑘 and the payment profile 𝐩𝐤. Then
Each MEC 𝑒𝑘 notifies winners of the determination. Each winner 𝑢𝑗 ∈
𝑆𝑘 pays 𝑝𝑗 to 𝑒𝑘, and offloads task 𝑡𝑗 to 𝑒𝑘. Finally, 𝑒𝑘 return the result
to 𝑢𝑗 when it completes 𝑡𝑗 . The process of local auction is illustrated by
Fig. 2.

We define the utility of any MEC 𝑒𝑘 as:

𝑢𝑡𝑒𝑘 =
∑

𝑢𝑗∈𝑆𝑘

𝑝𝑗 (5)

Then the social welfare is:

𝑢𝑡𝑠 = 𝑢𝑡𝑒𝑘 +
∑

𝑢𝑗∈𝑆𝑘

𝑢𝑡𝑗 =
∑

𝑢𝑗∈𝑆𝑘

𝑣𝑗 (6)

The objective of local auction is maximizing the social welfare such
that all the resource requirements of winners can be satisfied. We call
this problem as Local Social Optimal Task Offloading (LSOTO) problem,
which can be formulated as follows for each MEC 𝑒𝑘:

max
∑

𝑢𝑗∈𝑈
𝑏𝑗𝑦

𝑗
𝑘 (7)

𝑠.𝑡.
∑

𝑢𝑗∈𝑈𝑘

𝑎𝑖𝑗𝑦
𝑗
𝑘 ≤ 𝑑𝑖𝑘,∀𝑖 ∈ 𝑅 (7-1)

𝑦𝑗𝑘 ∈ {0, 1},∀𝑢𝑗 ∈ 𝑈,∀𝑒𝑘 ∈ 𝐸 (7-2)

After local auction, the MECs can be divided into two categories:
busy MECs who still have tasks needed to be offloaded and idle MECs
that are with residual resources. In order to offload tasks as many as
possible and take full advantage of residual resources of idle MECs, the
93
Fig. 3. Process of secondary auction.

idle MECs can launch a secondary auction for the losers of local auction
in busy MECs.

Any idle MEC can launch a secondary auction and inform other
MECs of the auction at any time. When a busy MEC receives the
information, it submits the bids of losers in local auction to the idle
MEC. The secondary auction is an idle MEC-led auction, which is fit
for the heavily loaded task offloading system.

Basically, the process of secondary auction is similar to the local
auction. The difference is that each busy MEC will take the agency fee
𝛼𝑘𝑝𝑗 for any task 𝑡𝑗 to compensate the agency cost such as communica-
tion cost and store-and-forward cost, where 𝛼𝑘 ∈ (0, 1) is the agency fee
rate of any busy MEC 𝑒𝑘. We consider that 𝛼𝑘 is the public information.
When receiving the payment from each winner of secondary auction,
the corresponding busy MEC will deduct the agency fee, and submit the
residual payment to the idle MEC. Note that we consider that the MEC
is honest but rational to the users, i.e., the busy MECs never tamper
with bids of users and never deduct more than the declared agency
fee. The process of secondary auction is illustrated by Fig. 3.

Given the winner set 𝑆𝑘 of busy MEC 𝑒𝑘 in the secondary auction,
the utility of each busy MEC 𝑒𝑘 is:

𝑢𝑡𝑒𝑘 =
∑

𝑢𝑗∈𝑆𝑘

𝛼𝑘𝑝𝑗 (8)

We define the utility of the idle MEC as:

𝑢𝑡𝑖𝑑𝑙𝑒 =
∑

𝑒𝑘∈𝐸

∑

𝑢𝑗∈𝑆𝑘

(1 − 𝛼𝑘)𝑝𝑗 (9)

Then the social welfare is:

𝑢𝑡𝑠 = 𝑢𝑡𝑖𝑑𝑙𝑒 +
∑

𝑒𝑘∈𝐸
𝑢𝑡𝑒𝑘 +

∑

𝑒𝑘∈𝐸

∑

𝑢𝑗∈𝑆𝑘

𝑢𝑡𝑗 =
∑

𝑢𝑗∈𝑆𝑘

𝑣𝑗 (10)

The objective of secondary auction is maximizing the social welfare
ubject to the resource constraint, which is same with local auction.
bviously, this problem is also the LSOTO problem, which has been

formulated in (7).

3.3. Double auction-based heterogeneous MEC model

In this subsection, we present a cooperative task offloading model
through double auction. Different from the secondary auction, the
double auction is launched by a busy MEC once there are tasks, which
cannot be offloaded in the local MEC. Thus this model can improve
the timeliness, and is suitable for the time sensitive tasks. Moreover, as
the sellers of double auction, the idle MECs are always profitable. We
model the task offloading system as a dual auction system consisting of
local auction and double auction.

The local auction is same with that of secondary auction-based
heterogeneous MEC model. Then we consider that a busy MEC 𝑒0
launches a double auction, where the idle MECs are sellers, and the
users in 𝑈𝐿 = 𝑈0∖𝑆0, i.e., the losers of local auction in MEC 𝑒0, are the
buyers. After that, each idle MEC 𝑒𝑘 in the idle MEC set 𝐸𝑖𝑑𝑙𝑒 submits
an ask 𝐴𝑘 = (𝒅𝒌, 𝑔𝑘) to 𝑒0, where 𝑔𝑘 is the unit resource ask price of 𝑒𝑘.

Given the user set 𝑈𝐿, the idle MEC set 𝐸𝑖𝑑𝑙𝑒, the bid profile 𝐁𝐋 of
users in 𝑈𝐿, and the ask profile 𝐀𝐢𝐝𝐥𝐞 of idle MECs in 𝐸𝑖𝑑𝑙𝑒, the busy
MEC calculates the winning user set 𝑆𝑈 ⊆ 𝑈𝐿 the winning idle MEC set
𝑆𝐸 ⊆ 𝐸𝑖𝑑𝑙𝑒, the resource allocation profile q, and the payment profile
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Fig. 4. Process of double auction.

= (𝐩𝐔,𝐩𝐄), where 𝐩𝐔 = (𝑝𝑈1 , 𝑝
𝑈
2 ,… , 𝑝𝑈

|𝑈𝐿
|

) and 𝐩𝐔 = (𝑝𝐸1 , 𝑝
𝐸
2 ,… , 𝑝𝐸

|𝐸𝑖𝑑𝑙𝑒
|

)
re the payment of users and idle MECs, respectively. Then the busy
EC notifies winners of the determination. Each winner 𝑢𝑗 ∈ 𝑆𝑈 pays

𝑈
𝑗 to busy MEC 𝑒0, and 𝑒0 pays 𝑝𝐸𝑘 to each winning idle 𝑒𝑘 ∈ 𝑆𝐸 .

Afterwards, each winner 𝑢𝑗 offloads task 𝑡𝑗 to MEC 𝑞𝑗 via busy MEC.
inally, 𝑞𝑗 return the results to 𝑢𝑗 via busy MEC when it completes 𝑡𝑗 .
he whole process is illustrated by Fig. 4.

We define the utility of user 𝑢𝑗 as the difference between the value
nd payment:

𝑡𝑗 =

{

𝑣𝑗 − 𝑝𝑈𝑗 , if 𝑢𝑗 ∈ 𝑆𝑈

0, otherwise
(11)

The utility of each idle MEC 𝑒𝑘 is:

𝑢𝑡𝑒𝑘 =

{

𝑝𝑈𝑗 − 𝑐𝑘
∑

𝑢𝑗∈𝑆𝑈 , 𝑞𝑗=𝑒𝑘
∑

𝑖∈𝑅 𝑎𝑖𝑗 , if 𝑒𝑘 ∈ 𝑆𝐸

0, otherwise
(12)

where 𝑐𝑘 is the unit resource cost of 𝑒𝑘.
Note that 𝑏𝑗 can be different from the value 𝑣𝑗 and 𝑔𝑘 can be

different from the cost 𝑐𝑘 because we consider both users and idle MECs
selfish. So, they may take a strategic behavior by claiming dishonest
value/cost to maximize their own utilities.

The utility of busy MEC 𝑒0 is:

𝑢𝑡𝑒0 =
∑

𝑢𝑗∈𝑆𝑈

𝑝𝑈𝑗 −
∑

𝑒𝑘∈𝑆𝐸

𝑝𝐸𝑘 (13)

3.4. Desirable properties

Our objective is to design the auctions satisfying the following
desirable properties:

• Computational Efficiency: An auction is computationally effi-
cient if the winner set 𝑆, the resource allocation q, and the
payment p can be computed in polynomial time.

• Individual Rationality: Each bidder will have a non-negative
utility while reporting true private information.

• Truthfulness: An auction is truthful if no bidder can improve
its utility by submitting false value/cost, no matter what others
submit. In other words, reporting the real value/cost is a weekly
dominant strategy for all bidders.

• Approximation Ratio: The goal of the auction is to maximize
the social welfare. We attempt to find the algorithms with low
approximation ratios.

The importance of the first three properties is obvious, because they
together ensure the feasibility of the auction. The last two properties
are indispensable for guaranteeing the compatibility and high perfor-
mance. Being truthful, the auction can eliminate the fear of market
manipulation and the overhead of strategizing over others for the
participating users.

We list the frequently used notations in Table 1.

4. Task offloading with homogeneous MECs

In this section, we present the global auction for the task offloading
with homogeneous MECs as the benchmark. Furthermore, the global
94
Table 1
Frequently used notations.

Notations Description

𝐸 set of MECs
𝑈,𝑆 user set, winner set
𝑇 , 𝑡𝑗 task set, task of user 𝑢𝑗
𝒂𝒋 , 𝑎𝑖𝑗 task 𝑡𝑗 ’s resource requirement, task 𝑡𝑗 ’s requirement of resource 𝑖
𝒅𝒌 , 𝑑𝑖

𝑘 MEC 𝑒𝑘 ’s resource capacity, MEC 𝑒𝑘 ’s capacity of resource 𝑖
𝑣𝑗 , 𝑏𝑗 value of user 𝑢𝑗 , bid price of user 𝑢𝑗
B , 𝐵𝑗 bid profile of users, bid of user 𝑢𝑗
D MECs’ resource capacity profile
q , 𝑞𝑗 resource allocation profile, allocated MEC of user 𝑢𝑗
p , 𝑝𝑗 payment profile, payment of user 𝑢𝑗
𝑢𝑡0 , 𝑢𝑡𝑗 utility of central cloud, utility of user 𝑢𝑗
𝑢𝑡𝑠 social welfare
𝑈𝑘 , 𝑆𝑘 set of user in MEC 𝑒𝑘, set of winners in MEC 𝑒𝑘
𝐁𝐤 bid profile of users in MEC 𝑒𝑘
𝐩𝐤 payment profile in MEC 𝑒𝑘
𝑢𝑡𝑒𝑘 utility of MEC 𝑒𝑘
𝛼𝑘 agency fee of MEC 𝑒𝑘
𝑈𝐿 loser set of local auction in busy MEC
𝐁𝐋 bid profile of loser in busy MEC
𝐸𝑖𝑑𝑙𝑒 set of idle MECs
𝑔𝑘 unit resource ask price of idle MEC 𝑒𝑘
𝑐𝑘 unit resource cost of idle MEC 𝑒𝑘
𝐴𝑘 aks of idle MEC 𝑒𝑘
𝐀𝐢𝐝𝐥𝐞 ask profile of all idle MECs
𝐩𝐔 ,𝐩𝐄 payment profile of losers, payment profile of idle MECs

auction presented in this section will be employed by the double
auction for heterogeneous MECs.

4.1. Auction design

First of all, we attempt to find an efficient algorithm for the GSOTO
roblem presented in (4). Unfortunately, as the following theorem
hows, it is NP-hard to find the optimal solution.

heorem 1. The GSOTO problem is NP-hard.

roof. We consider a corresponding instance of GSOTO: Let 𝑇 =
{𝑡1, 𝑡2,… , 𝑡𝑛} denote the set of tasks. Each task 𝑡𝑗 ∈ 𝑇 has a resource
requirement 𝒂𝒋= (𝑎1𝑗 , 𝑎

2
𝑗 ,… , 𝑎𝑟𝑗 ) and a value 𝑣𝑗 . Let 𝐸 = {𝑒1, 𝑒1,… , 𝑒𝑚}

denote the set of MECs. Each MEC is with resource capacity 𝒅𝒌=
(𝑑1𝑘 , 𝑑

2
𝑘 ,… , 𝑑𝑟𝑘). The target is to maximize the sum of the values of the

tasks in the MECs so that the sum of resource requirement of tasks in
any MEC 𝑒𝑘 ∈ 𝐸 for every resource 𝑖 ∈ {1, 2,… , 𝑟} does not exceed the
resource capacity 𝑑𝑖𝑘 of MEC 𝑒𝑘. Then we can see that this problem is the
Multiple Multi-Dimension Knapsacks (MMDK) problem [28]. Since the
MMDK problem is a well-known NP-hard problem, the GSOTO problem
is NP-hard. ■

Since the GSOTO problem is NP-hard, it is impossible to com-
pute the winner set with maximal social welfare in polynomial time
unless P=NP. In addition, we cannot use the off-the-shelf VCG mech-
anism [29] since the truthfulness of VCG mechanism requires that
the social welfare is exactly maximized. Our global auction follows a
greedy approach. As illustrated in Algorithm 1, global auction consists
of winner selection phase and payment determination phase.

In the winner selection phase, the users are sorted according to the
unit resource value, which is defined as 𝑏𝑗

∑

𝑖∈𝑅 𝑎𝑖𝑗
for any user 𝑢𝑗 ∈ 𝑈 ,

in nonincreasing order (Line 2). The MECs are sorted according to the
total resource capacity ∑

𝑖∈𝑅 𝑑𝑖𝑘 for any MEC 𝑒𝑘 ∈ 𝐸 in nondecreasing
order (Line 3). We iterate all users in order, and try to allocate the user
to the MEC with minimum resource capacity in each iteration. If the
resource capacity of the MEC can satisfy the resource requirement of
the user, the user is selected as a winner, and the corresponding task
is allocated to the MEC (Line 7); otherwise, we try to allocate the user
to the next MEC in the order.
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Algorithm 1: Global Auction
Input: user set 𝑈 , bid profile B and resource capacity matrix D
Output: winner set 𝑆, allocation profile q, payment profile p

//Phase 1: Winner Selection
1: 𝑆 ← ∅; D′ ← D; q ← 0;
2: sort all users based on 𝑏𝑗

∑

𝑖∈𝑅
𝑎𝑖𝑗

for ∀𝑗 ∈ 𝑈 in nonincreasing order and the

sequence is denoted by 𝑄𝑈 ;
3: sort all MECs based on ∑

𝑖∈𝑅
𝑑𝑖
𝑘 for ∀𝑒𝑘 ∈ 𝐸 in nondecreasing order and the

sequence is denoted by 𝑄𝐸 ;
4: foreach 𝑢𝑗 ∈ 𝑄𝑈 in order do
5: foreach 𝑒𝑘 ∈ 𝑄𝐸 in order do
6: if 𝑑′ 𝑖

𝑘 ≥ 𝑎𝑖𝑗 ,∀𝑖 ∈ 𝑅 then
7: 𝑆 ← 𝑆 ∪ {𝑢𝑗}; 𝑞𝑗 ← 𝑒𝑘;
8: end if
9: foreach 𝑖 ∈ 𝑅 do

10: 𝑑′ 𝑖
𝑘 ← 𝑑′ 𝑖

𝑘 − 𝑎𝑖𝑗 ;
11: end for
12: end for
13: end for

//Phase 2: Payment Determination
14: foreach 𝑢𝑗 ∈ 𝑈 do
15: 𝑝𝑗 ← ∞;
16: end for
17: foreach 𝑢𝑗 ∈ 𝑆 do
18: 𝑈 ′ ← 𝑈∖{𝑢𝑗}; 𝑆′ ← ∅ ; D′′ ← D;

19: sort all users in based on
𝑏𝑗

∑

𝑖∈𝑅
𝑎𝑖𝑗

for ∀𝑢𝑗 ∈ 𝑈 ′ in nonincreasing order

and the sequence is denoted by 𝑄𝑈 ′ ;
0: foreach 𝑗ℎ ∈ 𝑄𝑈 ′ in order do
1: foreach 𝑒𝑘 ∈ 𝑄𝐸 in order do
2: if 𝑑′′ 𝑖

𝑘 ≥ 𝑎𝑖𝑗ℎ,∀𝑖 ∈ 𝑅 then
3: 𝑆′ ← 𝑆′ ∪ {𝑗ℎ};

4: 𝑝𝑗 ← min{𝑝𝑗 ,

∑

𝑖∈𝑅
𝑎𝑖𝑗

∑

𝑖∈𝑅
𝑎𝑖𝑗ℎ

𝑏𝑗ℎ};

5: end if
6: foreach 𝑖 ∈ 𝑅 do
7: 𝑑′′ 𝑖

𝑘 ← 𝑑′′ 𝑖
𝑘 − 𝑎𝑖𝑗ℎ;

28: end for
29: end for
30: end for
31: end for

In payment determination phase, for each winner 𝑢𝑗 ∈ 𝑆, we
execute the winner selection phase over 𝑈∖{𝑢𝑗}, and the winner set
is denoted by 𝑆′. We compute the minimum price that user 𝑢𝑗 can be
selected instead of each user in 𝑆′(Line 24). We will prove that this
price is a critical payment for user 𝑢𝑗 later.

4.2. Auction analysis

In this subsection, we present the theoretical analysis, demonstrat-
ing that the global auction can achieve the desired properties.

Lemma 1. The global auction is computationally efficient.

Proof. Sorting the user set (Line 2) takes 𝑂(𝑛𝑟𝑙𝑜𝑔𝑛). Sorting the MEC
set (Line 3) takes 𝑂(𝑚𝑟𝑙𝑜𝑔𝑚). The task allocation (Lines 4–13) takes
𝑂(𝑛𝑚𝑟). Since 𝑛 > 𝑚, the time complexity of winner selection is
max{𝑛𝑟𝑙𝑜𝑔𝑛, 𝑛𝑚𝑟}. In each iteration of the for-loop (Lines 17–31), a
process similar to Lines 4–13 is executed. Hence the time complexity
of the whole auction is dominated by this for-loop, which is bounded
by 𝑂(𝑛2𝑚𝑟). ■

Lemma 2. The global auction is individually rational.

Proof. Let 𝑗ℎ be user 𝑢𝑗 ’s replacement which appears in the 𝑗th place

in the sorting over 𝑈∖{𝑢𝑗}. Since user 𝑗ℎ would not be at 𝑗th place if
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𝑗 is considered, we have
𝑏𝑗

∑

𝑖∈𝑅 𝑎𝑖𝑗
≥

𝑏𝑗ℎ
∑

𝑖∈𝑅 𝑎𝑖𝑗ℎ
. Hence 𝑏𝑗 ≥

∑

𝑖∈𝑅 𝑎𝑖𝑗
∑

𝑖∈𝑅 𝑎𝑖𝑗ℎ
𝑏𝑖ℎ .

his is sufficient to guarantee 𝑏𝑗 ≥ 𝑚𝑖𝑛𝑗ℎ∈𝑆′

∑

𝑖∈𝑅 𝑎𝑖𝑗
∑

𝑖∈𝑅 𝑎𝑖𝑗ℎ
𝑏𝑗ℎ = 𝑝𝑗 . ■

Before analyzing the truthfulness of global auction, we firstly intro-
duce the Myerson’s Theorem [30].

Theorem 2. An auction is truthful if and only if:

• The selection rule is monotone: If user 𝑢𝑗 wins the auction by bidding
𝑏𝑗 , it also wins by bidding 𝑏′𝑗 ≥ 𝑏𝑗 ;

• Each winner needs to pay the critical value: User 𝑢𝑗 would not win
the auction if it bids lower than this value.

Lemma 3. The global auction is truthful.

Proof. Based on Theorem 2, it suffices to prove that the selection rule
of global auction is monotone and the payment 𝑝𝑗 for each user 𝑢𝑗 is
the critical value. The monotonicity of the selection rule is obvious as
bidding a larger value cannot push user 𝑢𝑗 backwards in the sorting. We
next show that 𝑝𝑗 is the critical value for 𝑢𝑗 in the sense that bidding
smaller 𝑝𝑗 could prevent 𝑢𝑗 from winning the auction. Note that 𝑝𝑗 =

𝑚𝑖𝑛ℎ∈{1,…,𝐿}

∑

𝑖∈𝑅 𝑎𝑖𝑗
∑

𝑎𝑖𝑗ℎ
𝑏𝑗ℎ

, where 𝐿 is the position of last winner in payment

determination phase. If user 𝑗 bid 𝑏𝑗 ≤ 𝑝𝑗 , it will be placed after 𝐿

since 𝑏𝑗 ≤
∑

𝑖∈𝑅 𝑎𝑖𝑗
∑

𝑖∈𝑅 𝑎𝑖𝑗𝐿
𝑏𝑗𝐿 implies

𝑏𝑗
∑

𝑖∈𝑅 𝑎𝑖𝑗
≤

𝑏𝑗𝐿
∑

𝑖∈𝑅 𝑎𝑖𝑗𝐿
. Hence, user 𝑢𝑗

would not win the auction because the first 𝐿 users have offloaded the
tasks to MECs, and the remaining resources cannot satisfy any task after
position 𝐿. ■

According to Theorem 4.3 in [28], the simple approach that greedily
select a single multi-dimensional knapsack to pack until all of the
knapsacks are filled yields a guaranteed approximation. Based on The-
orem 1, the GSOTO problem given in formula (4) is an instance of
MMDK problem, and our Global Auction (Algorithm 1) follows this
greedy algorithm. Specifically, we sort all users based on the unit
resource value 𝑏𝑗

∑

𝑖∈𝑅 𝑎𝑖𝑗
for all 𝑢𝑗 ∈ 𝑈 in nonincreasing order and offload

the current highest unit resource value items, one by one, into the
MEC with minimum resource capacity under the resource capacity
constraints. Thus, we have

Lemma 4. The global auction can approximate the optimal solution within
a factor of 1

𝑂(2𝐻𝐾 )
, where 𝐾 = 𝑚𝑎𝑥𝑢𝑗∈𝑈

∑

𝑖∈𝑅 𝑎𝑖𝑗 , 𝐻𝐾 is the first 𝐾 terms
of the harmonic series.

The above four lemmas together prove the following theorem.

Theorem 3. The global auction is computationally efficient, individually
rational, truthful, and 1

𝑂(2𝐻𝐾 )
approximate, where 𝐾 = 𝑚𝑎𝑥𝑢𝑗∈𝑈

∑

𝑖∈𝑅 𝑎𝑖𝑗 .

. Collaborative task offloading in secondary auction-based het-
rogeneous MEC model

In this section, we present the local auction and secondary auction
n secondary auction-based heterogeneous MEC model.

.1. Auction design

We also attempt to find efficient algorithm for the LSOTO problem
resented in (7). Unfortunately, as shown in the following theorem, it
s NP-hard to find the optimal solution.

heorem 4. The LSOTO problem is NP-hard.
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Proof. We consider a corresponding instance of LSOTO: Let 𝑇 𝑘 =
𝑡1, 𝑡2,… , 𝑡

|𝑇 𝑘
|

} denote the set of tasks of any MEC 𝑒𝑘. Each task 𝑡𝑗 ∈ 𝑇 𝑘

as a resource requirement 𝒂𝒋= (𝑎1𝑗 , 𝑎
2
𝑗 ,… , 𝑎𝑟𝑗 ) and a value 𝑣𝑗 . The

MEC 𝑒𝑘 is with resource capacity 𝒅𝒌= (𝑑1𝑘 , 𝑑
2
𝑘 ,… , 𝑑𝑟𝑘). The target is to

maximize the sum of the values of the tasks assigned to 𝑒𝑘 so that
the sum of resource requirement of tasks in 𝑒𝑘 for every resource 𝑖 ∈
{1, 2,… , 𝑟} does not exceed the resource capacity 𝑑𝑖𝑘 of MEC 𝑒𝑘. Then
we can see that this problem is the Multi-Dimension Knapsacks (MDK)
problem. Since the MDK problem is a well-known NP-hard problem,
the LSOTO problem is NP-hard. ■

As illustrated in Algorithm 2, the local auction in each MEC 𝑒𝑘
follows a greedy approach consisting of winner selection phase and
payment determination phase.

In the winner selection phase, the users are sorted according to the
unit resource value, which is defined as 𝑏𝑗

∑

𝑖∈𝑅 𝑎𝑖𝑗
for any user 𝑢𝑗 ∈ 𝑈𝑘, in

nonincreasing order (Line 2). We iterate all users in order, and try to
allocate the user to the MEC in each iteration. If the resource capacity
of the MEC can satisfy the resource requirement of the user, the user is
selected as a winner (Lines 4–6).

In payment determination phase, for each winner 𝑢𝑗 ∈ 𝑆𝑘, we
execute the winner selection phase over 𝑈𝑘∖{𝑢𝑗}, and the winner set
is denoted by 𝑆′𝑘. We compute the minimum price that user 𝑢𝑗 can be
selected instead of each user in 𝑆′𝑘 (Line 20). We will prove that this
price is a critical payment for user 𝑢𝑗 later.

Algorithm 2: Local Auction
Input: user set 𝑈𝑘, bid profile 𝐁𝐤 and resource capacity 𝒅𝒌
Output: winner set 𝑆𝑘, payment profile 𝐩𝐤

//Phase 1: Winner Selection
1: 𝑆𝑘 ← ∅; 𝒅′

𝒌← 𝒅𝒌;
2: sort all users based on 𝑏𝑗

∑

𝑖∈𝑅
𝑎𝑖𝑗

for ∀𝑢𝑗 ∈ 𝑈𝑘 in nonincreasing order and the

sequence is denoted by 𝑄𝑈𝑘 ;
3: foreach 𝑢𝑗 ∈ 𝑄𝑘

𝑈 in order do
4: if 𝑑′ 𝑖

𝑘 ≥ 𝑎𝑖𝑗 ,∀𝑖 ∈ 𝑅 then
5: 𝑆𝑘 ← 𝑆𝑘 ∪ {𝑢𝑗};
6: foreach 𝑖 ∈ 𝑅 do
7: 𝑑′ 𝑖

𝑘 ← 𝑑′ 𝑖
𝑘 − 𝑎𝑖𝑗 ;

8: end for
9: end if

10: end for
//Phase 2: Payment Determination

11: foreach 𝑢𝑗 ∈ 𝑈𝑘 do
12: 𝑝𝑗 ← ∞;
13: end for
14: foreach 𝑢𝑗 ∈ 𝑆𝑘 do
15: 𝑈 ′𝑘 ← 𝑈𝑘∖{𝑢𝑗}; 𝑆′𝑘 ← ∅; 𝒅′′

𝒌←𝒅𝒌;

16: sort all users in based on
𝑏𝑗

∑

𝑖∈𝑅
𝑎𝑖𝑗

for ∀𝑢𝑗 ∈ 𝑈 ′𝑘 in nonincreasing order

and the sequence is denoted by 𝑄𝑈 ′𝑘 ;
7: foreach 𝑗ℎ ∈ 𝑄𝑈 ′𝑘 in order do
8: if 𝑑′′ 𝑖

𝑘 ≥ 𝑎𝑖𝑗ℎ,∀𝑖 ∈ 𝑅 then
9: 𝑆′𝑘 ← 𝑆′𝑘 ∪ {𝑗ℎ};

0: 𝑝𝑗 ← min{𝑝𝑗 ,

∑

𝑖∈𝑅
𝑎𝑖𝑗

∑

𝑖∈𝑅
𝑎𝑖𝑗ℎ

𝑏𝑗ℎ};

1: end if
2: foreach 𝑖 ∈ 𝑅 do
3: 𝑑′′ 𝑖

𝑘 ← 𝑑′′ 𝑖
𝑘 − 𝑎𝑖𝑗ℎ;

24: end for
25: end for
26: end for

The algorithm of secondary auction is very similar to the local
uction. The difference is that the busy MEC will deduct the agency
ee after it receives the payment from users.
96
5.2. Auction analysis

In this subsection, we present the theoretical analysis, demonstrat-
ing that the both local auction and secondary auction can achieve the
desired properties.

Theorem 5. The local auction is computationally efficient, individually
rational, truthful, and 1

𝑂(𝐻𝐾 )
approximate, where 𝐾 = 𝑚𝑎𝑥𝑢𝑗∈𝑈𝑘

∑

𝑖∈𝑅 𝑎𝑖𝑗 .

roof. For the time complexity, sorting the user set (Line 2) takes
(nrlogn). The task allocation (Lines 3–10) takes O(nr). In each iter-
tion of the for-loop (Lines 14–26), a process similar to Lines 3–10 is
xecuted. Hence the time complexity of the whole auction is dominated
y this for-loop, which is bounded by O(𝑛2𝑟).

The proofs for individual rationality and truthfulness of users are
imilar to those of global auction.

For MDK problem, the best-known approximation algorithm is to
reedily add items with the best bang-for-bucks without exceeding the
apacity of knapsack. The bang-for-buck of item is defined as the ratio
f value to the total weights of all dimensions. According to Theorem
.1 in [28], the greedy algorithm that sorts items according to the
ang-for-buck and packs the current highest bang-for-buck items, one
y one, into the knapsack without violating the capacity constraints
ields a guaranteed approximation. Based on Theorem 4, the LSOTO
roblem given in formula (7) is an instance of MDK problem, and our
ocal Auction (Algorithm 2) follows this greedy algorithm. Specifically,
e sort all users based on the unit resource value 𝑏𝑗

∑

𝑖∈𝑅 𝑎𝑖𝑗
for any user

𝑢𝑗 ∈ 𝑈𝑘 in nonincreasing order and offload the current highest unit
resource value items, one by one, into the MEC without violating the
resource capacity constraints. Thus, the approximation can be obtained
from Theorem 4.1 in [28]. ■

Given the bidder set 𝑈∖
⋃

𝑒𝑘∈𝐸 𝑆𝑘 of secondary auction, i.e., the
loser set of local auctions, we can also have the following theorem.

Theorem 6. The secondary auction is computationally efficient, individu-
ally rational, truthful, and 1

𝑂(𝐻𝐾 )
approximate, where 𝐾 =

𝑚𝑎𝑥𝑢𝑗∈𝑈∖
⋃

𝑒𝑘∈𝐸
𝑆𝑘

∑

𝑖∈𝑅 𝑎𝑖𝑗 .

Remark. Note that the running time of local auction and secondary
auction is very conservative since the number of both users and winners
is much less than n in practice. Specifically, the user set of local auction
and secondary auction are 𝑈𝑘 and 𝑈∖

⋃

𝑒𝑘∈𝐸 𝑆𝑘, respectively. The size
of both of them is much smaller than 𝑛.

6. Collaborative task offloading in double auction-based hetero-
geneous MEC model

Since the local auction has been presented in Section 5, we only
present the double auction in this section.

6.1. Auction design

Actually, the double auction is a combinatorial double auction since
each user requires an indivisible bundle of 𝑟 resources. As illustrated in
Algorithm 3, we design the double auction through the combination
of well-known McAfee double auction [29] and the global auction
presented in Algorithm 1.

First, we calculate the unit resource bid price 𝑓𝑗 of each user. Then
we sort users based on the unit resource bid price in nonincreasing
order (Line 5) and sort idle MECs based on unit resource ask price (Line
6). We find the last position l such that 𝑓𝑙 ≥ 𝑔𝑙 (Line 7). We consider
the following two cases:

Case 1: If
𝑓𝑙+1 + 𝑔𝑙+1

2
∈ [𝑔𝑙 , 𝑓𝑙], the first 𝑙 users and idle MECs are

selected as candidates, and we put them into candidate winning user
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∑
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∑

set 𝑆𝑈
𝑐 (Line 9) and candidate winning idle MEC set 𝑆𝐸

𝑐 (Line 10),
respectively. We denote 𝑩𝒄 and 𝑫𝒄 as the bid profile of candidate
winning users and resource capacity matrix, respectively. Then we
calculate the winning user set 𝑆𝑈 , the payment profile of users 𝒑𝑮 and
esource allocation profile q by calling global auction (Line 11), which
as been given in Algorithm 1. For each user 𝑢𝑗 ∈ 𝑆𝑈 , we compute the

aximal price of 𝑝𝐺𝑗 and
𝑓𝑙+1 + 𝑔𝑙+1

2
∑

𝑖∈𝑅 𝑎𝑖𝑗 (Line 13). We will prove
hat this price is a critical payment for user 𝑗 later. Meanwhile, we can
etermine the wining idle MEC set based on resource allocation profile
, and the payment for each 𝑒𝑘 ∈ 𝑆𝐸 is

𝑓𝑙+1 + 𝑔𝑙+1
2

∑

𝑢𝑗∈𝑆𝑈 , 𝑞𝑗=𝑒𝑘
∑

𝑖∈𝑅 𝑎𝑖𝑗
Line 19).
Case 2: If

𝑓𝑙+1 + 𝑔𝑙+1
2

∈ [𝑔𝑙 , 𝑓𝑙], the first 𝑙 − 1 users and idle
MECs are selected as candidates. Different from Case 1, the pay-
ment for any winning user 𝑢𝑗 ∈ 𝑆𝑈 is the maximal price of 𝑝𝐺𝑗 and
𝑙
∑

𝑖∈𝑅 𝑎𝑖𝑗 (Line 26). The payment for each wining idle MEC 𝑒𝑘 ∈ 𝑆𝐸

s 𝑔𝑙
∑

𝑢𝑗∈𝑆𝑈 , 𝑞𝑗=𝑒𝑘
∑

𝑖∈𝑅 𝑎𝑖𝑗 (Line 32).

Algorithm 3: Double Auction
Input: user set 𝑈𝐿, idle MEC set 𝐸𝑖𝑑𝑙𝑒, bid profile 𝐁𝐋 and resource capacity

𝐀𝐢𝐝𝐥𝐞

Output: winner set 𝑆𝑈 , winning idle MEC set 𝑆𝐸 , resource allocation profile
q, payment profile p

1: 𝑆𝑈 ← ∅; 𝑆𝐸 ← ∅; q ← 0; p ← 0;
2: foreach 𝑢𝑗 ∈ 𝑈𝐿 do

3: 𝑓𝑗 ←
𝑏𝑗

∑

𝑖∈𝑅
𝑎𝑖𝑗

;

4: end for
5: sort all users based on 𝑓𝑗 for ∀𝑢𝑗 ∈ 𝑈𝐿 in nonincreasing order and the

sequence is denoted by 𝑄𝑈𝐿 ;
6: sort all idle MECs based on 𝑔𝑘 for ∀𝑒𝑘 ∈ 𝐸𝑖𝑑𝑙𝑒 in nondecreasing order and

the sequence is denoted by 𝑄𝐸𝑖𝑑𝑙𝑒 ;
7: find the last position 𝑙 such that 𝑓𝑙 ≥ 𝑔𝑙
8: if

𝑓𝑙+1 + 𝑔𝑙+1
2

∈ [𝑔𝑙 , 𝑓𝑙] then
9: let 𝑆𝑈

𝑐 be the set of first 𝑙 users in 𝑄𝑈𝐿 ;
0: let 𝑆𝐸

𝑐 be the set of first 𝑙 idle MECs in 𝑄𝐸𝑖𝑑𝑙𝑒 ;
1: (𝑆𝑈 , 𝒑𝑮, q) ← Global Auction(𝑆𝑈

𝑐 , 𝑆𝐸
𝑐 , 𝑩𝒄 , 𝑫𝒄 );

2: foreach 𝑢𝑗 ∈ 𝑆𝑈 do

3: 𝑝𝑈𝑗 ← max{𝑝𝐺𝑗 ,
𝑓𝑙+1 + 𝑔𝑙+1

2
∑

𝑖∈𝑅
𝑎𝑖𝑗};

4: end for
5: foreach 𝑢𝑗 ∈ 𝑆𝑈 do
6: 𝑆𝐸 ← 𝑆𝐸 ∪ {𝑞𝑗};
7: end for
8: foreach 𝑒𝑘 ∈ 𝑆𝐸 do
9: 𝑝𝐸𝑘 ←

𝑓𝑙+1 + 𝑔𝑙+1
2

∑

𝑢𝑗∈𝑆𝑈 , 𝑞𝑗=𝑒𝑘

∑

𝑖∈𝑅
𝑎𝑖𝑗 ;

0: end for
1: else if

𝑓𝑙+1 + 𝑔𝑙+1
2

∉ [𝑔𝑙 , 𝑓𝑙] then
2: let 𝑆𝑈

𝑐 be the set of first 𝑙 − 1 users in 𝑄𝑈𝐿 ;
3: let 𝑆𝐸

𝑐 be the set of first 𝑙 − 1 idle MECs in 𝑄𝐸𝑖𝑑𝑙𝑒 ;
4: (𝑆𝑈 , 𝒑𝑮, q) ← Global Auction(𝑆𝑈

𝑐 , 𝑆𝐸
𝑐 , 𝑩𝒄 , 𝑫𝒄 );

5: foreach 𝑢𝑗 ∈ 𝑆𝑈 do
6: 𝑝𝑈𝑗 ← max {𝑝𝐺𝑗 , 𝑓𝑙

∑

𝑖∈𝑅
𝑎𝑖𝑗};

27: end for
28: foreach 𝑢𝑗 ∈ 𝑆𝑈 do
29: 𝑆𝐸 ← 𝑆𝐸 ∪ {𝑞𝑗};
30: end for
31: foreach 𝑒𝑘 ∈ 𝑆𝐸 do
32: 𝑝𝐸𝑘 ← 𝑔𝑙

∑

𝑢𝑗∈𝑆𝑈 , 𝑞𝑗=𝑒𝑘

∑

𝑖∈𝑅
𝑎𝑖𝑗 ;

33: end for
34: end if

6.2. Auction analysis

In this subsection, we present the theoretical analysis, demonstrat-
ing that the double auction can achieve the desired properties.

Lemma 5. The double auction is computationally efficient.
97
Proof. The running time of double auction is dominated by the global
auction, which is 𝑂(𝑛2𝑚𝑟) given in Lemma 1.

Remark. Note that the running time of double auction is very conser-
vative since the number of both users and winners is much smaller than
𝑛, and the number of idle MECs is less than 𝑚 in practice. ■

Lemma 6. The double auction is individually rational.

Proof. We first analyze the utility of users.
For Case 1: the payment for user 𝑢𝑗 is 𝑝𝑈𝑗 = max{𝑝𝐺𝑗 ,

𝑓𝑙+1 + 𝑔𝑙+1
2

𝑖∈𝑅 𝑎𝑖𝑗} based on Line 13. Note that 𝑝𝐺𝑗 is the critical value of payment
in global auction. Thus we have 𝑝𝐺𝑗 ≥ 𝑏𝑗 based on Lemma 2. Since
𝑓𝑙+1 + 𝑔𝑙+1

2
∈ [𝑔𝑙 , 𝑓𝑙] in this case, we have

𝑓𝑙+1 + 𝑔𝑙+1
2

≤ 𝑓𝑙 ≤ 𝑓𝑗 , where

the last inequation relies on 𝑗 ≤ 𝑙. Then, we have
𝑓𝑙+1 + 𝑔𝑙+1

2
∑

𝑖∈𝑅 𝑎𝑖𝑗 ≤

𝑗
∑

𝑖∈𝑅 𝑎𝑖𝑗 = 𝑏𝑗 . Thus, we have 𝑝𝑈𝑗 ≤ 𝑏𝑗 .
For Case 2: 𝑝𝑈𝑗 = max{𝑝𝐺𝑗 , 𝑓𝑙

∑

𝑖∈𝑅 𝑎𝑖𝑗} based on Line 26. Obviously,
𝑝𝐺𝑗 ≤ 𝑏𝑗 based on Lemma 2. Since 𝑗 ≤ 𝑙 in this case, we have 𝑓𝑙 ≤ 𝑓𝑗 .
Then, we have 𝑓𝑙

∑

𝑖∈𝑅 𝑎𝑖𝑗 ≤ 𝑓𝑗
∑

𝑖∈𝑅 𝑎𝑖𝑗 = 𝑏𝑗 . Thus, we have 𝑝𝑈𝑗 ≤ 𝑏𝑗 .
Next, we analyze the utility of idle MECs.
For Case 1: the payment for idle MEC 𝑒𝑘 is 𝑝𝐸𝑘 =

𝑓𝑙+1 + 𝑔𝑙+1
2

𝑢𝑗∈𝑆𝑈 , 𝑞𝑗=𝑒𝑘
∑

𝑖∈𝑅 𝑎𝑖𝑗 based on Line 19. Since
𝑓𝑙+1 + 𝑔𝑙+1

2
∈ [𝑔𝑙 , 𝑓𝑙] in

this case, we have
𝑓𝑙+1 + 𝑔𝑙+1

2
≥ 𝑔𝑙 ≥ 𝑔𝑘, where the last inequation

elies on 𝑘 ≤ 𝑙. Thus, we have 𝑝𝐸𝑘 ≥ 𝑔𝑘
∑

𝑢𝑗∈𝑆𝑈 , 𝑞𝑗=𝑒𝑘
∑

𝑖∈𝑅 𝑎𝑖𝑗 .
For Case 2: the payment for idle MEC 𝑒𝑘 is 𝑝𝐸𝑘 = 𝑔𝑙

∑

𝑢𝑗∈𝑆𝑈 , 𝑞𝑗=𝑒𝑘

𝑖∈𝑅 𝑎𝑖𝑗 based on Line 32. Since 𝑘 < 𝑙 in this case, we have 𝑔𝑘 ≤ 𝑔𝑙.
hus, we have 𝑝𝐸𝑘 ≥ 𝑔𝑘

∑

𝑢𝑗∈𝑆𝑈 , 𝑞𝑗=𝑒𝑘
∑

𝑖∈𝑅 𝑎𝑖𝑗 . ■

emma 7. The double auction satisfies budget balance.

roof. For Case 1: the payment for each user 𝑢𝑗 ∈ 𝑆𝑈 is 𝑝𝑈𝑗 =

ax{𝑝𝐺𝑗 ,
𝑓𝑙+1 + 𝑔𝑙+1

2
∑

𝑖∈𝑅 𝑎𝑖𝑗} ≥
𝑓𝑙+1 + 𝑔𝑙+1

2
∑

𝑖∈𝑅 𝑎𝑖𝑗 . Thus the unit re-

source payment is no less than
𝑓𝑙+1 + 𝑔𝑙+1

2
. On the other hand, the

payment for each idle MEC ∀𝑒𝑘 ∈ 𝑆𝐸 is 𝑝𝐸𝑘 =
𝑓𝑙+1 + 𝑔𝑙+1

2
∑

𝑢𝑗∈𝑆𝑈 , 𝑞𝑗=𝑒𝑘

𝑖∈𝑅 𝑎𝑖𝑗 with unit resource payment
𝑓𝑙+1 + 𝑔𝑙+1

2
. Thus, we have

∑

𝑢𝑗∈𝑆𝑈 𝑝𝑈𝑗 −
∑

𝑒𝑘∈𝑆𝐸 𝑝𝐸𝑘 .

For Case 2: the payment for each user 𝑢𝑗 ∈ 𝑆𝑈 is 𝑝𝑈𝑗 = max{𝑝𝐺𝑗 , 𝑓𝑙
∑

𝑖∈𝑅 𝑎𝑖𝑗} ≥ 𝑓𝑙
∑

𝑖∈𝑅 𝑎𝑖𝑗 . Thus the unit resource payment is no less than
𝑓𝑙. On the other hand, the payment for each idle MEC ∀𝑒𝑘 ∈ 𝑆𝐸

is 𝑝𝐸𝑘 = 𝑔𝑙
∑

𝑢𝑗∈𝑆𝑈 , 𝑞𝑗=𝑒𝑘
∑

𝑖∈𝑅 𝑎𝑖𝑗 with unit resource payment 𝑔𝑙. Since
𝑔𝑙 ≤ 𝑓𝑙, we have ∑

𝑢𝑗∈𝑆𝑈 𝑝𝑈𝑗 −
∑

𝑒𝑘∈𝑆𝐸 𝑝𝐸𝑘 .

Lemma 8. The double auction is truthful.

Proof. We prove the truthfulness based on Theorem 2. We first show
that the users are truthful.

Case 1:
𝑓𝑙+1 + 𝑔𝑙+1

2
∈ [𝑔𝑙 , 𝑓𝑙]. In this case, 𝑆𝑈

𝑐 = {1, 2,… , 𝑙}. For any
𝑆𝑈
𝑐 ∈ 𝑆𝑈 , the monotonicity of the candidate selection rule is obvious

as bidding a larger value cannot push user 𝑢𝑗 backwards in the sorting
of Line 5 of Algorithm 3. In the global auction, the monotonicity of
the winner selection rule is also obvious since bidding a larger value
cannot push user 𝑢𝑗 backwards in the sorting of Line 2 of Algorithm
1. We next show that 𝑝𝑈𝑗 is the critical value for 𝑢𝑗 in the sense that
bidding smaller 𝑝𝑈𝑗 could prevent 𝑢𝑗 from winning the double auction.

To ensure that 𝑗 is a candidate, the following inequations should be
held:
𝑓𝑗 ≥ 𝑓𝑙+1 (14)
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Fig. 5. Number of offloaded tasks. (a) Impact of number of users. (b) Impact of number of MECs. (c) Impact of number of resource types.
𝑔

𝑓𝑗 ≥ 𝑔𝑙 (15)

𝑓𝑗 ≥
𝑓𝑙+1 + 𝑔𝑙+1

2
(16)

Since 𝑔𝑙+1 > 𝑓𝑙+1, we have
𝑓𝑙+1 + 𝑔𝑔+1

2
> 𝑓𝑙+1. In addition,

𝑓𝑙+1 + 𝑔𝑙+1
2

∈ [𝑔𝑙 , 𝑓𝑙] in this case, we have
𝑓𝑙+1 + 𝑔𝑙+1

2
≥ 𝑔𝑙. Thus (14),

(15) and (16) can be simplified as: 𝑓𝑗 ≥
𝑓𝑙+1 + 𝑔𝑙+1

2
, i.e.,

𝑓𝑙+1 + 𝑔𝑙+1
2

∑

𝑖∈𝑅 𝑎𝑖𝑗 is the critical value to ensure that 𝑢𝑗 is a candidate. Note that
𝑝𝐺𝑗 is the critical value of being the winner in the global auction based
on Lemma 3. So, 𝑝𝑈𝑗 , which is the maximum of two critical values in
candidate section and global auction, is the critical value of the whole
double auction.

Case 2:
𝑓𝑙+1 + 𝑔𝑙+1

2
∉ [𝑔𝑙 , 𝑓𝑙]. In this case, 𝑆𝑈

𝑐 = {1, 2,… , 𝑙 − 1}.
The proof of monotonicity is same with Case 1. To ensure that 𝑗 is a
candidate, the following inequations should be held:

𝑓𝑗 ≥ 𝑓𝑙 (17)

𝑓𝑗 ≥ 𝑔𝑙−1 (18)

Since 𝑓𝑙 ≥ 𝑔𝑙 ≥ 𝑔𝑙−1, 𝑓𝑙
∑

𝑖∈𝑅 𝑎𝑖𝑗 is the critical value to assure 𝑗 of
being a candidate. The rest of the proof is same with Case 1.

Next, we show that the idle MECs are truthful.
Case 1:

𝑓𝑙+1 + 𝑔𝑙+1
2

∈ [𝑔𝑙 , 𝑓𝑙]. In this case, 𝑆𝐸
𝑐 = {𝑒1, 𝑒2,… , 𝑒𝑙}. For

any 𝑒𝑘 ∈ 𝑆𝐸 , the monotonicity of the candidate selection rule is obvious
as asking a small cost cannot push user 𝑢𝑗 backwards in the sorting of
Line 6 of Algorithm 3. The global auction is not related to the ask price.
Thus, both candidate selection rule and global auction are monotone.
We next show that 𝑝𝐸𝑘 is the critical value for 𝑒𝑘 in the sense that asking
higher 𝑝𝐸𝑘 could prevent 𝑒𝑘 from winning the double auction.

To ensure that 𝑒𝑘 is a candidate, the following in equations should
be held:

𝑔𝑘 ≤ 𝑔𝑙+1 (19)

𝑔𝑘 ≤ 𝑓𝑙 (20)

𝑔𝑘 ≤
𝑓𝑙+1 + 𝑔𝑙+1

2
(21)

Since 𝑓𝑙+1 < 𝑔𝑙+1, we have
𝑓𝑙+1 + 𝑔𝑙+1

2
< 𝑔𝑙+1. In addition,

𝑓𝑙+1 + 𝑔𝑙+1
2

∈ [𝑔𝑙 , 𝑓𝑙] in this case, we

have
𝑓𝑙+1 + 𝑔𝑙+1

2
≤ 𝑓𝑙. Thus (19), (20) and (21) can be simplified

s: 𝑔𝑘 ≤
𝑓𝑙+1 + 𝑔𝑙+1

2
, i.e., 𝑝𝐸𝑘 =

𝑓𝑙+1 + 𝑔𝑙+1
2

∑

𝑢𝑗∈𝑆𝑈 , 𝑞𝑗=𝑒𝑘
∑

𝑖∈𝑅 𝑎𝑖𝑗 is the
critical value of the whole double auction.

Case 2:
𝑓𝑙+1 + 𝑔𝑙+1

2
∉ [𝑔𝑙 , 𝑓𝑙]. In this case, 𝑆𝐸

𝑐 = {𝑒1, 𝑒2,… , 𝑒𝑙−1}.
The proof of monotonicity is same with Case 1. To ensure that 𝑒𝑘 is a
andidate, the following inequations should be held:

≤ 𝑔 (22)
𝑘 𝑙
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𝑘 ≤ 𝑓𝑙−1 (23)

Since 𝑓𝑙−1 ≥ 𝑓𝑙 ≥ 𝑔𝑙, 𝑝𝐸𝑘 = 𝑔𝑙
∑

𝑢𝑗∈𝑆𝑈 , 𝑞𝑖=𝑒𝑘
∑

𝑖∈𝑅 𝑎𝑖𝑗 is the critical
value of the whole double auction. ■

The above four lemmas together prove the following theorem.

Theorem 7. The double auction is computationally efficient, individually
rational, budget-balanced and truthful

7. Performance evaluation

We have conducted simulations to investigate the performance
of global auction, secondary auction, double auction and Simplified
G-ERAP algorithm [31] based on the real experience dataset.

7.1. Simulation setup

We extract resource requirement of tasks and resource capacity
of MECs from the Alibaba Open Cluster Trace Program [32], which
contains over a million of tasks and 4034 machines in a period of
8 days. We choose a subset of this dataset for our simulations. The
default values of the parameters are as follows: 𝑚 = 150, 𝑛 = 1000
and 𝑟 = 2. We will vary the value of the key parameters to explore
the impacts on designed auctions. The tasks are randomly distributed
to local MECs. The value of each task is selected randomly form the
auction dataset, which contains 5017 bid prices for Palm Pilot M515
PPD from eBay [33].

In our simulations, we measure the number of offloaded tasks, social
welfare, and running time with different number of users (𝑛), number
of MECs (𝑚), and number of resources (𝑟) of global auction for homo-
geneous MECs and dual auction (local auction + secondary auction,
and local auction + double auction) for cooperative task offloading
in heterogeneous MECs. We use Simplified G-ERAP algorithm [31],
which greedy allocates tasks based on the average bid per unit of
resource, as the comparison algorithm. Note that the global auction
actually provides the performance upper bound for heterogeneous MEC
task offloading. Then we verify the truthfulness of proposed auctions.
All the simulations were run on a Windows 7 machine with Intel(R)
Xeon(R) CPU I5-3230M 2.6 GHz and 8 GB memory. Each measurement
is averaged over 100 instances.

7.2. Number of offloaded tasks

We first investigate the number of offloaded tasks of all auctions. We
can see from Fig. 5 that the number of offloaded tasks of all auctions
increases with the increasing number of total users. The secondary auc-
tion offloads 82.4% of all tasks on average, and obtains most offloaded
tasks of the auctions for heterogeneous MECs. The Simplified G-ERAP
algorithm offloads only 69% of all tasks since it cannot offload the tasks
to remote idle MECs. Compared with Simplified G-ERAP algorithm,
the double auction offloads 6.4% more tasks averagely. Although the
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Fig. 6. Social welfare. (a) Impact of number of users. (b) Impact of number of MECs. (c) Impact of number of resource types.
Fig. 7. Running time. (a) Impact of number of users. (b) Impact of number of MECs. (c) Impact of number of resource types.
Fig. 8. Truthfulness of double auction. (a) Utility of winner 381. (b) Utility of loser 11. (c) Utility of winning MEC 120. (d) Utility of losing MEC 34.
ouble auction offloads fewer tasks than secondary auction, it guar-
ntees the truthfulness for both users and idle MECs (will be verified
n Section 7.5) and is very computationally efficient (will be verified in
ection 7.4). All auctions offload more tasks when there are more MECs
ince there are more available resources. With more types of resources,
t is harder to meet the requirements of tasks, thus the number of
ffloaded tasks of all auctions decreases.

.3. Social welfare

Then, we investigate the social welfare of all auctions. Since all
roposed auctions are truthful, maximizing the social welfare is equiv-
lent to maximizing the total values of offloaded tasks. In addition, the
roposed auctions except global auction are greedy algorithms. Thus,
he social welfare largely depends on the number of offloaded tasks. As
hown in Fig. 6, the social welfare of all auctions increases when the
umber of users or the number of MECs increases. This is because that
ore tasks will be offloaded in these two cases. The social welfare of

ll auctions decreases when there are more types of resources. Overall,
econdary auction can obtain 98.5% social welfare of global auction
veragely. Moreover, the secondary auction and double auction can
btain 14.5% and 4.2% more social welfare than comparison algorithm
n average, respectively.

.4. Running time

Further, we measure the running time of all auctions. As shown in
ig. 7, the running time of all auctions increases when the number of
sers, number of MECs, or number of resource types increases. The
99
global auction is the slowest of all auctions since it has the most
bidders. The secondary auction and double auction are more efficient
than global auction since the number of bidders is much smaller than
that of global auction (see our analysis in Section 5.2 and 6.2, respec-
tively). For the setting 𝑛 = 1500, 𝑚 = 150, our secondary auction and
double auction only take 6.5% and 0.85% of running time compared
with global auction, respectively. We can see that the double auction
shows great advantage in terms of computation efficiency since it only
happens in single busy MEC.

7.5. Truthfulness

To avoid redundancy, we only verify the truthfulness of double
auction by randomly picking two users and two MECs and allowing
them to bid/ask prices that are different from their true values/costs.
We change the bid/ask prices of picked users or MECs while others’
bid/ask prices are not changed, and observe the utilities with different
bid/ask prices. We illustrate the results in Fig. 8. We can see that the
winner 381 always obtain its maximum utility of 65 if bidding its real
value 75. Accordingly, the loser 11 always obtains nonnegative utility
if he/she bids truthfully. We also see that the winning MEC 120 always
obtain its maximum utility of 44 if bidding its real cost 50. Accordingly,
the losing MEC 34 always obtains nonnegative utility if he/she bids
truthfully.

8. Conclusion

In this paper, we have designed truthful auctions for the heav-
ily loaded task offloading system in both homogeneous MECs and



W. Lu, W. Wu, J. Xu et al. Computer Communications 181 (2022) 90–101
heterogeneous MECs. We have designed the system models and for-
mulated the social optimal task offloading problem for these two
scenarios. For the homogeneous MECs, we have presented a global
auction executed in the central cloud as the benchmark of the auc-
tions proposed in heterogeneous MEC situation. For the heterogeneous
MECs, we have designed two dual auction models: secondary auction-
based model and double auction-based model. We have designed the
auctions for these two dual auction models. We have demonstrated
that the proposed auctions achieve desirable properties of computa-
tional efficiency, individual rationality, budget balance, truthfulness,
and guaranteed approximation. The simulation results have shown that
the designed secondary auction can obtain 98.5% social welfare of
global auction averagely, and the proposed double auction has great
advantage in terms of computation efficiency.
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