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ABSTRACT
Wireless Rechargeable Sensor Network (WRSN) is largely used in monitoring of environment and
traffic, video surveillance and medical care, etc., and helps to improve the quality of urban life. How-
ever, it is challenging to provide the sustainable energy for sensors deployed in buildings, soil or other
places, where it is hard to harvest the energy from environment. To address this issue, we design a new
wireless charging system, which levers the bus network assisted drone in urban areas. We formulate
the drone scheduling problem based on this new wireless charging system to minimize the total time
cost of drone subject to all sensors can be charged under the energy constraint of drone. Then, we pro-
pose an approximation algorithm DSA for the energy tightened drone scheduling problem. To make
the tasks ofWRSN sustainable, we further formulate the drone scheduling problem with deadlines of
sensors, and present the approximation algorithm DDSA to find the drone schedule with the maximal
number of sensors charged by the drone before deadlines. Through the extensive simulations, we
demonstrate that DSA can reduce the total time cost by 84.83% compared with Greedy Replenished
Energy algorithm, and uses at most 5.98 times of the total time cost of optimal solution on average.
Then, we also demonstrate that DDSA can increase the survival rate of sensors by 51.95% compared
with Deadline Greedy Replenished Energy algorithm, and can obtain 77.54% survival rate of optimal
solution on average.

1. Introduction
Wireless Rechargeable Sensor Network (WRSN) plays an

important role in urban life of smart city due to its advantage
of sustainable power supply by the wireless charger network
[1] and/or harvesting energy from environment [2], such as
solar energy and wind energy. WRSN has been applied in
many fields [3], such as long-term environmental monitoring
[4] and vehicular traffic control application [5].

However, sensor networks deployed in inaccessible out-
door environment, such as precipitation analysis in moun-
tains [6] and water quality monitoring [7], may incur higher
cost of deployment and maintenance of wireless chargers. In
addition, it is difficult to harvest energy from environment by
using solar cells and/or wind energy collector in many sens-
ing applications such as structural monitoring under bridges
[8] and monitoring soil conditions [9].

The sensor can obtain energy from the wireless charger
embedded drone or Unmanned Aerial Vehicle (UAV) [10],
and store the energy in its capacity. [11] explored the fea-
sibility of charging the sensors using drones that can wire-
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lessly transfer energy to the sensors. [12] used the dedi-
cated chargers carried by drones that can fly over the sen-
sor network and transmit energy to the sensors using radio-
frequency signals. The drone-enabled wireless charging for
WRSN can sustainably replenish energy for the sensors de-
ployed in inaccessible outdoor environment without the de-
ployment and maintain of wireless charger network.

Due to the limited battery capacity, the drone has to re-
turn back to the ground charging stations to replenish en-
ergy for itself. This increases the energy consumption of the
drone flight and decreases the charging efficiency. Due to
the limited energy capacity, it is difficult for drone to charge
the sensors deployed in a vast area. How to charge the drone
efficiently is an interesting and significant problem, and has
attracted a lot of attention. The latest research [13] proposed
a solution of drone charging by riding buses to continuously
collect and communicate video streams from a large number
of Points of Interests (PoIs) in urban areas. [14] designed a
new EV charging system, which levers the bus network in ur-
ban areas through the integration ofOnLine Electric Vehicle
(OLEV) system [15] andMicrowave Power Transfer (MPT)
system. By leveraging the bus network, the drone can not
only replenish energy by riding on buses, but also extend the
range of charging service. Meanwhile, the bus has a large
capacity battery that can sustainably collect the energy from
OLEV system or its fuel engine, and therefore, has sufficient
energy to charge the drone. Moreover, the buses provide per-
vasive charging opportunities for the drone because of the
high popularity and wide coverage of bus network in urban
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areas.
However, the existingworks studied drone-enabledwire-

less charging for WRSN [12] and drone scheduling using
buses to charge the drone [13], separately. Actually, the en-
ergy between WRSN, drone and buses should be transferred
efficiently to form a closed wireless charging system. Thus,
we proposed a bus network assisted drone-enabled wireless
charging system for WRSN in urban area. The introduction
of bus network in the designed system not only accelerates
the energy replenishment of drone, but also reduces the fly-
ing energy consumption of drone for chargingWRSN. A toy
example of our charging system is illustrated in Fig. 1. There
are one drone, two buses and three sensors in the charging
system. The drone can launch from any sensor and a set
of fixed locations (termed landing points) on the bus routes.
The buses have the regular schedules of themselves and can
charge the drone when the drone rides the buses. The sen-
sors can be charged by the drone. Then, the WRSN and the
bus network together form a comprehensive network, which
is consisted of sensors, landing points connecting road seg-
ments of bus routes, and flight segments between sensors
and landing points. The drone rides the bus via the nearest
landing point to the charged sensor for replenishing energy
of itself from the bus and leaves the bus for charging the
next sensor at some landing point when it has sufficient en-
ergy. Then the drone charges the sensor, and flies back to
the nearest landing point to the charged sensor. Therefore,
in this comprehensive network, the drone obtains the energy
between any two landing points and consumes energy be-
tween any sensor and landing point.

In the designed system, the charging efficiency of drone
and the sustainability of WRSN largely dependent on the
drone scheduling. Unfortunately, to the best of our knowl-
edge, there is no off-the-shelf bus network assisted drone
scheduling for chargingWRSN.We consider two drone schedul-
ing scenarios according to the different requirements of sens-
ing tasks. For the first scenario, we consider that the sensing
tasks can tolerate some data loss, and allow the sensors to
go to sleep for saving their energy. Thus, the drone schedul-
ing is only constrained by the energy of drone in this case. In
the second scenario, the sensing tasks require the continuous
sensing data (such as vehicular traffic control application [5]
and real-time environmental monitoring [16]), and therefore,
the dead or dormancy of sensors will largely degrade the
sensing quality. Thus, the drone scheduling is constrained
by both energy of drone and deadlines of sensing tasks of
sensors.

It is very challenging to schedule bus network assisted
drone for sustainable charging of WRSN. First, it is impos-
sible to obtain the travelling path of drone by solving the
Traveling Salesman Path Probelm (TSPP) directly on the
comprehensive network integrated by WRSN and bus net-
work because our objective is to schedule drone for visiting
the sensors only. Second, it is difficult to find the energy con-
strained shortest path of drone riding the buses from a sen-
sor to the next sensor in the comprehensive network. This is
because the drone may have the hybrid process of discharg-

sensor

wireless charging

drone

bus

landing point

Figure 1: Bus network assisted drone scheduling for WRSN.

ing and charging between any two sensors. Thus, the re-
stricted shortest path algorithm [17] cannot be used to find
our energy constrained shortest path straightforwardly be-
cause the restricted shortest path algorithm requires that the
constrained metric should be non-negative. Moreover, the
schedule of drone must ensure that each road/flight segment
satisfies the energy constraint of drone, i.e., the residual en-
ergy of drone at the starting point of the road/flight segment
is not less than the consumed energy passing through the
segment. However, the residual energy of drone depends on
the previously selected road/flight segments.

Our key contributions can be summarized as follows:
• We design awireless charging system forWRSN through

the bus network assisted drone in urban areas. To the
best of our knowledge, we are the first to study the
drone scheduling problem for such comprehensivewire-
less charging system.

• We formulate the problem of Drone Scheduling with
Bus network (DSB) to minimize the time cost of drone
for charging all sensors under the energy constraint
of drone, and propose an approximation algorithm,
Drone Scheduling Algorithm (DSA), to solve the en-
ergy tightened DSB problem.

• Considering the continuous sensing tasks of WRSN,
we further formulate the Deadline Drone Scheduling
with Bus network (DDSB) problem to maximize the
number of charged sensors under the constraints of
both energy of drone and deadlines of sensors, and we
present an approximation algorithm, Deadline Drone
Scheduling Algorithm (DDSA), to solve the energy tight-
ened DDSB problem.

• We conduct extensive simulations and field experi-
ments for the designed algorithms. The simulation re-
sults show that DSA can reduce the total time cost by
84.83% compared with Greedy Replenished Energy
algorithm, and uses at most 5.98 times of the total time
cost of optimal solution on average. Then, DDSA can
increase the survival rate of sensors by 51.95% com-
pared with Deadline Greedy Replenished Energy al-
gorithm, and obtain 77.54% survival rate of optimal
solution on average.
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The rest of the paper is organized as follows. We review
the state-of-art research in Section 2. We present the system
model, formulate the DSB problem and present an approxi-
mation algorithm for the energy tightened DSB problem in
Section 3. We formulate the DDSB problem and propose
the approximation algorithm for the energy tightened DDSB
problem in Section 4. We conduct the simulations and field
experiments in Section 5 and 6, respectively. We conclude
this work in Section 7.

2. Related Work
The recent research onwireless charging forWRSNmainly

aimed to solve the problems of wireless charger network de-
ployment and management [18, 19], energy harvesting [20,
21], and route scheduling of drone and wireless charging ve-
hicle [22, 23, 24].

Some works studied the deployment of wireless sensors
and charging scheduling of wireless chargers. [18] solved
the robust scheduling problem for wireless charger network
by considering power jittering and rechargeable device drift-
ing. [19] jointly optimized the node position and charging
allocation to improve the charging utility.

A number of studies concluded that harvesting energy
from the immediate surroundings of the deployed sensors
can effectively extend the lifetime of WRSN. [20] reviewed
the energy-harvesting WRSN for environmental monitoring
applications and presented the technologies for harvesting
energy from ambient sources. [21] built a self-sustainable
network and guaranteed operation under any weather con-
dition by integrating the multi-source energy harvesting and
wireless charging.

However, the deployment and maintenance of wireless
chargers may occupy lots of cost whenWRSN is deployed in
inaccessible environment. Moreover, it is difficult to replen-
ish the energy for the sensors by harvesting energy from en-
vironmentwhen sensors are deployed inside buildings, bridges,
and soil, etc.

Some studies considered to charge sensors through the
drone or wireless charging vehicle. [22] designed a multi-
drone wireless charging scheme forWRSN and proposed the
route association algorithm tomaximize the overall charging
coverage utility by jointly selecting the charging routes and
associated nodes. [23] proposed the dynamic path genera-
tion scheme to arrange the travelling path of wireless charg-
ing vehicle for minimizing energy consumption of the vehi-
cle while ensuring that no sensor runs out of energy. [24]
proposed an intelligent routing strategy for a wireless charg-
ing vehicle, which can find a traveling path in sensor net-
works to minimize the energy consumption for both travel-
ing and charging to sensors.

On the research of drone charging and scheduling, [25]
proposed deployment strategies for consumer UAVs to max-
imize the stationary coverage of a target area and to guar-
antee the continuity of the service through replenishing en-
ergy at ground charging stations. [26] proposed a wireless
power transfer-based opportunity-charging scheme to extend
the flight range by providing harvested energy gathered from

renewable resources to the drones. [27] improved the drone-
in-flight wireless charging platform by applying the nonlin-
ear parity-time-symmetric model. [28] proposed an opti-
mal design of asymmetric coupling system for drone wire-
less charging to overcome the transmission power shortage
caused by drone landing errors. [29] proposed an iterative
auction-based algorithm for optimal charge scheduling among
drones.

Our work is fundamentally different from the existing
research. Our charging system is based on a comprehen-
sive network by integrating the WRSN and bus network. To
the best of our knowledge, we are the first to consider the
bus network assisted drone as a mobile wireless charger for
WRSN.We overcome the battery capacity limitation of drone
by riding buses without the support of ground charging sta-
tions. Then, we find the energy constrained shortest path and
compute the final feasible charging cycle of drone to charge
all sensors. For the continuous sensing tasks, we find the en-
ergy constrained path to charge as many sensors as possible
before their deadlines.

3. Drone Scheduling with Bus Network
3.1. System Model and Problem Definition

Weconsider a sparseWRSN consisting of a set of recharge-
able sensors with fixed known positions. There are a bus
network and a drone that is responsible for charging the sen-
sors in an urban area. The drone cannot fly directly between
any two sensors because of the limited battery capacity, and
must ride the buses to charge itself before charging any sen-
sor. We consider that the sensing tasks can tolerate some
data loss, therefore, the sensors can go to sleep to save their
energy and prolong their lifetime. The sensors can be awak-
ened by replenishing energy from the drone. The drone rides
the bus at the nearest landing point to a last charged sensor
for replenishing energy from the bus and then leaves the bus
for charging the next sensor at some landing point when it
has sufficient energy. Then the drone charges the sensor, and
flies back to the nearest landing point to the charged sensor.
There are a set of predetermined locations, termed landing
points, which can be viewed as the transfer locations for con-
necting WRSN and bus network. The drone must launch at
a landing point to charge a sensor. Similarly, the drone also
must land at a landing point to ride the bus for energy replen-
ishment. The introduction of landing points largely reduce
the difficulty of landing on a moving bus. The landing point
also helps to reduce the energy consumption because when
it is waiting the bus, the drone can land on the landing point
rather than hovering. In practice, the bus stops can be re-
developed as landing points. Thus, a bus route consists of
some consecutive landing points.

Without loss of generality, let S be the set of n sensors
and V be the set of m landing points. Let �k and 'k be themoving speed and charging power of bus bk ∈ B, respec-
tively, where B is the set of buses. Let �0 denote the flyingspeed of drone. Let ts and td denote the ascending time and
descending time of drone, respectively. Let c0 and cℎ denote
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the flying energy consumption per unit distance and hover-
ing energy consumption per unit time, respectively. Let csand cd denote the energy consumption of ascending and de-
scending of drone, respectively. Let Cmax denote the bat-
tery capacity of drone. Let '0 denote the charging power ofdrone. For convenience, we assume that the drone flies at
a constant speed and the flying energy consumption is only
related to the flying distance. The drone is initially located
at a sensor, denoted by s0. Note that s0 can be any sensor in
S.

Let v(sj) and v(sj′ ) represent the nearest landing point tosensor sj , sj′ ∈ S, respectively. Let vi ∈ V denote a landing
point where the drone launches for charging sensor sj′ . Notethat the drone cannot fly directly between any two sensors.
Without loss of generality, the drone path from sj to sj′ canbe represented as

psj ,sj′ = sj → v(sj)→ ...→ vi → sj′ (1)
To formalize the comprehensive charging system, we use

the directedmultigraphG = (V ∪S,A) to represent the com-
prehensive network by integrating WRSN and bus network,
where A represents the set of road segments that connect
the adjacent landing points in bus routes and flight segments
that connect the sensors and landing points. The weight on
any edge a ∈ A is time cost ta, which represents the con-
sumed time when passing through the edge. Let ca be the
energy cost of drone that represents the energy consumption
when drone passes through edge a. Let ea be the residual
energy of drone after passing through starting point of edge
a. Let r(sj) be the energy requirement of any sensor sj ∈ S.Let ∥ ⟨vi, vi′⟩ ∥, ∥ ⟨vi, sj′⟩ ∥ and ∥ ⟨sj , v(sj)⟩ ∥ be the
distance from vi to vi′ , from vi to sj′ and from sj to v(sj),respectively. Specifically, there are three types of edges in
the directed multigraph G:
(1) a = ⟨vi, vi′⟩bk indicates the edge from landing point vito landing point vi′ taking bus bk with weight ta and en-ergy cost ca, where ta is the traveling time of bus passing

through edge a, and ca is theminimum value between re-
plenished energy when passing through edge a andmax-
imum rechargeable capacity after passing through start-
ing point of edge a. Then, ta and ca can be calculated bythe following equations.

ta =
∥ ⟨vi, vi′⟩ ∥

�k
(2)

ca = −min{'kta, Cmax − ea} (3)

(2) a = ⟨vi, sj′⟩ indicates the edge that the drone flies fromlanding point vi to sensor sj′ with weight ta and energy
cost ca, where ta is the total time of ascending, flying
from vi to sj′ and charging for sj′ , and ca is the total
energy consumption of ascending, flying from vi to sj′ ,and hovering of drone, as well as energy requirement of

s0 s2

s1

v1 v2

v3

 𝒗𝟏, 𝒗𝟐 𝒃𝟏
 

 𝒗𝟏, 𝒗𝟐 𝒃𝟐
 

 𝒗𝟏, 𝒔𝟏  

 𝒔𝟐, 𝒗(𝒔𝟐)  

Figure 2: Illustration of directed multigraph G.

sj′ . Then, ta and ca can be calculated by the following
equations.

ta = ts +
∥ ⟨vi, sj′⟩ ∥

�0
+
r(sj′ )
'0

(4)

ca = cs+ ∥ ⟨vi, sj′⟩ ∥ c0 + cℎ
r(sj′ )
'0

+ r(sj′ ) (5)

(3) a = ⟨sj , v(sj)⟩ indicates the edge that the drone flies
from sensor sj to the nearest landing point v(sj) withweight ta and ca, where ta is the total time of flying from
sj to v(sj) and descending of drone, and ca is the totalenergy consumption of flying and descending of drone.
Then, ta and ca can be calculated by the following equa-tions.

ta =
∥ ⟨sj , v(sj)⟩ ∥

�0
+ td (6)

ca =∥ ⟨sj , v(sj)⟩ ∥ c0 + cd (7)
We use the example in Fig. 2 to illustrate the directed

multigraph G. There are three sensors and three landing
points along with two buses and a drone. We assume that
v(s1) = v1, v(s2) = v2 and v(s3) = v3. There are two edges
from v1 to v2, i.e., ⟨v1, v2⟩b1 and ⟨v1, v2⟩b2 , which indicate
the bus b1, b2 ∈ B can drive from v1 to v2, respectively. Theedge ⟨v1, s1⟩ and ⟨s2, v(s2)⟩ indicates the drone flies from
landing point v1 to sensor s1 and from sensor s2 to the near-est landing point v(s2), respectively.LetΩ denote all possible drone schedules that start from
any given sensor s0 and can charge all sensors exactly once
under the energy constraint of drone. The objective of DSB
problem is to find the drone schedule with minimum time
cost. The DSB problem can be formulated as follows:

(P1) minT∈Ω
∑

a∈T ta
s. t.
(P1-a) ca ≤ ea,∀a ∈ T

(8)

Constraint (P1-a) ensures that the energy cost of each
edge a ∈ T is not larger than the residual energy of drone at
the starting point of edge a.

We listed the frequently used notations in Tab. 1.
Yong Jin et al.: Preprint submitted to Elsevier Page 4 of 13
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Table 1
Frequently Used Notations

Notation Description
S, V Set of sensors, set of landing points
n, m Number of sensors, number of landing points
B, �k, 'k Set of buses, moving speed of bus bk, charging

power of bus bk
�0 Flying speed of drone
ts, td Ascending time of drone, descending time of

drone
c0, cℎ Flying energy consumption per unit distance of

drone, hovering energy consumption per unit
time of drone

cs, cd Ascending energy consumption of drone, de-
scending energy consumption of drone

Cmax, '0 Battery capacity of drone, charging power of
drone

vi Landing point
v(sj) Nearest landing point to sensor sj
psj ,sj′ Drone path from sensor sj to sj′
G Comprehensive network
A Set of edges in G
ta, ca Time cost of edge a, energy cost of edge a
⟨vi, vi′⟩bk Edge from landing point vi to landing point vi′

taking bus bk
r(sj), �(sj) Energy requirement of sensor sj , deadline of sen-

sor sj
Ω All possible drone schedules of DSB problem
p̄sj ,sj′ Modified drone path from sensor sj to sensor sj′
Φ All the paths from landing point v(sj) to landing

point vi on G
Γsj All possible directed Hamiltonian paths that start

from sensor s0 to sensor sj
S( ) Set of sensors charged by drone passing through

cycle 
Λ All possible drone schedules of DDSB problem

3.2. Hardness and Design Rationale
As the following theorem shows, it is NP-hard to find the

optimal solution for the DSB problem.
Theorem 1. DSB problem is NP-hard.

Proof. Consider the special case whereG only contains sen-
sors and the drone can fly between any two sensors by assum-
ing that the energy of drone is infinite. Then, the problem is
simplified to find a drone schedule starting from s0 to chargeall sensors exactly once with minimum time cost. This prob-
lem is the TSPP problem actually. Since the TSPP problem
is a well-known NP-hard problem [30], the DSB problem is
NP-hard

The basic idea of our solution is to find the energy con-
strained drone paths with the minimum time cost between
any two sensors. If these drone paths can be determined, we
can construct a directed graph G′ only consisting of sensors
and the drone paths. Then the P1 problem can be solved by
calculating the TSPP of drone on G′.

s0 s2v1 v2

v3

(a)

(b)

s0 s2v1 v2

v3

Figure 3: Illustration of transformation of drone path. (a) the
original drone path ps0 ,s2 = s0 → v1 → v3 → v2 → s2. (b) the
modified drone path p̄s0 ,s2 = v1 → v3 → v2 → s2 → v2.

However, it is difficult to find the energy constrained short-
est path (with theminimum time cost) because the dronemay
have the hybrid process of discharging and charging between
any two sensors. This means that the restricted shortest path
algorithm [17], which requires the non-negative constraint,
cannot be applied straightforwardly.

To solve this problem, we transform the original drone
path given in (1) from sensor sj to sj′ to the modified path
p̄sj ,sj′ :

p̄sj ,sj′ = v(sj)→ ...→ vi → sj′ → v(sj′ ) (9)
Here, the drone passing through p̄sj ,sj′ is charged first in thesubpath v(sj) → ... → vi, and then discharge in the sub-
path vi → sj′ → v(sj′ ). So, p̄sj ,sj′ can satisfy the energy
constraint (P1-a) when the replenished energy from buses in
the subpath v(sj) → ... → vi is no less than the total en-
ergy consumption in the subpath vi → sj′ → v(sj′ ). The
above transformation of drone path is illustrated in Fig. 3,
where the original drone path is ps0,s2 = s0 → v1 → v3 →
v2 → s2 shown in Fig. 3 (a). The modified drone path is
p̄s0,s2 = v1 → v3 → v2 → s2 → v2 shown in Fig. 3 (b).

Another challenge is that the initial energy of the drone
path is uncertain. As illustrated in Fig. 3 (b), the energy of
drone at landing point v1 depends on the previously passed
segments and cannot be calculated in advance. To address
this issue, we assume that the residual energy of drone at the
nearest landing point to the last charged sensor is 0, which
is sufficient to ensure the energy feasibility. This assump-
tion essentially tightens the energy constraints of P1. For
the given landing point vi and sensor sj′ , the total energy
consumption can be computed in advance. So, the energy
constrained shortest path problem can be solved by finding
the shortest path pv(sj ),vi from v(sj) to vi ∈ V with energy
replenishment no less than a constant.

Let Φ be all the paths from v(sj) to vi on G. Given any
two sensors sj and sj′ , and any landing point vi ∈ V , the
energy constrained shortest path problem can be formulated

Yong Jin et al.: Preprint submitted to Elsevier Page 5 of 13
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as follows:
(P2)minpv(sj ),vi∈Φ

∑

a∈pv(sj ),vi
ta, sj ∈ S, vi ∈ V

s. t.
(a)∑a∈pv(sj ),vi

|ca| ≥ c
⟨vi,sj′ ⟩ + c⟨sj′ ,v(sj′ )⟩,

sj , sj′ ∈ S, vi ∈ V

(10)

Constraint (P2-a) ensures that the replenished energy of
pv(sj ),vi is no less than the total energy cost of ⟨vi, sj′⟩ and
⟨sj′ , v(sj′ )⟩.Recall that if P2 can be solved, the directed graph G′ =
(S,A′) can be constructed, where A′ represents the set of
the energy constrained shortest paths between any two sen-
sors. The weight on any edge a′ ∈ A′ is time cost ta′ , whichindicates the consumed time when drone passes through the
edge a′. Unfortunately, it is NP-hard to find the optimal solu-
tion for the P2 problem [31]. Furthermore, to the best of our
knowledge, there is no approximation algorithm to address
the P2 problem. Thus, we find the exact solution of the P2
problem through Y enKSP algorithm [32] with probability
.

If P2 can be solved by an exact solution, the energy tight-
enedP1 problem onG′ is equivalent to theAsymmetric TSPP
(ATSPP) on G′ [30]. Let Γsj denote all possible directed
Hamiltonian paths that start from s0 to sj ∈ S and can
charge all sensors exactly once. The objective ofATSPP is to
find a directed Hamiltonian path from s0 to sj withminimum
time cost on G′. The ATSPP on G′ is defined as follows:

(P3) min
Tsj∈Γsj

∑

a′∈Tsj

ta′ , sj ∈ S (11)

Then, theP3 problem can be solved byATSPP_Approx
algorithm [30]. Finally, we find all the minimum time cost
directed Hamiltonian paths from s0 to each sensor sj ∈ S,
and return the minimum time cost path from the solution of
P3 as the final cycle T .
3.3. Algorithm Design and Analysis

In this subsection, we present the approximation algo-
rithm DSA to solve the energy tightened P1 problem.

The whole process of solving the energy tightened DSB
problem is illustrated in Algorithm 1. Following the design
rationale mentioned above, DSA consists two phases:

Phase 1: Directed Graph Construction
Let Pv(sj ),vi denote the K-shortest paths from v(sj) to

vi ∈ V . Let sj ,sj′ denote all energy constrained shortest
paths from sj to sj′ , where drone launches at each feasible
vi ∈ V for charging sensor sj′ . For any two sensors sj , sj′ ∈
S, we find the first K-shortest paths Pv(sj ),vi from v(sj) to
any landing point vi ∈ V by Y enKSP (G, v(sj), vi, K) (Line8). Then, we find the path pv(sj ),vi with minimum time cost
from Pv(sj ),vi (Line 9) and put it into set sj ,sj′ (Line 13) andterminate execution of while loop if pv(sj ),vi is not empty, and
update L otherwise (Line 11). Specifically, we use binary
search to guess K over [1, Kmax] (Line 7), where Kmax is agiven positive integer. Then, the modified drone path p̄sj ,sj′

Algorithm 1: Drone Scheduling Algorithm
(DSA)
Input: G,Kmax
Output: T ;
// Phase 1: Directed Graph Construction

1 foreach sj ∈ S do
2 foreach sj′ ∈ S, j′ ≠ j do
3 sj ,sj′ ← ∅; Psj ,sj′ ← ∅;
4 foreach vi ∈ V do
5 L← 1; F ← false; pv(sj ),vi ← ∅;
6 while L ≤ Kmax and F = false do
7 K ← ⌊

L+Kmax
2 ⌋;

8 Psj ,sj′ ← Y enKSP (G, v(sj), vi, K);
9 psj ,sj′ ←

argminp∈Psj ,sj′
{
∑

a∈p ta|
∑

a∈p |ca| ≥
c
⟨vi,sj′ ⟩ + c⟨sj′ ,v(sj′ ⟩};

10 if psj ,sj′ = ∅ then
11 L← K;
12 else
13 sj ,sj′ ← sj ,sj′ ∪ {psj ,sj′ };F ←

true;
14 p̄sj ,sj′ ←

argminpv(sj ),vi∈sj ,sj′
∑

a∈pv(sj ),vi
ta ⊎

{⟨vi, sj′⟩} ⊎ {⟨sj′ , v(sj′ )⟩};
15 G′ ← G′ ∪ {(⟨sj , sj′⟩,

∑

a∈p̄sj ,sj′
ta};

// Phase 2: ATSPP Calculation

16 ⃖⃖⃗T ← ∅;
17 foreach sj ∈ S do
18 Tsj ← ATSPP_Approx(G′, s0, sj);

⃖⃖⃗T ← ⃖⃖⃗T ∪ {Tsj};
19 T ← argmin

T ′∈ ⃖⃗T
∑

a′∈T ′ ta′ ;

is assembled by pv(sj ),vi , ⟨vi, sj′⟩ and ⟨sj′ , v(sj′ )⟩, where sym-
bol ⊎ represents assembling the path (Line 14). Moreover,
we add the tuple (⟨sj , sj′⟩,∑a∈p̄sj ,sj′

ta) into graph G′ (Line
15), where sj and sj′ are the vertexes in the edge of G′,
and the second term is the weight (time cost of the modified
drone path p̄sj ,sj′ on the edge ⟨sj , sj′⟩. Finally, the directed
multigraph G is transformed into a directed graph G′.

Phase 2: ATSPP Calculation.
Let ⃖⃖⃗T denote all the directedHamiltonian pathswithmin-

imum time cost from s0 to any sensor sj ∈ S, where ⃖⃖⃗T can
be computed byATSPP_Approx(G′, s0, sj) (Lines 17-18),and return the minimum time cost path in the above paths as
the final cycle T (Line 19).
Theorem2. DSA is a pseudo-polynomial time and

√

n-appr-
oximation algorithm for the energy tightened DSB problem
with probability 2 2logKmax−1

logKmax(Kmax−1)
.
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Proof. In phase 1, Y enKSP is called logKmax times, and
then finds all energy constrained shortest paths for any two
sensors takesO(Km2n2 logKmax(|A|+m logm)) time, where
K ∈ [1, Kmax] is a positive integer. In Phase 2, finding all
the minimum time cost directed Hamiltonian paths from s0to any other sensor sj ∈ S takes O(n4.5) time. Hence, DSA
is a pseudo-polynomial time algorithm.

From Line 7, we have at most logKmax values of K ,
where the value of K in the q-th binary search can be cal-
culated by

Kq =
1
2
(Kq−1+Kmax), K0 = 1, q = 1, ..., logKmax (12)

Then, we divide the interval [1, Kmax] into logKmax subin-tervals, i.e., Iq = [Kq−1, Kq], q = 1, ..., logKmax. We de-
fine the event Nq to represent that we can find the optimal
solution of P2 problem in the subinterval Iq . Clearly, the
above events are not compatible with each other, i.e., Nq ∩
Nq′ = ∅, q ≠ q′, q, q′ = 1, 2, ..., logKmax and⋃logKmax

q=1 Iq =
[1, Kmax]. LetM denote the event of finding the optimal so-
lution of P2 problem in interval [1, Kmax]. So, according to
the total probability theorem, the DSA can find the optimal
solution of P2 problem with the probability calculated by

P (M) =
∑logKmax
q=1 P (Nq)P (M|Nq)

= 1
logKmax(Kmax−1)

∑logKmax
q=1 2q

= 2 2logKmax−1
logKmax(Kmax−1)

(13)

Phase 2 adopts ATSPP_Approx to find the√n-appro-
ximation [30] Hamiltonian paths from s0 to any other sen-
sor in S on G′. Thus, the DSA is a√n-approximation algo-
rithm for the energy tightenedDSB problemwith probability
2 2logKmax−1
logKmax(Kmax−1)

.

4. Deadline Drone Scheduling with Bus
network

4.1. Problem Formulation
The continuous sensing application does not tolerate data

loss. Therefore, the data quality will be deteriorated because
of the data loss caused by the dead and dormancy of sensors.
Due to the different energy consumption level of sensors, we
consider that each sensor has a specified deadline. Gener-
ally, it is difficult to charge all sensors before their deadlines
because of the limited flying speed and battery capacity of
drone. A practical objective is to maximize the number of
sensors charged by the drone before their deadlines. So, we
are committed to make as many sensors as possible work
sustainably under the constraints of both energy of drone and
deadlines of sensors.

Let  denote the drone schedule on G starting from s0and charge other sensors under the constraints of both en-
ergy of drone and deadlines of sensors. To solve the drone
scheduling problem considering the deadline, we find the
drone schedule starting at s0 to charge as many sensors as

possible. Let S( ) ⊆ S denote the set of sensors charged by
drone passing through  . We define a function f (S( )) =
|S( )|, which represents the number of sensors inS( ). We
have the following fact.
Fact 1. The function f is a monotone submodular function.

Let Λ denote all drone schedules on G starting from s0and charge other sensors under the constraints of both en-
ergy of drone and deadlines of sensors. Let �(s) denote the
deadline of sensor s, and  (s) denote the subpath of  from
sensor s0 to s, s ∈ S. The DDSB problem on G can be for-
mulated as follows:

(P4) max ∈Λ f (S( ))
s. t.
(P4-a) ca ≤ ea,∀a ∈  ;
(P4-b) ∑a∈ (s) ta ≤ �(s),∀s ∈ S( )

(14)

Constraint (P4-a) ensures that the energy cost of any edge
a ∈  is not larger than the residual energy of drone at the
starting point of edge a. Constraint (P4-b) ensures that the
total time of drone passing through  (s) is not larger than
the deadline of any sensor s ∈ S( ).
4.2. Algorithm Design and Analysis

First of all, as the following theorem shows, it is NP-hard
to find the optimal solution for the DDSB problem.
Theorem 3. DDSB problem is NP-hard.

Proof. Consider the special case whereG only contains sen-
sors and the drone can fly between any two sensors by assum-
ing that the energy of drone is infinite. Each sensor has a
deadline. Let ΛR denote all drone schedules onG starting at
s0 and charge other sensors before the deadlines of sensors.
Let  R(s) denote the subpath of  R ∈ ΛR from sensor s0to sensor s, s ∈ S( R). The objective of the relaxed DDSB
problem is to find a path starting at s0 that charges as many
sensors as possible before their deadlines. Then, the relaxed
DDSB problem can be formulated as follows:

(P5) max R∈ΛR f (S( R))
s.t.
(P5-a)∑a∈ R(s) ta ≤ �(s),∀s ∈ S( R)

(15)

Constraint (P5-a) ensures that the time cost of  R(s) for
any sensor s ∈ S( R) is not larger than the deadline of sen-
sor s.

Thenwe give the instance ofDeadline-Traveling Salesman
Problem (Deadline-TSP): For a metric space  = ( , ) on
n nodes, a starting node us and deadlines �(u) for each vertex
u ∈  , the objective of Deadline TSP [33] is to find a path
starting at us that visits as many nodes as possible before
their deadlines.

We can simply see that z is a solution of Deadline TSP
if and only if z is a solution of P5.

Since the Deadline TSP is a well-known NP-hard prob-
lem [33], P5 is NP-hard, and then the DDSB problem is NP-
hard.

Yong Jin et al.: Preprint submitted to Elsevier Page 7 of 13



Bus Network Assisted Drone Scheduling for Sustainable Charging of Wireless Rechargeable Sensor Network

To overcome the uncertainty of residual energy at each
drone path. We still tighten the energy constraints of P4
by assuming that the residual energy of drone at the near-
est landing point to the last charged sensor is 0. So, the en-
ergy constrained shortest path with the minimum time cost
is the optimal path between any two sensors. Then, we still
use modified path given in (9) because of the hybrid process
of discharging and charging between any two sensors. For
the same reasons clarified in Section 3.2, we use the Phase 1
of DSA to find the energy constrained drone paths with the
minimum time cost between any two sensors and construct
the directed graph G′ = (S,A′) only consisting of sensors
and the drone paths.

Then, we aim at solving P5 on G′. Let sj be a cycle
from s0 to sj on G′, where sj can be represented as

sj = s(1) → ...→ s(l)→ ...→ s(f (S(sj ))),
l = 1, 2, ..., f (S(sj ))

(16)

Each sensor s ∈ S has a timewindow [R(s), �(s)] during
which it can be visited, where R(s) is the release time of s.
Let t(s(l)) be the time cost from s0 to s(l) on cycle sj . Given
G′, two sensors s0, sj , and a budget �(sj), the Submodular
Orienteering Problem-Time Windows (SOP-TW) [34] is to
find a cycle sj that maximizes f (S(sj )) when the follow-
ing conditions are satisfied: t(s(l)) ≤ �(sj) and t(s(l)) +
t
⟨sl ,sl+1⟩ ≤ �(sl+1), l = 1, 2, ..., f (S(sj )).Clearly, P5 on G′ is a special case of SOP-TW when
we set the release time of all sensors as 0, and the reward
function is a modular function (i.e., one for which the sub-
modular inequality holds with equality). Since SOP-TW can
be solved by RGA algorithm [34] within the approximation
of log f (S( ⋆)), where  ⋆ is the optimal solution of en-
ergy tightened DDSB problem, P5 (Deadline TSP) on G′
can be solved by RGA algorithm within the approximation
of log f (S( ⋆)).

We present the approximation algorithm DDSA to solve
the energy tightened DDSB problem. The whole process of
solving the energy tightened DDSB problem is illustrated in
Algorithm 2, which consists of following phases.

Phase 1: Directed Graph Construction
This phase is the same to Phase 1 in DSA.
Phase 2: SOP-TW Calculation
We find the cycles charging as many sensors as possi-

ble from s0 to each sensor sj ∈ S by RGA(G′, s0, sj , �(sj))(Lines 3-4), and return the path with maximum charged sen-
sors in the above cycles as the final cycle  (Line 5).
Theorem 4. DDSA is a quasi-polynomial time and log f (
S( ⋆))-approximation algorithm for the energy tightened
DDSB problem with probability 2 2logKmax−1

logKmax(Kmax−1)
, where  ⋆

is the optimal solution of energy tightened DDSB problem.

Proof. Let �max denote themaximumdeadline in all sensors,
i.e., �max = maxs∈S{�(s)}. In Phase 2, finding all the cyclescharging as many sensors as possible from s0 to each sensorin S takes O(n(n log �max)O(log n)) time. Thus, the DDSA is
a quasi-polynomial algorithm.

Algorithm 2: Deadline Drone Scheduling Algo-
rithm (DDSA)
Input: G,Kmax, �(sj), sj ∈ S
Output: T ;
// Phase 1: Directed Graph Construction

1 call the process of Lines 1-15 in DSA;
// Phase 2: SOP-TW Calculation

2 ⃖⃖⃗ ← ∅;
3 foreach sj ∈ S do
4 sj ← RGA(G′, s0, sj , �(sj)); ⃖⃖⃗ ← ⃖⃖⃗ ∪ {sj};
5  ← argmax

 ′∈ ⃖⃗ f (S(
′));

Let  ⋆ be the optimal solution of energy tightenedDDSB
problem. Phase 2 adopts RGA to find the log f (S( ⋆)) ap-
proximation [34] cycle from s0 to any sensor sj ∈ S, j ≠ 0
on G′. Thus, the DDSA can output the solution for energy
tightenedDDSB problemwith number of sensors charged by
drone no less than log f (S( ⋆))with probability 2 2logKmax−1

logKmax(Kmax−1)
.

5. Numerical Experiments
In this section, we conduct extensive simulations to ver-

ify the performance of our proposed algorithms with differ-
ent number of landing points, energy requirement, number
of sensors and deadlines of sensors.
5.1. Simulation setup

Weuse the data of ‘NewYork City BusData’ [35], which
includes the live data recorded fromNYCBuses. This dataset
is from the NYC MTA bus data stream service.

To compare the proposed algorithmswith the benchmark
algorithms, we select the bus routes from the dataset to cre-
ate the large-scale transportation network. We compute the
length of road/flight segments through Google map. Sup-
pose that we deploy rechargeable sensors in Boston, New
York. The parameters of drone are from Inspire 2 [36]. In
our simulation, we evaluate the total time cost of drone, and
survival rate of sensors. All the simulations were run on
a cloud server ECS [37] with 8 core Intel Xeon Platinum
8269CY and 32 GB memory. The maximum hovering time
of drone is about 0.45 ℎours. The other parameter settings
of our simulations are listed in Tab. 2.
5.2. Benchmarks

Since there are no existing algorithms for bus network
assisted drone scheduling, we develop four benchmark algo-
rithms for comparison,
(1) GRE. TheGreedy Replenished Energy (GRE) algorithm

consists of Directed Graph Construction Phase and AT-
SPP Calculation Phase. In Phase 1,GRE finds the maxi-
mum replenished energy paths onG for any two sensors
greedily [38]. Phase 2 is the same to that of DSA.
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Table 2
Parameter settings

Parameter Value
n 500
m 22
|B| 23
Cmax 97.58 W ℎ
�0 94 km∕ℎ
ts, td 0.02 ℎours
cs, cd 0.54 W ℎ
c0 1.07 W ℎ∕km
'k 80 kW
'0 0.04 kW
r(sj) [5, 20] W ℎ
�(sj) [2, 12] ℎours

(2) DGRE.TheDeadlineGreedy Replenished Energy (DGRE)
algorithm consists of DirectedGraphConstruction Phase
and SOP-TW Calculation Phase. In Phase 1, the DGRE
finds the maximum replenished energy paths on G for
any two sensors greedily [38]. Phase 2 is the same to
that of DDSA.

(3) OPT. The optimal solution for energy tightened DSB
problem. OPT enumerates all the paths for any two sen-
sors on G and selects the energy constrained path with
the minimum time cost to constructG′. Then,OPT enu-
merates all the directed Hamiltonian paths starting from
s0 and charging all sensors on G′, and then returns the
minimum time cost path as the final solution.

(4) DOPT. The optimal solution for energy tightenedDDSB
problem. DOPT enumerates all the paths for any two
sensors on G and selects the energy constrained short-
est path with the minimum time cost to construct G′.
Then, DOPT enumerates all the paths starting from s0and charging other sensors before deadlines on G′, and
then returns the path with maximum charged sensors as
the final solution.

5.3. Performance evaluation
In this subsection, we evaluate the performance of GRE,

DSA, DGRE andDDSA in the large-scale transportation net-
work shown in Fig. 4. Tab. 3 gives the schedules of bus
lines in the large-scale transportation network including bus
ID, sub route, route length, and average speed of bus. The
above information are calculated based on the data records
from 0:00-23:59 on December 1-6, 2017 in Boston.

Impact of number of landing points. We vary number
of landing points from 10 to 22. Fig. 5 shows that DSA
reduces 96.35% of total time cost of GRE on average, and
DDSA increases 76.49% of survival rate of sensors ofDGRE
on average. This indicates that the proposed algorithms sig-
nificantly outperform GRE and DGRE, respectively. This
is because the output of DSA and DDSA are paths with the
minimum time cost satisfying the energy constraint of drone,
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Figure 4: Large-scale transportation network. The white nodes
represent landing points and the red lines represent road seg-
ments. There are three parameters on each road segment,
i.e., bus ID, length of road segment and average speed of bus
passing through the road segment.
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Figure 5: Impact of number of landing points: (a) Total time
cost v.s. number of landing points. (b) Survival rate of sensors
v.s. number of landing points.

and are better than the paths obtained by GRE and DGRE,
respectively.

Impact of energy requirement. We vary energy require-
ment of sensors from 5 W ℎ to 20 W ℎ. Fig. 6 shows that
DSA reduces 76.31% of total time cost of GRE on average,
and DDSA increases 25.92% of survival rate of sensors of
DGRE on average. Note that the total time cost of GRE
and DSA increase with energy requirement. This is because
the more energy requirement and the more landing points
passed through by the drone for charging sensors. In most
cases, the time cost of paths computed by DSA and DDSA
is less than that of paths computed by GRE and DGRE, re-
spectively. Thus, drone scheduled by DDSA have more time
to charge more sensors than drone scheduled by DGRE.

Impact of number of sensors. We vary number of sen-
sors from 10 to 500. Fig. 7 shows that DSA reduces 81.84%
of total time cost of GRE on average, and DDSA increases
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Table 3
Schedule of bus lines in our experiments

Bus ID Sub route Route length (km) Average speed (km∕ℎ)
B67 {10→ 11} 2.82 18.46
B44 {21→ 13→ 22} 7.09 10.64
B41 {13→ 14} 3.39 16.78
B12 {11→ 15} 5.07 17.53
B35 {9→ 11} 4.28 14.28
B6 {14→ 16} 2.84 12.84
B17 {8→ 9} 2.85 22.44
B82 {6→ 8} 2.14 10.43
B52 {17→ 18} 8.12 9.74
B46 {15→ 19} 4.10 18.32
B68 {2→ 3} 3.42 5.13
B15 {9→ 20} 6.88 12.44
B8 {6→ 7} 7.81 9.37
B3 {17→ 18} 8.12 9.74
B25 {18→ 20} 12.10 14.50
B57 {18→ 19} 6.35 14.28
B45 {13→ 15} 2.3 16.78
B63 {4→ 5} 2.02 10.52
B49 {12→ 24} 6.96 13.48
B54 {18→ 19} 6.96 13.48
B36 {1→ 2} 2.9 15.82
B43 {13 → 15} 2.3 16.78
B38 {17 → 18} 8.12 9.74
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Figure 6: Impact of energy requirement: (a) Total time cost
v.s. energy requirement. (b) Survival rate of sensors v.s. en-
ergy requirement.
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Figure 7: Impact of number of sensors: (a) Total time cost v.s.
number of sensors. (b) Survival rate of sensors v.s. number of
sensors.

53.43% of survival rate of sensors ofDGRE on average. Fig.
7 (a) and (b) show that total time cost for DSA and GRE in-
crease and survival rate of sensors for DDSA and DGRE de-
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Figure 8: Survival rate of sensors v.s. deadline.

crease with number of sensors, respectively. This is because
the more sensors, the longer travel time of drone, and the
fewer sensors that can be charged before the deadlines.

Impact of deadline. We vary deadlines of sensors from
2 ℎours to 12 ℎours. Fig. 8 shows that DDSA increases
33.33% of survival rate of sensors ofDGRE on average. This
is because DGRE can not find the feasible route for drone to
charge 66.67% of sensors when their deadlines are less than
7 ℎours in the large-scale transportation network. However,
drone passing through the feasible route computed byDDSA
can charge at least 20% of these sensors.

Overall, DSA and DDSA can significantly decrease the
total time cost and increase the survival rate of sensors through
the designed algorithms, respectively.
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Figure 9: Transportation network in Xianlin campus of
NJUPT.
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Figure 10: Testbed: a car, a rechargeable sensor, a drone and
two chargers.

6. Field Experiment
In this subsection, we further evaluate the performance

of OPT, DSA, DOPT and DDSA in the transportation net-
work in Xianlin campus of NJUPT as shown in Fig. 9. Fig.
10 gives the test-bed, which consists of one drone carried
one TX91501 power transmitter [39], three cars carried the
TX91501 chargers as buses, 12 sensors deployed in Xianlin
campus of NJUPT and 12 landing points.

First, Fig. 11 shows that the total time cost of DSA is 7.6
times that ofOPT on average, and survival rate of sensors of
DDSA is 80.00% of that of DOPT on average when number
of landing points is from 7 to 10. Note that the performance
gaps between DSA and OPT, DDSA and DOPT are small
since DSA and DDSA have the guaranteed approximation.
Then, Fig. 12 shows that the total time cost of DSA is 4.33
times of that ofOPT on average, and survival rate of sensors
ofDDSA is 72.73% of that ofDOPT on average when energy
requirement is from 5 W ℎ to 20 W ℎ. Moreover, Fig. 13
shows that the total time cost of DSA is 6 times of that of
OPT on average, and survival rate of sensors of DDSA is
88.54% of that ofDOPT on average when number of sensors
is from 5 to 12. Furthermore, Fig. 14 shows that survival rate
of sensors of DDSA is 68.89% of that of DOPT on average
when deadline is from 2 ℎours to 10 ℎours.

Running time. We vary number of sensors from 5 to
10. Fig. 15 shows that the running time of OPT, DSA,
DOPT and DDSA grow linearly with the number of sensors.
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Figure 11: Impact of number of landing points: (a) Total time
cost v.s. number of landing points. (b) Survival rate of sensors
v.s. number of landing points.
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Figure 12: Impact of energy requirement: (a) Total time cost
v.s. energy requirement. (b) Survival rate of sensors v.s. en-
ergy requirement.
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Figure 13: Impact of number of sensors: (a) Total time cost
v.s. number of sensors. (b) Survival rate of sensors v.s. num-
ber of sensors.
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Figure 14: Survival rate of
sensors v.s. deadline.
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number of sensors.

The running time of OPT and DOPT are 14.50 seconds and
14.04 seconds on average, respectively. Whereas, DSA and
DDSA can complete the bus network assisted drone schedul-
ing in 1.63 seconds and 2.45 seconds on average, respec-
tively. Note thatDSA andDDSA only use 11.23% and 17.42%
of running time ofOPT andDOPT on average, respectively.
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So, the proposed algorithms are much more suitable to the
large-scale transportation network.

7. Conclusion
In this article, we have designed the drone-enabled unique

wireless charging system for sensors supported by the bus
network in urban areas. The bus are sustainably charged by
the OLEV system or its fuel engine, and has sufficient en-
ergy to charge the drone. The sensors are charged by the
drone. We have formulated DSB problem to minimize the
total time cost of drone subject to all sensors can be charged
exactly once by the drone under the energy constraint of
drone, and proposed an approximation algorithm to solve
the energy tightened DSB problem. To consider the dead-
lines of sensors, we further formulate the DDSB problem to
maximize the number of sensors charged by the drone un-
der the constraints of both energy of drone and deadlines of
sensors, and proposed an approximation algorithm to solve
the energy tightened DDSB problem. The theoretical anal-
ysis, numerical simulations and field experiments have con-
firmed the efficiency and effectiveness of the proposed al-
gorithms. The simulation results show that DSA can reduce
the total time cost by 84.83% comparedwithGRE algorithm,
and uses at most 5.98 times of the total time cost of optimal
solution on average. Then, the results show that DDSA can
increase the survival rate of sensors by 51.95% compared
with DGRE algorithm, and can obtain 77.54% survival rate
of optimal solution on average.
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