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Abstract—The success of online shopping accelerates the devel-
opment of express delivery business with economic and efficient
service. Current express delivery systems usually deliver the
packages in noncooperation mode and cannot jointly optimize
the express fee and moving cost of users. This paper proposes the
cooperative package assignment system by lumping packages at
the same express station to share the express fee, and proposes a
novel pricing structure to stimulate the express stations to join the
system without revenue loss by introducing cooperation cost. We
formulate the cooperative package assignment (CPA) problem with
heterogeneous express stations for joint optimization of users’
express fee and moving cost. Then, an approximate algorithm,
CPAA, is proposed for the CPA problem based on the greedy
approach using submodular function minimization. We show that
the designed algorithm achieves computational efficiency and
guaranteed approximation. Furthermore, we model the large-
scale CPA problem as CPA-game and present a game theoretic
algorithm, CPAGA. We show that CPA-game has at least one
Nash Equilibrium, and CPAGA finally converges to a pure Nash
Equilibrium. Through extensive simulations, we demonstrate
that CPAA and CPAGA show great advantages in terms of
comprehensive cost, which is 28.1% and 19.9% lower than
that in noncooperation mode on average, respectively. Moreover,
CPAGA shows great scalability and is more suitable for large-
scale cooperative package assignment systems.

Index Terms—cooperative package assignment, express station,
coalition formation game, submodular function

I. INTRODUCTION

ONLINE purchasing has been evolving the retailing mar-
ket, and has become the primary shopping mode with

the rapid development of Internet and mobile networks. The
statistical results from the State Post Bureau show that the
business of express delivery involves 63.52 billion deliveries
of goods in 2019, with average growth rate of 35.86% over
the past five years in China [1]. During the online shopping
festival of China in 2019, the delivery amount exceeded 1.29
billion [2]. The success of online shopping accelerates the
development of express delivery business. There is an ever-
increasing requirement for punctuality, economy and efficiency
of express delivery service.
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TABLE I
PRICING RULES OF EXPRESS COMPANIES FOR LOCAL PACKAGES.

Company
Price First Heavy (1kg) Continued Heavy (0.5kg)

FedEx CNY 16 CNY 1
SF-Express CNY 12 CNY 1

EMS CNY 12 CNY 1
Deppon CNY 10 CNY 1

In an express delivery network, the package is firstly de-
livered to the express station (ES) nearby, then forwarded to
another ES close to the destination, and finally sent to the
customer. Traditionally, the express package sender always
delivers the package to the ES close to its current location non-
cooperatively. However, the users can benefit from cooperative
package assignment at the same ES by sharing the cost.
Table I shows the pricing rules of express companies for local
packages. The users can obtain cooperative surplus by lumping
packages into one big package at express station. Specifically,
the small packages can benefit through sharing the first heavy
price, and the big packages can benefit from the cooperation
since the continued heavy price is much lower than the first
heavy price in practice.

With the fast development of sharing economy, the coop-
erative pricing mechanism design has been widely studied
in various fields, such as blockchain [3], crowdsensing [4]
and wireless charging [5]. Recently, some cooperative pricing
mechanisms for logistics or express delivery have been pro-
posed. Wang et al. proposed the cooperative operation of the
express enterprise service network to optimize the operation
efficiency of the stock resources [6]. Yao et al. studied the
assessment of collaboration in city logistics by taking into
account the transportation cost [7]. Liu et al. proposed a
cooperative pricing model to achieve the final balanced price
of both market and express companies [8]. Ko et al. proposed
a pricing model based on last mile delivery time function to
maximize the profit [9]. In [10], Shapley value was applied
to give fair allocation to each company based on its marginal
contribution. Hong et al. proposed a cost sharing model of
terminal joint distribution for express enterprises to reduce
delivery cost [11].

The collaboration or strategic alliance in express delivery
services has also been widely studied. The realistic col-
laboration model that reduced the price of deliveries by
creating an efficient pick-up and delivery system through a
strategic alliance was proposed in [12]. Kim et al. developed
a heuristic algorithm based on genetic algorithm to solve
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Fig. 1. Illustration of cooperative package assignment system.

the collaboration-based pick-up and delivery problem with
the objective of maximizing the incremental profits of allied
companies [13]. Ferdinand et al. suggested two types of
strategic alliance models to improve efficiency of resource
usages in a distribution system of goods [14]. Dahl et al.
illustrated that cost effectiveness can be improved substantially
through the suitable distributed decision support system in
small transportation firm cooperation network [15].

However, most research on express delivery mainly focused
on transportation between distribution centers. None of these
studies considered the cooperative package assignment at
ESs and the cost sharing among the cooperative packages.
Furthermore, most researchers did not take into account the
joint optimization of express fee and moving cost of users.

As shown in Fig. 1, we consider a cooperative package
assignment system, where each user has several choices to
deliver its package to different ESs, and each choice is with
a corresponding moving cost. We consider that the ESs are
heterogeneous, that is, the ESs are operated by different
express companies with different prices. The users who deliver
the packages at the same ES can obtain the cooperative surplus
through sharing the total cost of users assigned to the ES.

Obviously, the cooperative package assignment system
brings the economic benefit to the users, thus is very attractive
to users. If the current pricing rule can guarantee the revenue
of express companies, such system helps to attract more users
without revenue loss. From the perspective of social compe-
tition, the cooperative package assignment system provides
a novel pricing structure of ESs and prompts the express
company to decide on the rational express fee.

The problem of cooperative package assignment to het-
erogeneous express stations is very challenging. First, we
need to design a novel pricing structure of ES to enable
the cooperative package assignment without revenue loss to
express companies. Especially, there should be the increased
cost at the ES since there is more work at the ES. Second, in
order to optimize the joint cost of express fee and moving cost,
we should decide on the set of packages assigned to any ES.
However, the package set can be any subset of all packages.
This means that finding the optimal package set of any ES
needs exponential time. Moreover, the optimal algorithm or
approximation algorithm (if exists) may be impractical to deal
with the large-scale cooperative package assignment problem
due to the high time complexity.

The main contributions of this paper are as follows:
• We present a cooperation model for express users and

formulate the cooperative package assignment (CPA)
problem for heterogeneous express stations.

• We propose a pricing structure of ES for the cooperation
modelto guarantee the revenue of express companies.

• We propose a lnn+1
1−ε -approximation algorithm for the CPA

problem based on the greedy approach using submodular
function minimization [17].

• We model the large-scale CPA problem as a coalition
formation game, which has at least one Nash Equilibrium.
We propose the CPA-game algorithm (CPAGA) and show
that CPAGA finally converges to a pure Nash Equilibrium.

The rest of the paper is organized as follows. Section II
presents the system model and formulates the CPA problem.
The approximation algorithm for CPA problem is proposed
in Section III. Section IV presents CPAGA to optimize the
large-scale CPA problem. Performance evaluation is shown in
Section V. We conclude this paper in Section VI.

II. SYSTEM MODEL

We consider a cooperative package assignment system con-
sisting of an express platform, a set M = {1, 2, · · · ,m} of
m express stations and a set N = {1, 2, · · · , n} of n users,
and each is with a package to deliver. All computation of the
system is made by the express platform, which resides in the
cloud server. To simplify the notation, we reuse the notation
i and N to denote the package delivered by user i and the
package set delivered by all users, respectively. The coop-
erative package assignment system is developed to increase
business and is operated by the alliance of express companies.
First, the packages are lumped at the ES. We consider that
the packages in the cooperative package assignment system
have the same destination distribution center. Otherwise, they
cannot be transported together, and the transportation cost
will increase. Then, the cooperative packages are unpacked
and sorted at the distribution center. Finally, the unpacked
packages will be delivered to the different ESs. Usually, one
city only has one distribution center, thus the cooperation
package assignment problem is ubiquitous.

We consider that the ESs are operated by multiple express
companies, and each ES j ∈M is with a location lj in
a 2-D surface. Each user i ∈ N submits the information
Bi = (χi, li, wi) to the platform, where χi, li, wi are the unit
moving cost, current location and weight of the package of
user i, respectively.

Next, we present the pricing rule, cooperation model, cost
allocation scheme and problem formulation. The frequently
used notations are listed in Table II.

A. Pricing Rule

We use the express pricing rule adopted in practice [18],
[19], [20], [21]. The express fee φji of any user i ∈ N at any
ES j in the non-cooperative express mode is defined as:

φji =

{
pfj , wi ≤ Hf

j

pfj + (wi −Hf
j )p

c
j , wi > Hf

j

(1)
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TABLE II
FREEQUENTLY USED NOTATIONS

Symbol Description
M,m set of ESs, number of ESs
N,n set of users/packages, number of users/packages
Bi information submitted by the users
χi unit moving cost
li, l

j location of user i, location of ES j
d(li, l

j) distance between li and lj
wi weight of user i’s package
φji express fee of user i at ES j in non-cooperative mode
pfj , p

c
j first heavy price of ES j, continued heavy price of ES

j

Hf
j threshold weight of ES j

Gj set of packages assigned to ES j (coalition of ES j)
G set of package set of all ESs (coalition structure)
φ(Gj) total express fee of users in Gj

c(Gj) comprehensive cost of Gj

p(Gj) cooperation cost of Gj

φi(Gj) express fee of user i ∈ Gj

ci(Gj) comprehensive cost of user i ∈ Gj

ε search precision
ai, a−i strategy of user i, strategies of users except i
ui(ai, a−i) utility of any user i
�i preference order of user i
(a∗1, a

∗
2, ..., a

∗
n) Nash Equilibrium of CPA-game

f(ai, a−i) potential function of CPA-game

where pfj and pcj are the first heavy price per kg and continued
heavy price per kg of ES j, respectively. Hf

j is the threshold
weight of ES j.

Note that the other dimensions of the packages, such as
volume, may be considered in the practical pricing rule, but the
detail is not of academic interest. Thus, we only consider the
weight of packages. Moreover, to the best of our knowledge,
the pricing rules of all express companies satisfy the following
inequality, which is an important observation.

pfj > pcjH
f
j (2)

The package is called small package if its weight is no more
than the threshold weight of the assigned ES. Otherwise, the
package is called big package.

B. Cooperation Model

When the users cooperate at the same ES, there is increased
cost at the ES since the cooperation brings additional work-
load, such as lumping packages, separating lumped packages
and delivering packages to different ESs. Thus, we introduce
the cooperation cost to compensate the increased cost of ESs.

Consider that Gj is the set of packets assigned to ES j. In
the cooperation model, we consider that each package is a big
package to the assigned ES, i.e., wi > Hf

j ,∀i ∈ Gj . Thus the
total express fee φ(Gj) of users in Gj can be calculated as:

φ(Gj) =

{
pfj + (

∑
i∈Gj

wi −Hf
j )p

c
j+p(Gj), if Gj 6= ∅

0, otherwise
(3)

where p(Gj) is the cooperation cost of Gj .
The cooperation cost is a nonnegative, monotone and sub-

modular function, which reflects the diminishing cooperation
cost on the cooperative packages. Specifically, p(Gj)=0 if

|Gj | = 1 , i.e., there is no cooperation cost for the alone
package in Gj . Note that p(Gj) can be any nonnegative,
monotone and submodular function. We use the log function
as the cooperation cost in our simulations.

Essentially, our pricing structure is to charge the multiple
packages as a single normal big package. The express fee of
proposed pricing structure contains the express fee determined
by the currently used pricing rule for the big normal package
and the cooperation cost. So, the total payment to ESs is
more than that for delivering a single normal big package.
The revenue of ESs can be guaranteed if the cooperation cost
can cover the extra cost, that is, the revenue of the express
stations in cooperation model will not decrease comparing
with delivering a single normal big package with same weight
under current pricing rule.

Then, the comprehensive cost of Gj is the sum of express
fee and moving cost of all users in Gj :

c(Gj) = φ(Gj) +
∑
i∈Gj

χi · d(li, lj) (4)

where d(li, lj) is the distance between li and lj .
Note that the small package cooperation model satisfying∑
i∈Gj

wi ≤ Hf
j can be formulated in a similar way.

Besides the above two models, there are other two possible
cooperation models: (1) The individual weight is less than the
threshold weight of ES, but the total weight is more than the
threshold weight; (2) The package assigned to a ES can be
either a small package or a big package. However, we do not
take into consideration the above two cooperation models due
to the following two main reasons:

(1) The sorting, storing, assembling, and transportation for
small package and big package are quite different. From
the economic perspective, the separated cooperation models
studied in this paper avoid the additional cost for dealing with
the hybrid packages.

(2) Even though the users may benefit from the two coopera-
tion models, the comprehensive cost function c(·) in these two
cooperation models is not a submodular function, and there
is no approximation algorithm for the CPA problem (will be
defined in Section II.D) so far. This problem would be solved
by defining a new submodular comprehensive cost function.
However, the new comprehensive cost function must deviate
from the current pricing rule adopted in practice.

C. Cost Allocation

The cost allocation scheme aims to determine the actual
expenditures of users in any set Gj in the proposed cooperative
package assignment system.

We consider that the express fee φi(Gj) of any user i ∈ Gj

is proportional to the weight of its package:

φi(Gj) = φ(Gj)
wi∑

i′∈Gj

wi′
(5)

Then, the comprehensive cost ci(Gj) of any user i ∈ Gj is
the sum of its express fee and moving cost:

ci(Gj) = φi(Gj) + χi · d(li, lj) (6)



IEEE INTELLIGENT TRANSPORTATION SYSTEMS 4

D. Problem Formulation

The objective is minimizing the comprehensive cost of all
users such that each package is assigned to exactly one ES.
We refer to this problem as Cooperative Package Assignment
(CPA) problem, which can be formulated as follows:

(CPA) : min
G

∑
j∈M

c(Gj) (7)

s.t. N =
⋃
j∈M

Gj (7-1)

Gj ∩Gj′ = ∅,∀j 6= j′, j ∈M, j′ ∈M (7-2)

where G = (G1, G2, ..., Gm) is the set of package sets of all
ESs. The constraint (7-1) ensures that all packages should be
assigned. The constraint (7-2) ensures that each package can
be assigned to exact one ES.

Note that if the cooperation cost is small enough, the
comprehensive cost of all users under cooperation model
must be lower than that under noncooperation model. This is
because the packages in the same ES can cooperate by paying
according to (6), and the comprehensive cost of this ES will
always decrease.

III. APPROXIMATION ALGORITHM FOR CPA PROBLEM

In this section, we present the cooperative package assign-
ment algorithm (CPAA) to solve the CPA problem.

First of all, we give the following definition:
Definition 1. (Nonnegative, monotone and submodular

function): Given a finite ground set N and a real-valued set
function c : 2N → R, c is called nonnegative, monotone and
submodular if and only if it satisfies the following conditions:
• c(∅) = 0 and c(A) ≥ 0 for all A ⊆ N ;
• c(A) ≤ c(B) for all A ⊆ B ⊆ N ;
• c(A∪{e})−c(A) ≥ c(B∪{e})−c(B) for all A ⊆ B ⊆ N

and e ∈ N\B.
Obviously, the comprehensive cost function c(·) defined

in formula (4) is a nonnegative, monotone and submodular
function based on our cooperation model given in subsection
II.B and the fact of pfj > pcjH

f
j .

We attempt to find an optimal algorithm for the CPA
problem. Unfortunately, as the following theorem shows, the
CPA problem is NP-hard.

Theorem 1. The CPA problem is NP-hard.
Proof: Our CPA problem defined in (7) is equivalent to the

generalized facility location problem (GFLP): There are a set
M of facilities and a set N of clients. The connection cost of
any client i ∈ N to any facility j ∈ M is χi · d(li, lj). The
facility cost of any client i ∈ N and any facility j ∈ M is
φi(Gj). The objective is to find an assignment of each client
to an open facility to minimize the total cost incurred. The
GFLP can be formulated as follows:

(GFLP ) : min
∑
j∈M

φi(Gj)yj +
∑
j∈M

∑
i∈N

χi · d(li, lj)xij (8)

s.t.
∑
j∈M

xij = 1,∀oi ∈ N (8-1)

xij ≤ yj ,∀j ∈M,∀i ∈ N (8-2)

xij ∈ {0, 1},∀j ∈M,∀i ∈ N (8-3)

yj ∈ {0, 1},∀j ∈M (8-4)

where yj is a binary variate indicating whether facility j is
open. xij is a binary variate indicating whether client i is
assigned to facility sj .

If φi(Gj) is a constant for each j ∈M , the problem defined
in (8) is simplified as the standard facility location problem
(FLP) [16]. In the scenario of cooperative package assignment,
φi(Gj) is related to the packages assigned to the facility j and
is unknown in advance. Since the FLP is NP-hard, the CPA
problem is NP-hard. �

Since the CPA problem is NP-hard, it is impossible to
compute the optimal solution in polynomial time unless P=NP.
We turn our attention to the approximation algorithm design.

We propose an approximate algorithm for the CPA problem
based on the greedy approach. Basically, we iteratively select
an unassigned package set to one ES minimizing the ratio of
the marginal comprehensive cost of the ES’s package set to
the number of newly covered packages (termed comprehensive
cost effectiveness). However, the unassigned package set can
be any subset of all unassigned packages, thus, the number
of the unassigned package set is exponential. To address this
problem, we use submodular function minimization [17] to
find the unassigned package set with the best comprehensive
cost effectiveness in polynomial time.

As illustrated in Algorithm 1, we find an unassigned pack-
age set Sj that minimizes the comprehensive cost effectiveness
for each j ∈ M , by calling function BinaryS(·) in each
iteration (Line 7). Then we find the ES j with minimum ratio
(Line 9). The unassigned package set Sj is merged into ES
j’s package set (Line 10). The iteration terminates when all
packages are assigned.

Algorithm 1 : CPAA
Input: N,M ,Bi,∀i ∈ N ,pfj , p

c
j , H

f
j ,∀j ∈M

1: for each j ∈M do
2: Gj ← ∅;
3: end for
4: N ′ ← N ; G← (G1, G2, ..., Gm);
5: while N ′ 6= ∅ do
6: for each j ∈M do
7: Sj ← BinaryS(j,Gj , N

′);
8: end for
9: j ← arg min

j′∈M

c(Gj′∪Sj′ )−c(Gj′ )

|Sj′ |
;

10: Gj ← Gj ∪ Sj; N ′ ← N ′\Sj;
11: end while
12: return G;

The key operation of CPAA is to find the set S ⊆ N ′

minimizing c(Gj∪S)−c(Gj)
|S| . As mentioned above, the number

of the unassigned package set is exponential of the size of
N ′. To minimize this ratio, we execute a binary search for
the minimum value mid that there exists a set S such that
c(Gj∪S)−c(Gj)

|S| ≤ mid, i.e,

c(Gj ∪ S)− c(Gj)−mid|S| ≤ 0 (9)
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Note that the first term of left side is a submodular function
and the second term is a modular function. The second term
is a constant when finding set S. The last term is a modular
function. Thus, we can minimize the left side in polynomial
time by using submodular function minimization, which can
be solved by the strongly polynomial algorithm [17].

We execute the binary search by calling function
BinaryS(·), which is illustrated in Algorithm 2. Let low
and high be the indicator for left boundary and right bound-
ary, respectively. We set high =

c(Gj∪N ′)−c(Gj)
|N ′| initially

(Line 1), this is because S = N ′ (assign all unassigned
packages to ES j) is a feasible solution for minimizing
c(Gj∪S)−c(Gj)

|S| . So c(Gj∪N ′)−c(Gj)
|N ′| is an upper bound of the

value of c(Gj∪S∗)−c(Gj)
|S∗| indeed, where S∗ is the optimal

solution. We use the binary search (Lines 2-13) to find the set
S. In each iteration, we use submodular function minimization
to compute the minimum of (c(Gj ∪ S) − c(Gj) −mid|S|)
(Line 3). The binary search terminates when the value of
(
c(Gj∪S)−c(Gj)

|S| −mid) satisfies the search precision ε ∈ (0, 1)
(Line 4).

Algorithm 2 : BinaryS(·)
Input: j,Gj , N

′

1: low ← 0, high← c(Gj∪N ′)−c(Gj)
|N ′| , mid← low+high

2 ;
2: while (1) do
3: S ← arg min

S′⊆N ′,S′ 6=∅
(c(Gj ∪ S′)− c(Gj)−mid|S′|);

4: if | c(Gj∪S)−c(Gj)
|S| −mid| ≤ ε then

5: return S;
6: end if
7: if c(Gj ∪ S)− c(Gj)−mid|S| ≤ 0 then
8: high← mid;
9: else

10: low ← mid;
11: end if
12: mid← low+high

2 ;
13: end while

Theorem 2. CPAA is a polynomial algorithm.
Proof: We first analyze the time complexity of BinaryS(·)

(Algorithm 2). The binary search with search precision ε
takes O(log high

ε ) time, where high is the right boundary of
binary search. Minimizing submodular function (Line 3) takes
O(n7 log n) time if we use the strongly polynomial algorithm
proposed in [17]. Algorithm 2 is dominated by Line 3. Thus,
the running time of Algorithm 2 is O(n7 log n log high

ε ).
CPAA (Algorithm 1) is dominated by finding the unassigned

package set Sj for all j ∈M (Lines 6-8). Since binary search
(Line 7) takes O(n7 log n log high

ε ) time, the for-loop (Lines
6-8) takes O(mn7 log n log high

ε ) time. The while loop (Lines
5-11) is executed at most n times since there are n packages
and each iteration of the loop will cover at least one package.
Thus, the running time of CPAA is O(mn8 log n log high

ε ). �
Theorem 3. CPAA is a lnn+1

1−ε -approximation algorithm of
the CPA problem..

Proof: We number the packages of N in the order that
they were covered by CPAA resolving ties arbitrarily. Let

q1, q2, ..., qn be this numbering. Assume qk, k = 1, 2, ..., n is
covered by set Sj of ES j when the package set previously
covered is Gj . Then the comprehensive cost effectiveness of
qk is

cost(qk) =
c(Gj ∪ Sj)− c(Gj)

|Sj |
(10)

Let OPT be the optimal comprehensive cost of CPA problem.
Consider the iteration in which qk was covered, the package
sets of optimal solution can cover the remaining packages in
N ′ with comprehensive cost at most OPT. Therefore, among
all package sets in the optimal solution, there must be one
having comprehensive cost effectiveness at most OPT/|N ′|,
where |N ′| ≥ n − k + 1. Since was covered by set Sj of
ES j with minimum comprehensive cost effectiveness in this
iteration, it follows:

cost(qk) ≤
OPT

|N ′|
≤ OPT

n− k + 1
(11)

Since the comprehensive cost of each package set is distributed
among the new packages covered, the total comprehensive cost

of the package sets obtained by CPAA is equal to
n∑

k=1

cost(qk).

We have:
n∑

k=1

cost(qk) ≤
n∑

k=1

OPT
n−k+1 = (1 + 1

2 + ...+ 1
n )OPT

≤ (lnn+ 1)OPT
(12)

Thus, CPAA is (lnn+1)-approximation if it can find the opti-
mal solution to minimize the comprehensive cost effectiveness
for any ES. Considering the search precision ε ∈ (0, 1), the
binary search approximates the optimal comprehensive cost
effectiveness within a factor of 1/(1 − ε). Thus, CPAA is
( lnn+1

1−ε )-approximation. �

IV. OPTIMIZING LARGE-SCALE CPA PROBLEM

Although CPAA is a polynomial algorithm, as shown by
Theorem 2, the approximation algorithm still incurs high
computing cost and is inefficient for the large-scale CPA prob-
lem with a number of packages. The large-scale cooperative
package assignment can appear in densely populated areas,
such as big residential community and central business district.

To address the issue, we propose a greedy algorithm. To
show the convergency of the greedy algorithm, we formulate
the CPA problem as a coalition formation game [22], termed
CPA-game, which can improve the solution gradually. We will
show that CPA-game algorithm, CPAGA, is much faster than
CPAA in our simulations.

A. CPA-game

In CPA-game, the users are players. Each user i ∈ N is
with a strategy ai ∈ M . The strategy space is ES set M .
For any ES j ∈M , Gj forms a coalition. Since all packages
should be assigned and the comprehensive cost function is
monotone, the coalition structure G = (G1, G2, ..., Gm) is a
coalition partition of package set N actually.

Definition 2. (Preference order): The preference order �i

for any user i ∈ N is defined as a complete, reflexive and
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transitive binary relation over the set of all feasible coalitions
that user i can possibly form.

A user decides to leave or to join a coalition based on the
preference order. For example, for any user i ∈ N , Gj �i Gj′

means that user i prefers being a member of coalition Gj

rather than Gj′ . Generally, the preference order influences the
convergence and final coalition structure. In this paper, we
consider the following order to minimize the comprehensive
cost of all users. For each user i ∈ N and any two coalitions
Gj and Gj′ , j 6= j′, we say that:

Gj �i Gj′ ⇔
∑

k∈Gj

ck(Gj)−
∑

k∈Gj∪{i}
ck(Gj ∪ {i})

>
∑

k∈Gj′

ck(Gj′)−
∑

k∈Gj′∪{i}
ck(Gj′ ∪ {i})

(13)

This preference order means that the user i prefers the
coalition with the minimum increase in comprehensive cost.
This preference order cares about the total cost of coalition
partition.

We define the utility of any user i ∈ N in CPA-game as:

ui(ai, a−i) =
∑

k∈Gai

ck(Gai)−
∑

k∈Gai
∪{i}

ck(Gai ∪ {i}) (14)

where a−i is the strategies of users except i. The value of
utility depends on the strategies of all users in the CPA-game.
Accurately, Gai

is a function of (ai, a−i). For convenience,
we use Gai

as a simplified expression of the function.
As illustrated in Algorithm 3, CPAGA follows the best-

response dynamics, where players only choose the best re-
sponse on the next round that would give them the highest
utility [23]. At the beginning, each package is assigned to a
random ES. At each round of iterations, each user selects an
ES to maximize its utility. If the selected ES ai is different
from the current ES aoldi , the user leaves the current ES and
joins to the selected ES. Repeat the above process until no
user changes its strategy. We will show that CPAGA finally
converges to a pure Nash Equilibrium (NE).

Note that the decision of each user can be made in both
centralized way and distributed way. The distributed decision
may happen if the platform does not have enough computation
resource. In distributed way, the strategy of each user at each
round is decided simultaneously by the user itself according
to the strategy profile in last step publicized by the platform.

B. Analysis of NE and Acyclicity

We first introduce some closely related definitions about
coalition formation game.

Definition 3. (Nash Equilibrium): A set of strategies
(a∗1, a

∗
2, ..., a

∗
n) is a Nash Equilibrium of the CPA-game if for

any user i,

ui(a
∗
i , a
∗
−i) ≥ ui(ai, a∗−i),∀i ∈ N (15)

for any ai, where ui is defined in (14).
Definition 4. (Exact Potential Game): The game is an exact

potential game if and only if there exists a potential function
f(ai, a−i),∀i ∈ N such that:

f(ai, a−i)− f(a′i, a−i) = ui(ai, a−i)− ui(a′i, a−i) (16)

Algorithm 3 : CPAGA
Input: N,M ,Bi,∀i ∈ N ,ϕj , p

f
j , p

c
j , H

f
j ,∀j ∈M

1: for each i ∈ N do
2: ai ← Uniform[1,m];
3: end for
4: repeat
5: switcher ← 0;
6: for each i ∈ N do
7: aoldi ← ai;
8: ai ← arg max

a′i∈M
ui(a

′
i, a
′
−i);

9: if ai 6= aoldi then
10: Gai

← Gai
∪ {i};

11: Gaold
i
← Gaold

i
\{i};

12: switcher ← 1;
13: end if
14: end for
15: until switcher 6= 1;
16: return G;

for every ai, a
′
i ∈ M , and a−i ∈ A−i, where A−i is the

strategy set of users except i.
For our CPA-game, we have the following theorem.
Theorem 4. CPA-game has at least one Nash Equilibrium

and CPAGA finally converges to a Nash Equilibrium.
Proof: The utility change of any user i ∈ N from ai to a′i

is:

ui(ai, a−i)− ui(a′i, a−i)
=

∑
k∈Gai

ck(Gai)−
∑

k∈Gai
∪{i}

ck(Gai ∪ {i})

− (
∑

k∈Ga′
i

ck(Ga′i
)−

∑
k∈Ga′

i
∪{i}

ck(Ga′i
∪ {i}))

(17)

We define the potential function f as:

f(ai, a−i) = −
∑

ak∈M

∑
k∈Gak

ck(Gak
) (18)

which is the opposite of sum of the all users’comprehensive
cost. The above function is known as Rosenthal’s potential
function [24].

Since the change of user i’s ES selection only affects the
users in Gai

and Ga′i
, the change of the potential function

caused by its unilateral change is given by:

f(ai, a−i)− f(a′i, a−i)
= −(

∑
k∈Gai

∪{i}
ck(Gai

∪ {i})−
∑

k∈Gai

ck(Gai
))

− (
∑

k∈Ga′
i

ck(Ga′i
)−

∑
k∈Ga′

i
∪{i}

ck(Ga′i
∪ {i}))

= ui(ai, a−i)− ui(a′i, a−i)

(19)

We can see from formula (19) that the change of utility
function caused by any player’s unilateral deviation is the same
as the change of the potential function. Thus, according to
Definition 4, the CPA-game is an exact potential game, which
exhibits several nice properties, and the most important one
is that every exact potential game has at least one pure NE.
Thus, CPA-game has at least one pure NE.
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Based on the lemma 2.3 in [24], every exact potential game
with finite strategy sets has the Finite Improvement Property
(FIP); that is, unilateral improvement dynamics is guaranteed
to converge to a pure NE using a finite number of steps. Thus
CPAGA finally converges to a pure NE. �

Note that CPAGA minimizes the total comprehensive cost
of all users gradually since it aims to maximize the potential
function, which is the opposite of total comprehensive cost.

V. PERFORMANCE EVALUATION

We have conducted simulations to investigate the perfor-
mance of CPAA and CPAGA based on the real experience data.
Due to the space limit, we only give the simulation results of
big package cooperation model. Note that the small package
cooperation model follows the same cost allocation scheme
and assignment algorithms of big package cooperation model.

A. Simulation Setup

We compare our algorithms with the following four bench-
mark algorithms:
• NC (nearest cooperation): Each user chooses the nearest

ES and follows the same cooperative pricing rule of
CPAA.

• NN (nearest noncooperation): Each user chooses the
nearest ES and pays the express fee according to the
pricing rule of the ES independently. Note that this
method of package assignment works in reality at present.

• BC (best cooperation): Each user chooses the best ES
based on the comprehensive cost (without consideration
of cooperation cost) independently and then follows the
same cooperative pricing rule of CPAA.

• OPT: Optimal solution of CPA problem. We find the
optimal solution by enumerating all possible partitions
of users.

Fig. 2. Distribution of ESs and users in Gulou district of Nanjing.

For our simulations, we use the real distribution of ESs and
users in Gulou district of Nanjing. As shown in Fig. 2, there

are 12 heterogeneous ESs with different prices. We take the
residential communities as the users since they have the fixed
locations and randomly choose 120 residential communities in
Gulou district. The weight of package is uniformly distributed
over [1kg, 2kg]. For any ES j ∈M , we use the following log
function as the cooperation cost:

p(Gj) =

{
0 |Gj | ≤ 1

2log(|Gj |), |Gj | > 1
(20)

The default unit moving cost and search precision are 0.06
and 0.3, respectively. The unit of cost is Chinese yuan. We will
vary the value of the key parameters to explore the impacts on
designed algorithms. All the simulations are run on a Windows
machine with Intel(R) Core(TM) i7-7560U CPU and 16 GB
memory. Each measurement is averaged over 100 instances.

B. Cost

We first vary the unit moving cost from 0.02 to 0.1. As
shown in Fig. 3, the moving cost of all five algorithms
increases accordingly. The express fee of CPAA, CPAGA and
BC increases slightly with the increasing unit moving cost.
This is because when the moving cost increases, the users tend
to move to the nearby ESs to minimize the comprehensive cost,
reducing the cooperation opportunities. Note that the express
fee of NC and NN doesn’t change since each user always
chooses the nearest ES. We can see from Fig. 3(c), the compre-
hensive cost of noncooperation algorithm is much higher than
those of cooperation algorithms. Both of CPAA and CPAGA
show outstanding advantage in terms of comprehensive cost.
CPAA reduces the average comprehensive cost by 11.1%, 13%
and 28.1% compared with BC, NC and NN, respectively. The
performance gap between CPAGA and CPAA is small, and the
average comprehensive cost of CPAGA is only 4.73% higher
than CPAA. Note that BC has lower comprehensive cost than
that of NC since it assigns the best ES to the users based on
the comprehensive cost in noncooperation setting.

As shown in Fig. 4, the moving cost of all algorithms
decreases when there are more ESs since the users can choose
the closer ESs. The express fee of CPAA, CPAGA, BC and NC
increases slightly with the increasing number of ESs because
some added ESs help users to reduce the moving cost and
disperse the users to more ESs, reducing the cooperative
surplus. However, the express fee of NN is affected only by
the pricing rules of added ESs and almost does not change.
Overall, the comprehensive cost of all algorithms tends to
decrease when we increase the number of ESs.

To test the scalability of proposed algorithms, we increase
the number of users from 20 to 120. As shown in Fig. 5, the
express fees of CPAA, CPAGA, BC and NC decreases signifi-
cantly when there are more users. This is because the number
of cooperative users in each ES increases averagely, increasing
the cooperative surplus. Attracted by the cooperative surplus,
users of CPAA and CPAGA tend to further ESs and the moving
cost increases slightly. For the fixed ESs, the choice of ES in
BC, NC and NN doesn’t affected by the cooperative surplus.
Thus, the moving cost of BC, NC and NN almost doesn’t
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Fig. 3. Impact of unit moving cost (χi)
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Fig. 4. Impact of number of express stations (m)
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change. From Fig. 5(c), we can see that the comprehensive cost
of cooperation algorithms decreases with increasing number of
users. Furthermore, we can see that CPAA and CPAGA show
more advantages in terms of average comprehensive cost in
the large-scale package assignment system.

Fig. 6 shows the impact of search precision on the cost of
CPAA. With the improvement of accuracy, the cost of CPAA
decreases accordingly. Fig. 7 depicts the comprehensive cost
of CPAGA with the iterations to verify the convergence of
CPAGA. We can see that the outputs become stable after
900 iterations when there are 120 users and 12 ESs. We
compare the performance of our algorithms with the optimal
solution in small settings. We also measure the performance
gap between our algorithms and OPT. As shown in Fig. 8, the
comprehensive cost of CPAA is 1.36 times the comprehensive
cost of OPT on average.

C. Payment

We have conduct the simulations to show how much is paid
to the express station under the cooperation model comparing
with currently used pricing rule for a single normal big
package. We measure the average payment to ESs, i.e., the
ratio of total express fee of all users to the number of ESs. We
compare CPAA with the delivering a single normal big package
over same package assignment of CPAA (termed CPAA-single)
and the noncooperation model over same package assign-
ment of CPAA (termed CPAA-noncooperation). The similar
comparisons are made for CPAGA. Though the payment to
ESs of CPAA and CPAGA is lower than the corresponding
noncooperation models, we can see from Fig. 9 that CPAA
and CPAGA can increase the payment by 13.2% and 13.5%
comparing with CPAA-single and CPAGA-single, respectively.
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Fig. 9. Average payment to the express stations

D. Running Time

The running time of CPAA, CPAGA and OPT (only for small
settings) are shown in Table III. We can see that the running
time grows rapidly with increasing number of users. However,
CPAGA shows great scalability and can output the solution
within 1 second with 120 users.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have studied the cooperative package
assignment with heterogeneous express stations. We have

TABLE III
RUNNING TIME OF CPAA, CPAGA, AND OPT

Number of users CPAA (ms) CPAGA (ms) OPT (ms)
5 91.42 1.65 96358.24
6 494.18 2.67 226041.31
7 1759.19 7.52 563728.95
8 3943.65 14.03 729372.77
9 9650.38 19.86 1506368.07

30 10652222.24 1146.67
60 307.89
90 678.87
120 989.92

formulated CPA problem to minimize the total comprehen-
sive cost of cooperative users, which consists of express fee
and moving cost. We have designed a lnn+1

1−ε -approximation
algorithm of CPA problem. Furthermore, we have modeled
the large-scale CPA problem as coalition formation game and
presented CPAGA, which finally converges to a pure Nash
Equilibrium. Through extensive simulations, we demonstrate
that CPAA and CPAGA show great advantages in terms of
comprehensive cost (28.1% and 19.9% lower than the non-
cooperation mode adopted in reality, respectively). CPAGA
shows great scalability and is more suitable for large-scale
cooperative package assignment system.

Notice that our CPAA considers that the users are unselfish.
In reality, the users are usually selfish. This motivates us
to develop the cost allocation scheme, which belongs to the
core [25]. Moreover, from the perspective of ES, the ES’s
revenue is affected by the users’ strategies of ES selection.
Besides introducing the cooperation cost, the dynamic pricing
scheme is possible to incentive ESs by using the game theory
approach, such as Stackelberg game [26] and bargaining
game [27].
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