This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2021.3072953, IEEE Internet of

Things Journal

Bi-objective Robust Incentive Mechanism Design
for Mobile Crowdsensing

Jia Xu, Member, IEEE, Yuanhang Zhou, Yuqing Ding, Dejun Yang, Senior Member, IEEE, Lijie Xu

Abstract—In recent years, mobile crowdsensing has become
an effective method for large-scale data collection. Incentive
mechanism is fundamentally important for mobile crowdsensing
systems. Many mobile crowdsensing systems expect to optimize
multiple objectives simultaneously. Most of the existing works
transform the multi-objective problem into a single objective
problem through constraints or scalarization method. However,
due to the uncertain importance (weights) of objectives and
the instable quality of crowdsensed data, such transformation is
usually unrealizable. In this paper, we aim to optimize the worst
performance of two objective functions in mobile crowdsensing
in order to improve the system robustness. We model an auction-
based bi-objective robust mobile crowdsensing system, and design
two independent objective functions to maximize the expected
profit and coverage, respectively. We formulate the Robust User
Selection (RUS) problem, and design an incentive mechanism,
which utilizes the combination of binary search and greedy
algorithm, to solve the RUS problem. Through both rigorous the-
oretical analysis and extensive simulations, we demonstrate that
the designed incentive mechanisms satisfy desirable properties of
computational efficiency, individual rationality, truthfulness, and
constant approximation to the tightened RUS problem. Moreover,
the proposed incentive mechanism can be easily extended to
multi-objective robust mobile crowdsensing systems, and all
desirable properties still hold. The simulation results reveal
that our incentive mechanism achieves 11% improvement of the
platform’s utility, compared with the greedy algorithm for bi-
objective mobile crowdsensing systems on average.

Keywords—mobile crowdsensing, incentive mechanism, robust-
ness, bi-objective problem

I. INTRODUCTION

N recent years, as a new mode of environment sensing,

data collection and information service, crowdsensing has
become one of the research hotspots. With the popularization
of mobile devices, such as smartphones, people can sense data
of the surrounding environment through embedded sensors
on smartphones in daily life. This means most smartphone
users could be the participants of mobile crowdsensing. Mobile
crowdsensing has the advantages of great extendibility of col-
lecting massive data of multi-dimension for various scenarios,
low requirements on users’ knowledge, and low cost, etc.
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Incentive mechanism design is one of the important issues
in crowdsensing research. In order to stimulate more users
to participate in the crowdsensing tasks, most of the existing
incentive mechanisms use monetary incentives, motivating
users by payment [1, 2, 3, 4]. Most of these works are
auction-based incentive mechanisms [5, 6], which take into
consideration the economic properties of the sensing system.

The multi-objective problem is important and pervasive in
mobile crowdsensing. For example, in environmental monitor-
ing crowdsensing, we hope that the sensing data can help us
to detect any possible pollution events in time. This requires
us to optimize the types of the sensors to ensure that they can
provide data diversity. On the other hand, we need to optimize
the locations of the mobile users so that the sensors can cover
the areas as wide as possible.

In practice, many mobile crowdsensing systems want to
simultaneously optimize the multiple objectives, such as posi-
tion coverage for spatial phenomena observation [7], continu-
ity of sensing data for temporal phenomena observation [8],
quality of sensing data [9], and value of sensing data [10].

For the multi-objective optimization problem, the general
method is transforming it to a single objective optimization
problem through scalarization method, i.e., weight the ob-
jectives and then optimize the sum of weighted objectives.
However, this general method is usually impractical to the
mobile crowdsensing systems. First, the transformation assume
that the system knows the importance of different objectives,
and puts them in the unequal positions essentially. Many
crowdsensing systems, such as Ear-Phone [11] for urban
noise mapping, Haze Watch [12] for pollution monitoring,
SignalGuru [13] for providing traffic information, Frequent
Trajectory Pattern Mining [14] for activity monitoring, are
developed to observe or monitor unknown events. It is difficult
to determine the importance of various properties of sensing
data. Second, the method of optimizing the sum of multiple
weighted objectives probably makes one of the objectives very
bad. This deviates our goal of system robustness. Instead of
optimizing the total value of multiple objectives, we are more
interested in balancing multiple functions and make sure that
the worst one is as large as possible.

Another usual way to solve multi-objective optimization
problem is optimizing one of the objectives and taking other
objectives as constraints. However, it is hard to determine
the constraint values for the single objective optimization
problem. If the constraints are too loose, the problem would
lose the binding on the objective. If the constraints are too
tight, the performance of the solution would degrade. For most
mobile crowdsensing systems, the quality of sensing data is
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instable [15, 16, 17]. This largely aggravates the uncertainty
of constraint values.

Considering the uncertain importance of objectives and the
instable quality of crowdsensed data, we expect that the mobile
crowdsensing system can perform equally well with respect
to multiple objectives. The robustness of multi-objective op-
timization aims to maximize the minimum value of multiple
objective functions. In other words, the goal of multi-objective
robustness is to optimize the worst case of multiple objective
functions. This means we need to select users who are ro-
bust against the worst cases of multiple objective functions.
Howeyver, there is no off-the-shelf incentive mechanism in the
literature can be used for the multi-objective robust mobile
crowdsensing system.

This paper aims to optimize the worst performance of
two objective functions in mobile crowdsensing in order to
improve the system robustness. We consider a bi-objective
robust mobile crowdsensing system (can be easily extended to
the multi-objective robust mobile crowdsensing system). The
platform first publicizes a set of tasks in multiple geographical
areas, and each task is with a value. The users can participate
in mobile crowdsensing in the form of auction in different
areas. The platform hopes to maximize both the expected
profit of the platform and the spatial coverage of sensing
data simultaneously with robustness when selecting winners.
The number of winners is constrained due to the budget of
the platform. The goal is to maximize the worst case of the
two optimization objectives with limited number of winners.
When the winners are selected, the platform notifies winners
of the determination. The winners perform the tasks in their
respective areas. Finally, each winner obtains the payment,
which is determined by the platform.

It is very challenging to design a truthful robust incentive
mechanism to maximize the minimum value of two objective
functions. First, because the two objective functions are both
submodular, bi-objective robustness problem is more difficult
than the problem of maximizing a single submodular function,
which is already NP-hard. The problem of maximizing a
monotone submodular function subject to a cardinality con-
straint admits a (1 - &) -approximation algorithm [18]. But
this method cannot be used in the bi-objective robustness
problem. Moreover, each user may take a strategic behavior by
submitting dishonest bidding price to maximize its utility. Due
to the hardness of bi-objective robustness problem, we cannot
use the off-the-shelf VCG mechanism [19], which requires the
optimal solution.

The main contributions of this paper are as follows:

o To the best of our knowledge, this is the first work
to design bi-objective robust incentive mechanism for
mobile crowdsensing, considering uncertain importance
of objectives and the instable quality of crowdsensed data.

« We model an auction-based bi-objective robust mobile
crowdsensing system, and design two independent ob-
jective functions to maximize the expected profit and
coverage, respectively. We show that both functions of
expected profit and coverage are nonnegative, monotone,
and submodular.

o We formulate the Robust User Selection (RUS) problem,
and design an incentive mechanism, which utilizes the
combination of binary search and greedy algorithm, to
solve the RUS problem.

« We show that the designed incentive mechanisms satisfy
desirable properties of computational efficiency, individ-
ual rationality, truthfulness, and constant approximation
to the tightened RUS problem.

The rest of the paper is organized as follows. We review
the state-of-art research in Section II. Section III formulates
the system models and problems, and lists some desirable
properties. Section IV presents the detailed design of our
incentive mechanisms. Section V presents the analysis of our
incentive mechanisms. Performance evaluation is presented
in Section VI. We give the discussion in Section VII. We
conclude this paper in Section VIII.

II. RELATED WORK
A. Incentive Mechanism for Mobile Crowdsensing

In location dependent mobile crowdsensing, the quality of
data is largely determined by locations of mobile users. Thus
the platform hopes to recruit a wide distributed participants
to improve the quality of data. Jaimes et al. [20] designed
Maximum Coverage Algorithm to improve the coverage of
Aols (Area of Interests) with budget constraint on the basis
of [1]. Nan et al. [9] proposed a cross-space, multi-interaction
based dynamic incentive mechanism, improving the user par-
ticipation and data quality. [21, 22] used location information
of users to improve the quality of sensing data while ensuring
the participation. Based on [1], Zhou et al. [7] considered
the impact of geographic locations of users on Aol coverage.
Xu et al. [23] designed the incentive mechanisms for spatio-
temporal tasks in mobile crowdsensing systems to minimize
the social cost subject to the constraint that each of the tasks
can be completed with its collective sensing time not less than
a minimum sensing time required by the platform.

Although the above works used the coverage of the sensing
area as a key factor of the data quality, they did not consider
the difference of data importance. For example, different
sensing tasks may have different values to the platform.
In addition, the economic consideration of the platform is
neglected. However, most mobile crowdsensing platforms do
not want to incur a deficit.

The online incentive mechanisms have been studied in the
literature. Zhao et al. proposed OMZ and OMG models, which
follow the multiple-stage sampling-accepting process [24]. At
every stage, the mechanism allocates tasks to a smartphone
user only if its marginal density is not less than a certain
density threshold that computed using previous users’ informa-
tion. Lin et al. designed Sybil-proof incentive mechanisms to
deter the Sybil attack for offline crowdsensing [25] and online
crowdsensing [26], respectively. Zhang et al. [27] considered
the scenario where the mobile crowdsensing system selects
workers by optimizing the completion reliability and spatial
diversity of sensing tasks and designed two online incentive
mechanisms based on the reverse auction. Gao et al. [28]
presented an effective and quality-aware incentive mechanism
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to maximize the amount of high-quality sensing data under
a limited task budget for online scenarios, where participants
may arrive or leave at any random time.

However, most of the online incentive mechanisms did not
consider the robustness of the crowdsensing system, that is,
the level of data quality that can be achieved in the worst
case.

B. Robustness in Mobile Crowdsensing

Robustness in crowdsensing indicates that sensing data qual-
ity can still be effectively guaranteed even in the worst case.
Currently, there are only few studies on the robustness problem
of mobile crowdsensing. [10, 29] adopted online learning to
recruit participants not less than a certain number under the
constraints of budget and random quality to maximize the
value function. [30, 31] recruited participants with posted
price, and minimized the total cost while ensuring that the
expected number of participants is no less than a certain value.
Qu et al. [32] researched on the similar scenario and made an
extended discussion on the problem. Xu et al. [33] considered
the bias between the crowdsourcers and the workers, and
utilized matching technique to assign the tasks, improving
the suitability of crowdsourcing. They further studied the
preference over crowdsensing users, and designed truthful
incentive mechanisms to minimize the social cost, such that
each of the cooperative tasks can be completed by a group of
compatible users [34].

Most of the existing researches on mobile crowdsensing re-
garded the robustness problem as the constraint of an optimiza-
tion problem, or pursued the robustness of a single objective.
There is no off-the-shelf research in the literature on the multi-
objective robustness problem in mobile crowdsensing.

C. Multi-objective Optimization

Multi-objective optimization has been extensively studied in
different fields. The traditional multi-objective optimization al-
gorithms transform the multi-objective problem into the single-
objective problem using weighted sum method, &-constraint
[35] and linear programming [36], and so on. Another technol-
ogy to solve multi-objective optimization problem is evolution-
ary algorithms [37], such as particle swarm optimization [38].
The traditional algorithms can get one of the Pareto optimal
[39] solutions each time, while the evolutionary algorithms
can get a set of pareto optimal solutions.

However, as mentioned above, it is impractical to transform
the multi-objective optimization into the constrained single
objective optimization for mobile crowdsensing systems, since
it is difficult to determine the importance of multi-objectives
and the constraint values in mobile crowdsensing scenario.

III. SYSTEM MODEL

We consider a mobile crowdsensing system consisting of a
platform and a set U of n smartphone users, who are interested
in participating in sensing tasks. The platform first publicizes
a set T of ¢ tasks in multiple geographic areas. Each task j €
T is with a value v/. Let Z be the set of areas. Each area

| € Z is with a weight w; which indicates the importance of
the area. Each weight is given by the platform in advance.
The platform can determine the weights based on the regional
functions. For example, in environmental monitoring mobile
crowdsensing, the weight of urban area is usually higher than
that of suburban area, and the weight of chemical industrial
area is higher than that of CBD. The users can participate in
crowdsensing through auction. Let B; = (T}, b;) be the bid of
any user i € U, where T; C T is the set of tasks that i would
like to perform. Note that the tasks in 7; can be distributed
in multiple areas. The task set 7; can be determined based on
the future schedules or daily mobility routines with little effect
on user i’s daily life. b; is the bidding price of user i. Let c;
be the true cost of user i. We consider that c¢; is the private
information and known only to user i.

Given the task set 7 and the bid profile B =
(By, B, . .., By), the platform calculates the winner set S C U,
and notifies winners of the determination. The winners perform
the sensing tasks and send data back to the platform. Each user
i is paid p; by the platform.

We define the utility of user i as the difference between the
payment and its real cost:

ifieS
otherwise

ui={ Piaci,

Specially, the utility of losers would be zero because they
are paid nothing in our designed mechanism and there is no
cost for sensing.

Note that b; can be different from the real cost ¢; because
we consider the users selfish. So, the users may take a strategic
behavior by claiming dishonest cost to maximize their own
utilities. However, the platform only selects the profitable user
i whose biding price is no more than the value it brings to
platform, i.e., b; < 3, v/, Vi € S. For convenience, we assume

<
the set U only con{ains these profitable users. Otherwise, we
simply remove the unprofitable users from U.

The expected profit of the platform is determined by the
value of tasks performed by winners and their bidding prices.
We define the expected profit function f (S) of platform as

F&=v()=> b @)

ieS

)

where v (S) = 3 ¥ v/ is the total value of tasks performed
ieS jeT;
by winners.
In addition to the expected profit, the platform also hopes
the sensing data can cover as many areas as possible. We

define the coverage function as

g(S) =y wi-log(1+n(S)) (3)

leZ

where n; (S) is the number of tasks performed by the users in
the set S in area [. y > 0 is a normal coefficient to adjust the
importance of area coverage as well as normalize the value
of expected profit function and coverage function, so that we
can pursue the robustness of system on the same magnitude.
To measure the system robustness correctly, the value of
normal coefficient should be set carefully. In simulations,
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we employ multiple random sampling to determine the value
of normal coefficient. Further, the alternative parameter-free
normalization method will be discussed later.

The coverage function represents the coverage level of all
sensing areas. We use logarithmic function to describe the
diminishing return of platform’s revenue with the increase of
number of users in the same area.

We define the utility of the platform u( as the minimum of
the expected profit function and coverage function.

ug =min {f (), g (5)} 4)

The incentive mechanism M (7', B) outputs a winner set S
and a payment profile p = (p1, p2,...,pn). The objective is
maximizing the utility of platform subject to the constraint
that the number of winners is no more than m, which depends
on the budget of the platform. We call this problem as RUS
problem, which can be formulated as follows:

maxscy min{f (S),g(S)}, s.t. |S|<m (P1)

Different from the methods reviewed in section II-D, we
optimize the bi-objective problem through maximizing the
minimum value of expected profit function and coverage
function. It is reasonable in mobile crowdsensing systems
since our goal is to achieve the robustness.

Note that the coverage function defined in (3) is a normal-
ized coverage function. To maximize the utility of platform,
i.e., the robustness of the system, y should be set to make
the values of expected profit function and coverage function
as equal as possible. This is because if we take the worst
of two equally important objectives (after normalized) as the
robustness of the system, the values of two objectives should
be as equal as possible. In our simulations, we determine the
value of normal coefficient through multiple random sampling,
which will be presented in section VI-A. The other possible
normalization method will be discussed further in section VII.

Our objective is to design the incentive mechanisms satis-
fying the following desirable properties:

« Computational Efficiency: An incentive mechanism is
computationally efficient if the winner set S and the
payment p can be computed in polynomial time.

« Individual Rationality: Each user will have a non-
negative utility while reporting true private information,
ie,u; >0, VieU.

o Truthfulness: A mechanism is truthful if no user can
improve its utility by submitting false cost, no matter what
others submit. In other words, reporting the real cost is a
weakly dominant strategy for all users.

« Constant Approximation: The goal of the mechanism
is to maximize the utility of platform. If k >0k”, where
k is the worst output of incentive mechanism for P1, k"
is the optimal solution of P1’, we say that the incentive
mechanism is 8 - approximation to P1’. Specifically, if 6
is a constant, we say the incentive mechanism is constant
approximation to P1’.

The importance of the first two properties is obvious,

because they together ensure the feasibility of an incentive
mechanism. The last two properties are indispensable for

guaranteeing the compatibility and high performance. Being
truthful, the incentive mechanism can eliminate the fear of
market manipulation and the overhead of strategizing over
others for the participating users.

We list the frequently used notations in Table. I.

TABLE I: Frequently Used Notations

Symbol Description
U,S,n set of users, set of winners, number of users
T,T;,t set of tasks, set of user i’s tasks, number of tasks

m maximum number of winners

v/, v(S) value of task j, total value of winners
b;, ci bidding price of user i, cost of user i
B, B; bid profile, bid of user i
p. pi payment profile, payment of user i
f.8 expected profit function, coverage function
Jnorm normalized expected profit function
8norm normalized coverage function
ui, ug utility of user 7, utility of platform
Y, @, € normal coefficient, relaxation coefficient, search accuracy

Z set of areas
weight of area j

Wi
J
n;(S) number of winners in area j

IV. INCENTIVE MECHANISM DESIGN

In this section, we present the incentive Mechanism for
Robust User Selection (MRUS) to solve the RUS problem
defined in (P1).

First, we give the following definition.

Definition 1. (Nonnegative, monotone, and submodular
function): Given a finite ground set V, a real-valued set
function defined as F : 2¥ — R ,F is called nonnegative,
monotone, and submodular if and only if it satisfies the
following conditions, respectively:

e F(»)=0and F(A) >0 forall ACV;

e F(A)<F(B)foral ACBCYV,

e F(A)+F(B) 2 F(AUB)+F(ANB) forany A,BCV
or: F(AU{e}) — F(A) = F(BU{e}) — F(B) for all
ACBCYVandee€V\B.

According to the definition of submodular function, we have

the following conclusions.

Theorem 1. The expected profit function f is a nonnegative,
monotone, and submodular function.

Proof: Since b; < 3 v/,Vi € S, we have f(S) = v (S) -

Jeh
> bi= 2 (X v/ —=b;)=20. Thus, f is nonnegative.
ieS ieS jeT;

For all A € B C V, we have
f(B)—f(A)

= (v (B)~ 5, bi - (v (-3 b,-)
=v(B\A) - 3 b
ieB\A

= X (Zv-b)>0
ieB\A JjeT;
Thus, f is monotone.

For all A C BCV and ¢ € V\B, we have
f(AU{e}) - f(A)

vavgen- 3 bi)—(vm)—zz)i)

i€AU{e} i€A

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on April 15,2021 at 00:03:36 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2021.3072953, IEEE Internet of

Things Journal

=v({e}) —be = f(BU{e}) - f(B)

Thus, f is submodular. ]

Theorem 2. The coverage function g is a nonnegative,
monotone, and submodular function.

Proof: Based on equation (3), the nonnegativity of g is
obvious. The monotonicity of g is also obvious as adding a
new user into S cannot decrease the value of g.

For all AC BCV and e € V\B, we have

g(Au{e}) -g(A)
=y X wi-log(l+n (AU{e})) —y X wi-log(1+n(A))

leZ leZ

( 1+n; (AU{e}) )

=7y 2 wi-log Tn1 (A)

leZ
Let 7! (A) be the task set in area / performed by users in

S. Given set A, define Tef (A) as the set of new tasks in area
[ performed by user e, ie., T (A) = T' (AU {e}) — T' (A).
There are two cases for each area [ € Z:
(1) TL (A) # @. We have

i (AU {e}) =n (A) +|T; (A)],
ni (BU {e}) = ny (B) +|T; (B)|.
So
1+n; (Au{e}) | _ L+ng (A)+|TL A\ |T!(A)]
log( Ten (AT ) = log( T+ (A) ) = log (1 + 1+n1(A))'

Since A € B C V, we have
ni (A) < ny (B) and [T} (A) 2| T; (B)|
for any area [ € Z. Thus
o (1+M) > log 1+
g T+ (A) ) = 108
(2) T! (A) = @. We have
n;(AU{e}) =n; (A) and n; (BU {e}) = n; (B). So

l+n; (AU{e}) ) _ l+n; (BU{e}) \ _
log (1940 ) = tog (PR ) = 0.

As a conclusion, we have
g(Au{e}) -g(A)

_ . 1+n; (AU{e})
—VIEZZ wi log( T+ (A) )

1 B
2y 3 wi-log (130D

lez
=g(BU{e}) -g (B)

Thus, g is submodular. ]

Since maximizing a submodular function is NP-hard [18],
the RUS problem, that is, maximizing the minimum of two
submodular functions, is also NP-hard.

The greedy algorithm performs well for the single-objective
optimization problem, while it has bad performance for the
RUS problem. We show that the greedy algorithm works
arbitrarily badly for the example illustrated in Fig.1. Con-
sider two additive functions (the special case of submodular
function) F1(S) = 2 Fi({x}) and F>(S) = X F»({x}),

s

where F; ({x}) = 1/)3cesand F> ({x}) = x. The oligeective is to
select a subset S of ground set U = {a, b, ¢,d} to maximize
min {F (S),F> (S)} subject to |S| < 2. Let 1 < ¢ < 3 <
%, d— 0, a—> 0, d — co. The values of F; (S), F> (S), and
min {F] (S), F> (S)} for all possible S are given in Table II.
Obviously, the greedy algorithm will first select ¢ since 1/c¢
is the largest value of objective function. Then the greedy al-
gorithm will select the second one from a, b or d, and the value
of objective function will be a+c¢ or min{1/b+ 1/c,b + ¢} or
1/c+1/d. However, the optimal solution is S = {a, d}, and the
value of min {F} (S), F> (S)} ismin {1/a + 1/d, a + d}, which

|7l (B)| -1 141, (B)+|T/(B)|
1+n,(3)) =lo, ( T+ (B) )
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tends to be infinite. In this case, the approximation ratio of
greedy algorithm tends to zero.

y 1 T T
1 1 1
B =1/ |
LI} 1 1
N\ : : FQ({'/'E}) =
N\ : :
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1
1 1 1
1 1
1 1 1 1
ab ¢ d x
Fig. 1: Example shows that the greedy algorithm works

arbitrarily badly.

TABLE II: Results of the Example Given in Fig.1

S Fi(S) F>(S) min (F(S), F2(S))
%} 0 0 0
{a} 1/a a a
{b} 1/b b b
{c} 1/c c 1/c
{d} 1/d d 1/d
{a,b} 1/a+1/b a+b a+b
{a,c} 1/a+1/a a+c a+c
{a,d} 1/a+1/d a+d min((1/a+1/d),a+d)
{b,c} 1/b+1/c b+c min((1/b+1/c),b+c)
{b,d} 1/b+1/d b+d 1/b+1/d
{c,d} 1/c+1]/d c+d 1/c+1/d

The failure of guaranteeing approximation makes the greedy
algorithm less attractive. We redefine the RUS problem as
follows:

max k

st f(S)>ke(S) kISl <mscu PP

In P2, the objective is to find a set S, which maximizes the
lower bounds of both f (S) and g (S), with the maximum size
m. Obviously, P1 and P2 are equivalent.

In view of the hardness of solving P1 or P2 directly, we
break the constraint of set size of P2. We formulate the relaxed
RUS problem as

max k

st. f(S)=k,g(S) =k, |S|<am,SCU (P3)

where @ > 1 is the relaxation coefficient. In particular, when
a = 1, the relaxed RUS problem is equivalent to the original
RUS problem.

In order to solve P3, for any given value of k, we find the
smallest set S, that is,

Sk = argéncig IS, st f(S)=k,g(S) =k (P4)
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In P4, we find a smallest set S, which satisfies f (Sy) >
k,g (Sx) = k, for any fixed k. If the size of Sy is not larger
than am, then the given k satisfies the constraints in P3. In
other words, k is a feasible solution of P3. We call P4 as k-test
problem of P3.

For any given value of k, if there is optimal algorithm or
approximation algorithm of P4, we can use binary search to
find the maximum value of k under the constraints for given
accuracy level. In each round of binary search, for a given %,
we solve P4 to find the best Si, and check whether this k can
satisfy the constraints in P3, so as to determine the direction
of the next binary search round. Thus, we turn our attention
to P4.

To solve P4, we define the following functions:

Fr 1 (S) =min {f (S),k} (5)
Fo 1 (S) = min{g (5), k} (6)
Fi(8) = 5 (Frx () + Fox (9)) ™

Then, we have the following result.

Theorem 3. Given any fixed k, function Fy. is monotone and
submodular.

Proof: Based on Theorem 1, we have f (B) > f (A) for all
A C B C V. We consider the following three cases:

(1) f(B) = f (A) > k.__

We have Ff k(B) —Ff k(A) =k

@) k= f(B) > f(A).

We have Fy i (B) = f (B), Fy 1 (A) = f (A).

(3) f(B) 2 k> f(A).

We have Ff k (B) =k, Ff k (A) = f (A).

Hence, we have Ff,k (B) = Ff,k (A) for all three cases,
and conclude that function fﬁ is monotone.

Next, we show m is submodular. It suffices to prove that

Frr (AU {e}) ~Frx (B) (8)

forall AC BCV and e € V\B.

We consider the following three cases:

(1) Frr(A) =k o o

We have Fr« (AU{e}) = Fr k (B) = Frk (BU{e}) =k
because of the monotonicity of m Inequality (8) holds.

@ Fr(A) =i (A Fra(AUfeh =k.

We have Frr (BU{e}) = k and Fy i (B) > Fr i (A)
because of the monotonicity of m Inequality (8) holds.

(3) Fra(A) = £ (A)., Fri (AU {e}) = f (AU {e}).

Then Fy j (B U {e})—Fy i (B) reaches the maximum when
Frr(BU{e}) = f(BU{e}) and Fs , (B) = f (B). Since
function f is submodular, we have f (AU {e}) — f(A) >
f (BU{e}) — f (B). Inequality (8) holds.

To sum up, ff\k is submodular.

Similarly, we can obtain that Pfg; is submodular.

Thus F_k, the linear function of fﬁ and fg—;, is monotone
and submodular. [ |

Obviously, F (S) = k if and only if f (S) > k, g (S) > k.
This means that the test problem of k given in P4 can be
redefined to finding the smallest user set Sy, satisfying Fy (§) =

~Fr ik (A) 2 Fr r (BU{e})

6

k. From the monotonicity of F (S) and the value range of
k,we have k = Fy (U). Then, we can reformulate P4 as:
Sk =argmin |S|,  s.t. Fr(S)=Fc(U)  (P5)
Scu

PS5 is an instance of such a submodular covering problem
[40], which is also NP-hard.

Fortunately, Wolsey showed that the greedy algorithm can
output the solution with guaranteed approximation for P5 [41].

Theorem 4. Given a monotonic submodular function F
on a ground set V, the greedy algorithm that applied to the
optimization problem:

min |S| such that F (S) = F (V)
ScU

can approximate the optimal solution within a factor of 1 +
log (max F" ({e})).

Theorem 4 means that the greedy algorithm can out-
put the winner set S with size of no more than m(1 +
log (max Fi ({e})).

In order to use the greedy algorithm in the inner loop
of binary search over k, we need to make sure that the
approximation guarantee for greedy algorithm is independent
of k. This can be achieved by choosing a larger approximation
guarantee. We set

a=1+log max (f ({e}) +g ({e}))
> 1 +10g (Zmax Fr ({e}))
eU

> 1+log (maka ({e}))

So far, we have found an approx1mat10n algorithm to solve
the relaxed version (P3) of the original RUS problem (P1)
with the approximation ratio of relaxation coefficient @. We
can transform P3 back into P2 by tightening the constraint
from |S| < am to |S| < m, and then use the greedy
algorithm to solve P2. Fig.2. summarizes the whole problem
transformations.

P K== P2 [orelaxs P3
‘o\e“/
/x\%
: binary search : : binary search :
| — )
I I

I
PS5 (greedy) <}:|> P4
L e 4

Fig. 2: Problem transforms

Now, we present the details of our incentive Mechanism for
Robust User Selection (MRUS). As illustrated in Algorithm
1, MRUS consists of winner selection phase and payment
determination phase.

Based on the definition of RUS problem and the mono-
tonicity of f (S) and g (S), we can set the initial value of k
in binary search as k,,;, = 0 and k4 = min{f (U), g (U)},
where k,,;, is the lower bound and k,,, is the upper bound.
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In the winner selection phase, the outer while-loop (Lines 2-
11) is a process of finding the maximum of k through binary
search such as the number of winners is not more than m. Let
S’ be the winner set selected in each round of search. The
inner while-loop (Lines 4-7) greedily select the users from
U to S" until Fy (S’) > k. In each iteration, we select the
user with maximum marginal contribution of function Fj (S)
over the unselected user set U\S’ as the winner (Lines 5-6).
The binary search terminates when (k,,qx — kimin) < €, where
€ € (0,1) is the search accuracy.

Algorithm 1 MRUS

Input: f, g, m, e, U, T,B

//winner selection
I: kpin < 0; Kjpax < min (f (U) »8 (U))’ S — o
2: while (k,ax — kmin) = € do
30k — (kmin+ kmax) /2; S «— @;
4:  while Fi (S’) < k and S’ # U do
s iearg max (F (57U {e) - Fi(8);

ecU\S’

6 S’ — S U {i};
7:  end while
8
9

if |S’| > m then k,,,, < k;
:oelse ki — k; S «— S
10:  end if
11: end while
12: k «— kpin;
//payment determination
13: foreach i € U do p; < 0;
14: foreach i € S do
15 U <« U\{i}; S « @,
16:  while Fy (S’) < k do
17: [ ¢« arg max (F_k(S’ U{e}) — F_k(S’));
ecU’\S’
18: if £(S"U{i}) <kand f(S"U{i.}) <k then
19: Pli. = v({i}) —v({ie}) + Fer (SU{i})
—l'g k (S, U {ie}) + bi(,;
20: if f(S"U{i}) <kand f(S'U{i.}) >k then
21: Pli. — [(8)+v{iD) + For (S"U{i})
—Fg ik (S"U{ic}) — k;
22: if f (S"U{i}) 2 k and f (S’ U {i.}) > k then
23: p'i, = max{f (§) +v({i}) -k, f(§) +v ({i})
+ng(S,U{l}) ng(S'U{le}) }§
24: if f(S"U{i}) >k and f(S'U {i.}) < k then

25: p'i, = max{f (8") +v({i}) -k, v ({i}) —v ({ic})
+Fg 1 (8" U{i}) —Fg i (S"U{ic}) +bi. };
26: end if

27 pi < max {Pi,P'ie ;
28: S — S"U{i.};

29: end while

30: end for

31: return (S,p);

In payment determination phase, for each winner i € S, we
execute the winner selection phase over U\ {i}, and the winner
set is denoted by S’. We compute the maximum price that
user i can be selected instead of each user in S’. Specifically,
we consider four cases. In each case, let p’; be the critical

7

min{ max p’;,v ({i});. We will prove that this price is a

i, €U\S
critical payment for user i later.

payment to user i for anT replacement i,. Finally, we set p; =

V. MECHANISM ANALYSIS

In the following, we present theoretical analysis, demon-
strating that MRUS can achieve the desirable properties of
computational efficiency, individual rationality, truthfulness
and constant approximation.

Lemma 1. MRUS is computationally efficient.

Proof: Based on line 1 of MRUS, initially, kjax — kmin =
min (f (U), g (U)). Considering the search accuracy e, the
binary search (Lines 2-11) has logw iterations.
In each iteration, finding the user with maximum marginal
contribution (Line 5) takes O (n) time. Since there are at most
n users, the while-loop (Lines 4-7) takes O (n?) time. Thus, the
winner selection phase takes O (nzlogw) time.
In each iteration of the for-loop (Lines 13-29), a process
similar to line 4-7 is executed. Hence the running time of
payment determination phase is O (n3) Hence the running
time of MRUS is O [max n2logw,n3}). =

Lemma 2. MRUS is individually rational.

Proof: Let i, be user i’s replacement which appears in the ith
place in the sorting over U\ {i}. Since user i, would not be at
the 7 th place if 7 is considered, we have Fe (SU {i_})—F_k (S) =
Fr (SU{i.}) — Fr (S), ie., Fr (SU{i}) = Fr(SU{i.}).
Based on inequation (8), we have:

Fp i (SU{i}) + Fgr (SU{i})
> Fr ik (SU{ie}) + Fgx (SU{ic})

We consider the following four cases as the payment deter-
mination phase considers:
(M fSU{i}) <k, f(SU{i}) <k.
Substitute the conditions into inequation (9), we have
bi <v({i}) —v({ie}) + Fo i (SULi}) — Fo,x (SU{ic}) + by,
=v({i}) —v{i.})+ Fg,k (S"u{i}) - Fg,k (S"U {i.})+ bie
= P'ie
where the first equality relies on the observation that S = S’
for every e < i in the payment determination phase.
) FSU{i}) <k, f(SU{ic}) 2 k.
Substitute the COHdlthl’lS into mequatlon (9), we have
bi < f(S)+v({i })+ng(SU{l}) gk(SU{l -k
—f(S)+V({l})+ng(S’U{l}) For (S"U{ic}) —k
=p'i,
3) fSU{i}) 2k, f(SU{ic}) = k.
Substitute the conditions into inequation (9), we have
; < max{f (S) +v ({l}) k, f(S)+v{i})
+Fgk (SU{i}) = Fgx (SU {ic}) — k}
= max{f (8) +v ({i}) -k, f (") +v({i})
+ng(S,U{l}) gk(S U{le}) k}
=p'i,
@ fSU{i}) 2k, f(SU{ic}) <k.
Substitute the conditions into inequation (9), we have
b; < max{f (S) +v ({i}) - k,v ({i}) —v ({ie})
+ng(SU{l}) gk(SU{le})"'blc}
=max{f (8') +v ({i}) —k,v ({i}) —v {i.})

)

?
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+Fg (S"U{i}) -

=p'i
Since p; =

F,, k (8" U {ic}) +ble}

ma)\(p,,wehaveb < p;. [ |
i €U\S
Before analyzing the truthfulness of MRUS, we first intro-
duce the Myerson’s Theorem [42].
Theorem 5 [8, Theorem 2]: An auction mechanism is
truthful if and only if:
o The selection rule is monotone: If user i wins the auction
by bidding b;, it also wins by bidding b/l. < bi;
o FEach winner is paid the critical value: User i would not
win the auction if it bids higher than this value.

Lemma 3. MRUS is truthful.

Proof: Based on Theorem 3, it suffices to prove that the
selection rule of MRUS is monotone and the payment p; for
each i is the critical value. The monotonicity of selection
rule is obvious as bidding a smaller value cannot push user i
backwards in the sorting. We next show that p; is the critical
value for i in the sense that bidding higher p; could prevent i
from winning the auction. Note that p; = maxL} p'i,, Where

ee

L is the number of winners in the payment determination
phase. Again, we consider the following four cases as the
payment determination phase considers:

(1) f(S"U{i}) <k, f(S’U{i D <k

In this case, let b; > p’ P igs ie.,
bi > v ({i}) = v ({ie}) + Fex (8" U{i}) - gk(S’U{le})+b

=v{i})-bi+ F K (S"U{i}) <v({ie}) -
Foa (57U {ic})

Y bp+Far (SU{)) <
7eS'U{i}

=v(S"U{i}) -

VSOl = S b For(SUfic))
= f(8"U i) +§i; (S"U{i}) < £ (S"U {ie}) +

Far (U ()
& (S"UAi}) < Fr e (8" U{ie}) +
_ Fex(S'U{ie})
SR E U <F S Ui)
= Fi (§"U{i}) = Fie (8") < Fie (8" U{ie}) — Fie (87)
This means user i will be replaced by i, according to the
selection rule of MRUS.
The same result can be obtained in other three cases. We
give the proof as follows:
(2) (S"U{i}) <k, f(S’ U{ic}) > k.
In this case, Let b; > p’;,, i.e., -
bi > £ (S) +v ({i}) + For (8" U{i}) = Fou (S"U {ic}) -
= f (S"u{i}) +Fg k (S’ u{i}) <k +Fg r(S"U {ze})
= Fr i (S U{i}) + Fu (8" U{i}) < Fy i (S"U {ie}) +
. F_g,k (8" U {ic})
= Fi (§"U{i}) = Fie (8") < Fie (S" U {ie})
B3 fS"U{ih) 2k, f(S"ULie}) > k.

In this case, let b; > p’;,. We have:
bi > f(S)+v({i}) -k
bi > Fai (S'U{i}) = For (S U{ic}) —k

ﬁka(S,U{l})-f-

~Fi (8

(10)
(11)
From inequation (10), we have

Fra(S'U{i)=f(S'u{i}) <k (12)
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From inequation (11), we have
F(S"ULN) + Fer (S UL} < k+Fer (S'Udic})  (13)
Combine inequati(in\(IZ) and inequation (13), we have
T (STULD) + Fgr (STU)) < Fy e (S'U {ie)) +
For (8 U{ie}) _
= Fi (8" U{i}) = F (87) < Fi (8" U {ie}) — Fr (87)
@ (S"u{ih) 2k, f(S"U{ic}) <k
In this case, let b; > p’;,. We have:
bi > f(8) +v{i}) -k, (14)
b v () v () s
+Fg i (S"UA{i}) = Fo .k (8" U {ic}) + bi,
From inequation (14), we have
Fra(S"ud{ih)=f(S"u{i}) <k (16)
From inequation (15), we have
S (8" UAi}) + Fea (8" U A1) an
< F(S U {ie}) + Fgr (8" U {ic})
Combine inequation (16) and inequation (17), we have
Fri(S"U{i})+ F&k\(S’ U{i}) < Fr i (S"U{ie}) +
_ Fgkc (U {ie}) _
= Fr (" U{i}) = Fi (87) < Fi (8" U {ie}) — Fie (S7)
To sum up, if user i bids b; > p’;, foralle € {1,...,L}, it

will be placed after L. Hence, user i would not win the auction
because the first L users have replaced it. [

Lemma 4. MRUS is (1 — €) -approximation to the following
problem:

maxscy min{f (S),g (S)}, s

S

Sl = (PO)

where a = 1 + log meeg (f{el) +g{e})) |

Proof: Based on Theorem 4, the greedy algorithm used
in MRUS is a — approximation to P3. Thus, we can ob-
tain the optimal solution of P6 using binary search with

= 0 theoretically. Consider that S* is the optimal solu-
tion of P6, and S is the output of MRUS. Obviously, we
have min {f (5*),g (S*)} < min{f (U),g(U)} = kmax and
min {f (S), g (S)} = kyin- The binary search terminates when
(kmax — kmin) < €. Thus, we have min{f (S),g(S)} >
(1-e)min{f (5).g(S")}. ]

The above four lemmas together prove the following theo-
rem.

Theorem 6. MRUS is computationally efficient, individually
rational, truthful, and (1 — €) -approximation to P6.

VI. PERFORMANCE EVALUATION

We have conducted simulations to evaluate the performance
of MRUS based on real experience data against the following
algorithms:

o GRUS (Greedy Robust User Selection): This algorithm

selects winners greedily to maximize the utility of the
platform under the constrained number of winners.
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Fig. 3: Utility of platform. (a) utility of platform versus number of users. (b) utility of platform versus number of tasks. (c)
utility of platform versus maximum number of winners. (d) utility of platform versus search accuracy.
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Fig. 5: Coverage function. (a) coverage function versus number of users. (b) coverage function versus number of tasks. (c)
coverage function versus maximum number of winners. (d) coverage function versus search accuracy.

« POUS (Profit Optimization User Selection): This algo-
rithm maximizes the expected profit under the constrained
number of winners using Msensing Auction [43].

o« COUS (Coverage Optimization User Selection): This al-
gorithm maximizes the coverage function under the con-
strained number of winners using submodular function
maximization [18].

Note that there is no critical value of payment for either

GRUS or COUS.

We first measure the utility of platform with different
number of users (n), number of tasks (¢), maximum number
of winners (m) and search accuracy (€). Then we measure the
running time and optimality gaps, and verify the truthfulness
of MRUS. All the simulations are run on a Windows machine
with Intel(R) Core(TM) i7-7560U CPU and 16 GB memory.
Each measurement is averaged over 100 instances.

A. Simulation Setup

We use the air pollution data [44] from the sites in Beijing
and the T-Drive trajectory data sample [45], which contains

trajectories of 10,357 taxis in Beijing, with geographic co-
ordinates at different time for every trajectory. We randomly
choose the sites and the taxis as the tasks and users, respec-
tively.

For the coverage function, each site is regarded as an area,
and the weights of sites are distributed uniformly over [200,
500]. Within a specified time period, a user can collect data if it
is close to the site within 200m. If a user passes multiple sites,
it can perform all these tasks of data collection in this time
period. For our simulations, we use the taxi traces in [10:00,
15:00] at the time snapshot in 2008-02-02. The bidding price
of users is selected randomly from the auction dataset [46],
which contains 5017 bid prices for Palm Pilot M515 PDA
from eBay. The values of tasks are distributed uniformly over
[200, 450]. We set n =200, t =280, m =20, € =0.5 as the
default setting. We will vary the values of the key parameters
to explore the impacts on designed algorithms.

Recall that we aim to optimize the bi-objective problem.
Thus the normal coefficient y has great impact on the per-
formance of bi-objective algorithms (MRUS and POUS). Al-
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though the slight adjustment of normal coefficient reflects the
preference of the platform over the two objectives, an improper
value of normal coefficient may make the bi-objective problem
meaningless. In our simulations, we determine the value of
normal coefficient through multiple random samplings. We
select m users whose values are larger than their bidding prices
as the winners. Then we calculate the value of y such that the
value of expected profit function is equal to that of coverage
function. We repeat this sampling multiple times, and take the
average value as the value of normal coefficient.

Actually, finding the normal coefficient is not the only way
for normalization. We will discuss an alternative parameter-
free normalization method, called dimensionless scale normal-
ization, in discussion section.

B. Utility of Platform

First of all, we measure the utility of the platform of all 4
algorithms. The results are shown in Fig.3.

We vary the number of users from 150 to 350, and find
that the utility of platform of MRUS and GRUS increases as
the number of users increases. This is because the bi-objective
algorithms have more options over a larger user set. However,
since POUS and COUS only optimize a single objective, the
utility of platform does not change much even if the result of
their corresponding objective functions becomes better.

We vary the number of tasks from 140 to 420. The effect
of the number of tasks on platform’s utility of MRUS and
GRUS is almost the same as that of the number of users. With
more tasks to be performed, the platform can select a limited
number of winners to perform the tasks, which can bring high
utility to the platform. The utility of platform of POUS and
COUS increases slightly. This is because when the number of
sites increases, each taxi can perform more tasks averagely,
and more contributions for both expected profit function and
coverage function are made by each user, though either POUS
or COUS only optimizes the single objective.

Then, we vary the maximum number of winners from
10 to 30. With more winners, the utility of platform of all
four algorithms increases dramatically since every winner will
bring the positive utility to the platform.

We vary the search accuracy from 0.1 to 0.9, and find that
the outcome of MRUS becomes worse with the increase of
search accuracy. Actually, the smaller the search accuracy is,
the more precise MRUS is. However, the search accuracy has
impact on the running time, which will be discussed later.
The utilities of platform of other benchmark algorithms remain
stable with different search accuracy since they do not use
binary search.

Overall, the utility of the platform of MRUS is greater
than those of other three algorithms. Specifically, MRUS can
improve the utility by 88%, 27%, and 11% on average,
compared with COUS, POUS, and GRUS under the default
setting of our simulations, respectively.

The performance of GRUS is close to that of MRUS. How-
ever, we do not think GRUS is a good incentive mechanism.
First, GRUS may work arbitrarily badly for some cases, such
as the example illustrated in Fig.1. Our simulations show that
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MRUS outperforms GRUS in more than 76% of all cases. Thus,
the generalization ability of GRUS is weak. Moreover, there
is no truthful payment rule for GRUS. This means GRUS is
not strategy-proof.

C. Expected Profit and Coverage

Since the essential goals of mobile crowdsensing systems
in this paper are maximizing the expected profit and coverage,
respectively, we measure the values of expected profit function
and coverage function of all 4 algorithms. The results are
shown in Fig.4 and Fig.5, respectively.

As shown in Fig.4, the performance of POUS on expected
profit is the best since it only maximizes expected profit
function. For MRUS, GRUS and POUS, the expected profit
increases with the increasing number of users, number of
tasks and maximum number of winners. The expected profit
of COUS does not change much with the increase of number
of users and number of tasks as the winners are selected only
based on the contribution to coverage function in COUS. The
value of expected profit function of MRUS does not change
much with the increase of search accuracy. This is because the
binary search is employed to maximize the minimum value of
expected profit function and coverage function. Overall, MRUS
can obtain 90% expected profit of POUS, and can improve the
expected profit by 103% and 11% on average, compared with
COUS and GRUS under the default setting of our simulations,
respectively.

We can see from Fig.5 that COUS outperforms other algo-
rithms in terms of coverage. For MRUS, GRUS and COUS,
the value of coverage function increases with the increase of
number of users, number of tasks and maximum number of
winners. The trend of coverage function of POUS is uncertain
with the increase of number of users as its winners are
selected to maxmize the expected profit function. The value
of coverage function of POUS increases slightly since each
taxi can contribute more for both expected profit function and
coverage function, averagely, though POUS only optimizes
the expected profit function. The value of coverage function
of MRUS does not change much with the increase of search
accuracy. Overall, MRUS can obtain 88% coverage of COUS,
and can improve the coverage by 26% and 11% on average,
compared with POUS and GRUS under the default setting of
our simulations, respectively.

D. Running Time

Then, we test the running time of MRUS and POUS. We
do not compare the running time of MRUS against GRUS and
COUS, since there is no truthful payment rule for either GRUS
or COUS.

It can be seen from Fig.6 that the running time of both
MRUS and POUS increase with the number of users, number
of tasks, and maximum number of winners. Specifically,
for MRUS, both the number of tasks and the maximum
number of winners have the positive impact on value of
min (f (U), g (U)). Consider that the running time of MRUS
is O (max HZIOgM,n3}), which has been given
in Lemma 1, the running time of MRUS increases. However,
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the impact of number of tasks is very small since the values of
tasks are uniformly distributed. From Fig.6(d), we can see that
the running time of MRUS decreases slightly with the increase
of search accuracy. While the running time of POUS does not
change since it does not use binary search. The running time
of MRUS is much larger than that of POUS. This is because
the running time of MRUS largely depends on the value of
min (f (U), g (U)). In our simulation setting, the values of
both expected profit function and coverage function are at the
level of 10*. Even so, MRUS can be terminated within 1.7
second under the default setting of our simulations. Moreover,
the performance of MRUS is much better than that of POUS.

E. Optimality Gaps

We compare MRUS with the optimal solution of the original
RUS problem in (P1) under small-scale simulations with
t =280, m =6, € =0.1. The optimal solution is implemented
by enumerating all possible situations. We can see from
Fig.7(a) that the utility of platform of MRUS is 99.1% of
optimal solution in our simulations averagely, therefore, the
performance of MRUS is very close to the optimal solution.
On the other hand, as shown in Fig.7(b), MRUS is much faster
than the optimal solution.

F. Truthfulness

We verify the cost-truthfulness of MRUS by randomly
picking a winning user (ID=108) and a losing user (ID=59),
and allowing them to bid prices that are different from their
true costs. We illustrate the results in Fig.8. We can see
that user 108 achieves its optimal utility if it bids truthfully
(b1og = c1os = 2266) in Fig.8(a), and user 59 achieves its

N
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o
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A
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N
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Fig. 8: Truthfulness of MRUS. (a) utility of user 108 (winner).
(b) utility of user ID=59 (loser).

optimal utility if it bids truthfully (bs9 =
Fig.8(b).

cs9 = 2420) in

VII. DISCUSSION
A. Extension to Multi-objective Problem

Our MRUS can be easily extended to multi-objective robust
mobile crowdsensing systems, and all desirable properties still
hold.

Given multiple monotonic

[, (S, [y (), let

submodular  functions:

Frx (S)=min{f; (S),k},i=1,2,....q (18)
J— 1 .
Fo(S)== > Frr(S) (19)
qi:],Z,...,q

The extended MRUS is (1 — €) -approximation to the fol-
lowing problem:

max min {f (S)}, sz |S| <2 (P7)
q a

ScvU i=1,2,...,

where @ = 1 +log|max }
eeU =12

fi({e}))-
=1,2,..., q

Moreover, if at least one function is bidding price related,
the critical value can be determined. Thus we can still design
the multi-objective robust incentive mechanism based on the
auction, and all desirable properties of MRUS still hold:
Theorem 7. The extended MRUS is computationally efficient,
individually rational, truthful, and (1 — €) -approximation to
P7.

For the general multi-objective problem with non-
submodular functions, it is hard to obtain the approximate
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solution. However, many methods have been proposed to
obtain the Pareto optimal [39] solutions.

B. Dimensionless Scale Normalization

In MRUS, we need to determine the value of normal
coefficient carefully since the solution is sensitive to the
normalization of the objective functions. Although we have
proposed multiple random samplings to determine the value of
normal coefficient, it is hard to say multiple random samplings
can normalize the functions completely.

Another normalization way is dimensionless scale normal-
ization, which normalizes the objectives into a uniform and
dimensionless scale. Let

g/ (8) = wi-log (1+mn(S)) (20)
leZ
The normalized expected profit function is defined as:
PO
rm (S 21
Jnorm (8) = 1) 2L
The normalized coverage function is defined as:
(S
gnorm ()= ((U)) 22)

Jnorm (S) and guorm (S) can be viewed as the degree of sat-
isfaction of expected profit and coverage, respectively. f (U)
and g’ (U) are the maximum expected profit and coverage can
be achieved, respectively. Note that, given user set U, either
f(U) or g’ (U) is a constant.

Then the RUS problem for the normalized functions can be
formulated as follows:

maxscu min {fnorm (S) > 8norm (S)} > |S| <m (P8)

Theorem 8. Both normalized expected profit function fuorm
and normalized coverage function guorm are nonnegative,
monotone, and submodular functions.

Proof: We first show that f,,,,, iS a nonnegative, mono-
tone, and submodular function. The nonnegativity of f,,5m 18
obvious. The monotonicity of f,,,, is also obvious as adding
a new user into S cannot decrease the value of f;,5,m.

For all A C B C U and e € U\B, we have

fnorm (A U {e;’) fnorm (A)

f (AU{e

f(BU{e}) f(( g
T FO)
= fnorm (B U {e}) Snorm (B)

where the inequation relies on the submodularity of function
f.

Thus, fuorm 1s submodular.

Similarly, we can obtain that g,,,, is also nonnegative,
monotone, and submodular. ]

Since the normalized functions are nonnegative, monotone,
and submodular functions, our MRUS can be applied to solve
P8, and all desirable properties still hold.
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C. Adaption to Online Scenarios

In this subsection, we discuss how can MRUS adapt to
online scenarios.

If the users arrive online, the online auction algorithm
frame using multiple-stage sampling-accepting process [24]
can be employed. Consider that the total time to re-
cruit users is 7. We divide T into |log,T| + 1 stages:
{1,2, R |_10g2 TJ s |_10g2 TJ + l}. The stage i ends at time
step 7" = | 2717 /2ll°&T1| " Correspondingly, the number of
winners of stage i is not more than |27~'m/2llce2ml | We
execute MRUS at each stage. The difference is that we should
select a user as the winner only if its marginal density is not
less than a certain density threshold computed using previous
users’ information. In our system model, the density threshold
can be calculated as the average value of Fy in the previous
stages. At every stage, the user is selected as the winner only
if the marginal contribution to Fj is larger than the density
threshold. Since function F_k is monotone and submodular,
such online auction can satisfy the desirable properties of
individual rationality, cost-truthfulness, and time-truthfulness.

If both tasks and users arrive online, the above online
auction is invalid since it is hard to determine the number
of winners of every stage. This is because the performable
tasks are uncertain at each stage. In this scenario, one viable
and straightforward solution is to divide the time into multiple
time intervals, and execute MRUS based on the available tasks
and users at each time interval. Essentially, such approach
transforms the online scenario into multiple offline scenarios.
Moreover, the normal coefficient can be updated according to
the knowledge from previous time intervals.

VIII. CONCLUSION

In this paper, we have optimized the worst performance
of a bi-objective problem in mobile crowdsensing to improve
the system robustness. We have modeled an auction-based bi-
objective robust mobile crowdsensing system, and designed
two independent objective functions to maximize the expected
profit and coverage, respectively. We have shown that both
functions of expected profit and coverage are nonnegative,
monotone, and submodular. We have formulated the RUS prob-
lem, and designed an incentive mechanism, which utilizes the
combination of binary search and greedy algorithm, to solve
the RUS problem. We have demonstrated that the designed
incentive mechanism, MRUS, satisfies the desirable properties
of computational efficiency, individual rationality, truthfulness,
and constant approximation to the tightened RUS problem.
We have shown that our MRUS can be easily extended to
multi-objective robust mobile crowdsensing systems. More-
over, our incentive mechanism can achieve 11% improvement
of platform’s utility compared with the greedy algorithm for
bi-objective mobile crowdsensing systems on average.
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