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Abstract— The development of Electric Vehicle (EV) helps
to ease energy crises and deduce vehicle exhaust emissions.
However, it also brings a great impact on both transportation
networks and power grids. There are some serious impediments
in terms of energy charging to the popularization of EV, such
as high deployment cost of charging stations, low charging
efficiency, and voltage deviation of power grid. To address these
issues, we design a new EV charging system, which levers
the bus network in urban areas through the integration of
OnLine Electric Vehicle (OLEV) system and Microwave Power
Transfer (MPT) system. We formulate the EV route scheduling
problem based on this new charging system to maximize the total
residual energy subject to all EVs can arrive to their destinations
before deadlines. Then, we propose an approximation algorithm,
RSA, to solve the route scheduling problem. To relieve the
traffic congestion, we further formulate the conflict-free EV
route scheduling problem, and use the matching based algorithm,
FRSA, to find the EV route schedules with the maximal residual
energy. Through the extensive simulations, we demonstrate that
RSA and FRSA can increase the average residual energy by
67.66% and 50.36% compared with the solution without the
designed wireless charging system, respectively. Moreover, RSA
reduces 22.22% of travel time and outputs 77.23% of residual
energy, and FRSA can obtain 83.51% residual energy with 3.62%
of extra travel time of the corresponding optimal solutions on
average, respectively.

Index Terms— Intelligent transportation system, wireless
charging, electric vehicle, bus network, restricted shortest path,
maximum weighted matching.

I. INTRODUCTION

RECENTLY, EVTank and China YiWei Institute of Eco-
nomics released the report of medium and long-term

development prospects of global new energy vehicle market
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(2025) [1], which predicted that the global sales of new energy
passenger vehicles will increase from 2.21 million in 2019 to
12 million in 2025, with an average annual compound growth
rate of 32.6%. The passenger car market forecast compiled by
Japanese research company Fuji economy [2] showed that the
global sales of Electric Vehicles (EVs) would reach 22.02 mil-
lion in 2035. The popularization of EVs not only reduces local
carbon emissions, but also forwards the dependence on fossil-
fuel to electric power from conventional power plant.

However, there are some major challenges of EV popu-
larizations. First, the energy capacity limitation restricts the
traveling distance. Significant investment cost [3] and land
resources are needed for large-scale deployment of charging
stations. Second, the EV users always want to arrive at the
specified locations before the specified time, such as the
deadline of work attendance, appointments, and meetings. In
these cases, it is impossible for EV users to pay substantial
time to charge their EVs before departure. Moreover, the tra-
ditional charging schemes of EVs also bring the unbalance
charging demand, which causes larger voltage deviation of
power grid [4].

The above issues prompt us to design the new charging sys-
tem with low expense, low time cost, and predictable charging
demand. Fortunately, in most cities, the public transportation
system, such as bus network, is highly developed, and can
cover the most tracks of people in daily life. Thus, the most
of EV trajectories can be covered by the bus network in urban
areas.

We propose an urban EV wireless charging system which
overlays the bus network, combing the OnLine Electric Vehi-
cle (OLEV) system [5], [6] and Microwave Power Transfer
(MPT) [7]. The bus can be charged by OLEV system in
moving state. The EVs can be charged by high frequency
MPT with the rectified DC power of EV about 100 K W .
The distance between the transmitter and receiver is not larger
than 6 m with frequency of 5.8 G H z. Specially, fast charging
technology, e.g., Teslas super charging station [8] is expected
to be commercialized in the future to enable an EV to afford
to be charged several times during its journey. Thus, the MPT
charging for EVs will not affect the battery life of EVs.
Moreover, an external substance detective device is equipped
on the buses to detect human or animals, who are close
to the bus within 1.8 m for protecting pedestrians or pets
from microwave signal radiation. Furthermore, a microwave
shields system [9] is deployed on EVs and buses to shield the
microwave signals within the frequency range of 700 MHz to
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Fig. 1. Scenario of EV route scheduling with bus network assisted wireless
charging.

TABLE I

MICROWAVE POWER TRANSFER FOR EVS

13 G H z, such as the windows and sunroof made of glass with
a conducting coating or covered with plastic with a conductive
coating, the seats and roof flannelette made of microwave
shielding fabrics. So, we can deploy a transmitting antenna
on the bus and a receiving antenna on EV. The EV can be
charged by the high-power MPT when ist is close to the buses
actively.

Thus, our charging system can effectively extend the trav-
eling distance of EVs without significant investment cost and
land resources. Furthermore, EVs can be charged during their
journeys without extra time. Another great advantage is that
the OLEV system is supported by the exclusive distribution
network [5], [6] and then avoid the voltage deviation and
power loss.

In Table I, shows the battery capacity (kWh), energy
consumption (kWh/km), ratio of charged energy to battery
capacity and increased travel distance of different EVs using
MPT, when the average velocity of EVs is 25 km/h and the
distance of the road segment is 0.5 km. So, the EV can obtain
energy of 100 kW× 0.5 km

25 km/h =2 kWh from MPT. In this article,
we aim to schedule EV routes in the bus network assisted
wireless charging system. As illustrated in Fig. 1, there are
two EVs and one bus in the charging system. Each EV has a
source and a destination. The bus has its regular schedule, and
is charged through OLEV system. The EVs can be charged
by the bus using MPT when they are close to the bus at same
road segments. For example, EV1 can be charged by the bus
at road segment a1, and EV2 can be charged by the bus at
road segment a2. Our goal is to find the travel path from the
source to the destination for each EV to minimize the total

energy cost of all EVs under the constraints of traveling time
and initial energy.

Unfortunately, to the best of our knowledge, there is no
off-the-shelf EV route scheduling designed for such overlay
wireless charging system in the literature. There are some
challenges: First, the EV route schedules should satisfy both
deadline constraint and energy constraint, and the shortest path
algorithm with single constraint cannot be used to solve our
dual constrained problem straightforwardly. Second, the spe-
cial challenge of EV route scheduling is that the traveling
time and energy cost of EVs will be largely affected by the
selected charging road segment in the bus routes. Moreover,
if we further consider that only one EV can be charged by the
same bus at the same charging road segment, the EV route
scheduling problem will become more complex because the
route scheduling of EVs will affect each other due to the
exclusive use of charging road segments.

The main contributions of this article are as follows:
(1) We design a unique wireless charging system for EVs sup-

ported by the bus network in urban areas, which integrates
the advantages of OLEV system and MPT technology. To
the best of our knowledge, we are the first to study the
EV route schedule problem for such overlay EV wireless
charging system.

(2) We formulate the Bus network assisted wireless charging
EV Route Scheduling (BRS) problem, and propose an
approximation Route Scheduling Algorithm (RSA) to solve
the BRS problem based on the approximation solution of
Restricted Shortest Path (RSP) problem, which is a special
case of BRS problem.

(3) To avoid charging conflict and relieve traffic congestion,
we further formulate the Bus network assisted conflict-
Free EV Route Scheduling (BFRS) problem. We present
the conflict-Free Route Scheduling Algorithm (FRSA) to
solve the BFRS problem through the maximum weighted
matching between the EVs and the candidate routes to
maximize the total residual energy of all EVs.

(4) We conduct extensive simulations for the designed algo-
rithms. The simulation results show that RSA and FRSA
can increase the average residual energy by 67.66% and
50.36% compared with the solution without the designed
wireless charging system. Moreover, RSA reduces 22.22%
of travel time and outputs 77.23% of residual energy, and
FRSA can obtain 83.51% residual energy with 3.62% of
extra travel time of the corresponding optimal solutions
on average, respectively.

The rest of this article is organized as follows. Section II
reviews the state-of-art research on EV route scheduling and
charging optimization problem. We design the system model
and formulate the BRS problem, as well as present approx-
imation algorithm for the BRS problem in Section III. We
formulate the BFRS problem, and propose the polynomial-time
algorithm in Section VI. The simulation results are presented
in Section V. We conclude this article in section VI.

II. RELATED WORK

The recent research on EV transportation mainly aimed
to solve the problems of energy-optimal routing [10], [11],
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charging station deployment and management [12], [16],
wireless charging system [17], and charging optimization
strategies [18], [19]. Some studies focused on the routing
optimization of EV routing along its journey. Reference [10]
formalized the EV routing problem as an instance of the
shortest path problem with additional path related cost. They
presented a fast routing algorithm that can handle dynamic cost
and improve the time complexity. Reference [11] proposed
a time and energy efficient routing algorithm to extend the
travel distance and prolong the battery longevity of EVs based
on historical driving data. A number of studies concluded
that the deployment of charging stations is a major factor
for extending the driving distance of EV. Reference [12]
studied the size and locations of charging stations for EVs
in traffic networks considering grid constraints to balance the
charging demand and power network stability. Reference [13]
proposed a reliable routing decision scheme for vehicular
ad hoc networks based on the Manhattan mobility model
through integrating roadside units into wireless and wired
modes. Reference [14] proposed a probabilistic model of the
traffic network in the form of a discrete-time Markov chain
by using mobility trajectories and their statistical data. Refer-
ence [15] designed a Residual Network (ResNet)-Temporal
Convolutional Network (TCN) model to predict the urban
traffic volume. Zhang et al. [16] designed an optimal pricing
scheme to minimize the service dropping rate of the charging
stations. Chen et al. [17] designed a multiple-charger multiple-
port charging system for scheduling a limited quantity of
chargers to serve more Plug-in EVs (PEVs). Reference [18]
presented a smart charging strategy for the PEV network,
which contains multiple charging options, including AC level
2 charging and DC fast charging at charging stations. Khan
et al. [19] presented the wireless charging utility maximization
framework to maximize the utility of wireless charging units
for EV charging at signalized intersections. However, the static
charging at stations not only occupy lots of land resources, but
also may cause the congestion at the charging stations.

In terms of EV wireless charging, Ko and Jang [20]
designed the OLEV system for the mass transportation system.
In [21], the authors studied the impact of wireless charging and
mobility of EVs on the wholesale electricity market based
on locational marginal price. Reference [22] researched the
power supply architectures predominantly used for EV wire-
less charging, i.e., the series LC resonant and the hybrid series-
parallel resonant full-bridge inverter topologies. A magnetic
positioning approach which can solve the misalignment issue
associated with wireless EV charging by sharing the wireless
charging structure was proposed in [23]. In [24], the short-
term operation of wireless charging station was presented
by capturing the interdependence among the electricity and
transportation networks. However, up to now, the investment
cost of OLEV or wireless charging panel is very high for all
EVs because the system will be deployed under all lanes and
their maintenance is very difficult. In our charging system,
we only deploy the OLEV system for bus lane with the low
cost of deployment and maintenance.

Many research focused on the joint optimization of EV
charging and EV routing. Reference [25] proposed both global

optimal scheduling scheme and local optimal scheduling
scheme for EV charging and discharging. Reference [26]
proposed a mobile edge computing based system with a
big data driven planning strategy of charging station selec-
tion. Reference [27] formulated a joint routing and charging
scheduling optimization problem for an Internet of Electric
Vehicle (IoEV) network, and proposed an approximate algo-
rithm to achieve affordable computational complexity in large-
size IoEV networks. In [28], a routing scheme was proposed
to improve the experience quality of wireless charging by
minimizing the relative excess time spent by mobility-on-
demand-EV system customers. Reference [29] formulated
the en-route charging navigation in a dynamic programming
setting for both deterministic and stochastic traffic network,
and proposed a charging schedule algorithm, which can reduce
computational complexity.

In particular, the unpredictable mobility of EVs bring many
challenges to smart grid. In [30], the authors proposed a
distributed control algorithm that adapts the charging rate of
EVs to the available capacity of the distribution network.
Zakariazadeh et al. [31] proposed a multi-objective operational
scheduling method for charging/discharging of EVs in a smart
distribution system. Reference [32] proposed an energy man-
agement approach for the home photovoltaic systems to power
the electric vehicle battery charging facility.

Our approach differs from the existing research as follows.
First, in our wireless charging system, the bus can be charged
by the OLEV system and EVs can be charged by the bus at the
same road segments using MPT. We only need to deploy a few
coils or charging panels on the bus lane, reducing the number
of charging stations. Second, we aim to find the route for each
EV under constraints of both deadline and energy such that
the reduction of total energy cost of all EVs is maximized.
Finally, we conduct the exclusive assignment between the
feasible charging road segments and EVs, to avoid charging
conflict and alleviate the traffic congestion. To the best of
our knowledge, the mobile wireless charging assisted EV
route scheduling problem based on bus network has not been
studied yet.

III. BUS NETWORK ASSISTED WIRELESS

CHARGING EV ROUTE SCHEDULING

A. System Model and Problem Formulation

We consider a set of EVs equipped with the receiving
antenna of MPT traveling from their source locations to
specified destinations in a transportation network. We assume
that there is an underlying bus network with fixed schedule,
where the buses create the energy reserves during their regular
travel. The buses are charged by the OLEV system using
inductive power transfer technology, and are equipped with
the directed transmitting antennas of MPT. The EVs can be
charged by the high-power MPT when they are close enough
to the buses.

The transportation network can be characterized by a
directed graph G(N ,A), where N denotes the set of n nodes,
i.e., road junctions and the source/destination locations of EVs.
A represents the set of m road segments that connect the
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adjacent nodes in N . Benefit by the advancement of dynamic
charging technology [33], the charging process is transparent
to the EVs, i.e., the EVs do not need to stop or even slow
down in charging process. All EVs travel at a constant speed
at different road segments. We don’t consider the stop-and-go
case of EVs. This means that the energy consumption of EVs
only depends on the travel distance. We denote the set of EVs
and buses by V and B, respectively. Let AB ⊆ A be the set
of road segments in the bus route schedule. Let Ab ⊆ AB
be the set of road segments in the route schedule of any bus
b ∈ B. Our objective is to find a route pe from the source
se to the destination de fror any EV e ∈ V within deadline
te. We assume that each bus b ∈ B travels at a constant
speed rb. Let ra

e be the speed of EV e at any road segment
a ∈ A. Specifically, if a is a charging road segment, ra

e = rb

in order to synchronize the EV and bus. Let γe be the unit
energy consumption of e. Let Emax

e and E0
e be the energy

capacity of battery and the initial energy of e, respectively.
The charging power of MPT is α. As an emergency charging
system, we assume that each EV is charged at most once on
its route. We denote the time that any bus b ∈ B enters any
road segment a ∈ AB as ta

b . Then the residual energy of e
after traveling any road segment a ∈ pe can be calculated by:

Ea
e = min{E0

e − γe(|pa
e | + |a|)+

∑

a�∈pe

xa�
e α
|a�|
ra�

e
, Emax

e } (1)

where pa
e ⊆ pe is the sub route of pe before next road segment

a. xa�
e is a binary variable to indicate whether e is charged at

road segment a�. xa�
e =1 if e is charged at road segment a�.

xa�
e =0 otherwise. Without loss of generality, we denote the

charging road segment of e as ae. |a�| is the length of road
segment a�. |pa

e | is the length of route pa
e .

The objective of BRS problem is to find the route schedule
P of all EVs to maximize the total residual energy subject
to all EVs can arrive to their destinations before deadlines
(if possible). Note that this objective is equivalent to minimize
the total energy consumption of EVs. The BRS problem can
be formulated as:

BRS max
∑

e∈V Ea
e , de ∈ a, a ∈ pe

s.t . (a)
∑

a∈pe

|a|
ra

e
≤ te,∀e ∈ V

(b)
∑

a∈pe
xa

e ≤ 1,∀e ∈ V
(c) �a∈pe Ea

e ≥ 0,∀e ∈ V
(d) xa

e ∈ {0, 1},∀a ∈ pe,∀e ∈ V

(2)

The constraint (a) ensures that each EV e can reach the
destination de before the deadline te. Constraint (b) ensures
that each EV e is charged at most once on its route. Constraint
(c) ensures that the residual energy of e is always nonnegative
on its route.

We summarize the frequently used notations in Table II.

B. Algorithm Design

In this subsection, we present the Route Scheduling
Algorithm (RSA) to solve the BRS problem. First of all, as the
following theorem shows, it is NP-hard to find the optimal
solution for the BRS problem.

Theorem 1: BRS problem is NP-hard.

TABLE II

FREQUENTLY USED NOTATIONS

Proof: Since the energy consumption of each EV is
independent. The BRS problem is equivalent to minimize the
total energy consumption for each EV. Consider the special
case where every EV does not pass through the charging
road segment, i.e., the constraints (2-b), (2-c), and (2-d) are
removed from the problem. Then the problem is simplified to
choose the shortest path from the source to the destination
before deadline. This problem is Restricted Shortest Path
(RSP) problem [34] actually. Since the RSP problem is a well-
known NP-hard problem, the BRS problem is NP-hard. �

The RSP problem is to compute a shortest path pe for each
EV e from se to de such that the travel time is no larger than
the deadline te. The RSP problem can be formulated as

RSP min
∑

a∈pe
|a|,∀e ∈ V

s.t .
∑

a∈pe

|a|
ra

e
≤ te,∀e ∈ V (3)

Since the BRS problem is NP-hard, we turn our attention to
develop an approximation algorithm. Note that each EV can
be charged at most once. The BRS problem can be solved by
considering the following two cases for each EV:

Case 1: The EV does not pass through the charging road
segment. In this case, we compute the shortest path from the
source to the destination before deadline for each EV. This
problem is an instance of RSP problem, and can be solved
by Simple Efficient Approximation (SEA) [35] with (1+�)-
approximation.

Case 2: The EV passes through one charging road segment.
In this case, we compute the shortest path from the source
to the destination before deadline for each EV ahead of and
behind charging road segment, respectively. Then we assemble
the two paths together with the charging road segment into the
integrated path for this case.

Finally, we choose the path with the minimum energy
consumption from the above two cases for each EV.

The whole process is illustrated in Algorithm 1. Let PB
e

be the set of possible routes of EV e via one charging road
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Algorithm 1 RSA

Input: G, {te, Emax
e , E0

e , se, de, γe}∀e∈V , {Ab, rb}∀b∈B, �,
{ra

e , ta
b }∀e∈V , ∀a∈A,∀b∈B

Output: P
1 P ← ∅;
2 foreach e ∈ V do
3 pBe ← ∅;

// Case 1:
4 pe ← SEA(G, te, �, se, de); c(pe)← γe|pe|;
5 if c(pe)>E0

e then pe ← ∅; c(pe)←∞;
// Case 2:

6 foreach b ∈ B do
7 foreach ae ∈ Ab do
8

←−pe ← SEA(G, tae
b , �, se, al

e);
9

−→pe ← SEA(G, te − tae
b − |ae|

rb
, �, ar

e , de);
10

←→pe ←←−pe
⊎

ae
⊎−→pe ;

11 if �a∈←→pe
Ea

e ≥ 0 then
12 c(←−pe)← γe|←−pe |; c(−→pe)← γe|−→pe |;
13 c(ae)← γe|ae| −min{Emax

e − E0
e − c(←−pe),

α |ae |
rb
};

14 c(←→pe )← c(←−pe)+ c(ae)+ c(−→pe);
15 PB

e ← PB
e ∪←→pe ;

16
←→pe ← argmin←→

p�e ∈PB
e

c(
←→
p�e );

// Choose the better one of
Case 1 and Case 2:

17 if ←→pe �= ∅ and c(←→pe )<c(pe) then
18 P ← P ∪ {←→pe };
19 else if pe �= ∅ then P ← P ∪ {pe};

segment. The function c() returns the energy consumption of
the route.

For Case 1, we adopt SEA to obtain the shortest path pe

from se to de before deadline te for each EV (Line 4).
For Case 2, we iterate every charging road segment of every

bus, and compute the shortest path←→pe via one charging road
segment from the source to the destination before deadline
(Lines 6-15). Specifically, the route of Case 2 is assembled
by three part: the path ahead of the charging road segment←−pe , the charging road segment ae, and the path behind the
charging road segment −→pe . Let al

e and ar
e be the two endpoints

with the direction of bus. Path ←−pe can be obtained by calling
SEA from se to al

e with deadline tae
b (Line 8). Similarly, −→pe

can be obtained by calling SEA from ar
e to de with deadline

te − tae
b − |ae|

rb
(Line 9). Then the route is assembled by these

three parts (Line 10), where symbol
⊎

represents assembling
the route. If ←→pe satisfies the energy constraint, we compute
the energy consumption of ←→pe (Lines 11-14), and put it into
set PB

e (Line 15). After all iterations, we select the route with
minimum energy consumption in PB

e as the candidate route
of Case 2 (Line 16).

Finally, we choose the better one of Case 1 and Case 2 as
the final schedule of EV e (Lines 17-19).

C. Algorithm Analysis

Theorem 2: RSA can output the solution in
O(|V||B|m2 n(log log n + 1

� )).
Proof: According to [35], SEA takes O(mn(log log n+ 1

� ))
time. The running time of RSA is dominated by finding the
restricted shortest path of Case 2 (Line 8 or Line 9), which is
bounded by O(|V||B|m2 n(log log n + 1

� )). �
Theorem 3: RSA can output the solution with energy con-

sumption no more than (1 + �)(O PT + α
∑

e∈V
|ae|
rb

), where
OPT is the energy consumption of optimal solution. � ∈ (0, 1)
is a constant.

Proof: Since pe is chosen from the solutions of two
cases, the performance of RSA is determined by the worst
performance of these two cases. Note that Case 1 adopts
SEA to obtain the 1 + �-approximation solution for the RSP
problem.

Next, we analyze the performance of Case 2. Let OPT be
the energy consumption of optimal solution in Case 2. Let
O PT (e) be the energy consumption of optimal solution of
EV e. Let O PT1(e) and O PT2(e) be the energy consumption
of optimal solution in the sub-paths ahead of and behind
the charging road segment ae, respectively. Let RS P1(e) be
the energy consumption of the shortest path of RSP problem
from se to al

e with deadline tae
b . Let RS P2(e) be the energy

consumption of the shortest path of RSP problem from ar
e to

de with deadline te− tae
b − |ae|

rb
. Note that all possible sub-paths

behind ae are with same deadline since the charged EV has
to travel after time tae

b + |ae|
rb

. Thus we have:
RS P2(e) = O PT2(e) (4)

Moreover, the charged EV has to complete the travel ahead
of ae before time tae

b . We have:
RS P1(e) ≤ O PT1(e) (5)

Due to RS P1(e) ≤ O PT1(e), the EV follows optimal
solution may charge at most O PT1(e)−RS P1(e) more energy
than the RSP solution. Let O PTc and RS Pc be the energy
consumption of optimal solution and RSP solution at the
charging road segment ae, respectively. We have:

O PTc ≥ RS Pc + RS P1(e)− O PT1(e) (6)

Note that SEA can output the 1+ �-approximation solution
for the RSP problem. Thus, for any EV e, we have the
following inequations based on (4), (5) and (6):

c(←→pe ) = c(←−pe)+ c(−→pe)+ c(ae)

≤ (1+ �)(RS P1(e)+ RS P2(e)+ RS Pc)

≤ (1+ �)(O PT1(e)+ O PT2(e)

+O PTc + O PT1(e)− RS P1(e))

= (1+ �)(O PT (e)+ O PT1(e)− RS P1(e))

where the last equality relies on the fact of O PT (e) =
O PT1(e)+ O PT2(e)+ O PTc .

Note that O PT1(e)−RS P1(e) is the extra energy of optimal
solution charged at ae with maximum value of α |ae |

rb
. Thus we

have:
c(←→pe ) ≤ (1+ �)(O PT (e)+ α

|ae|
rb

) (7)
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Accumulate (7) for all the EVs, we have:
∑

e∈V
c(pe) ≤ (1+ �)(O PT + α

∑

e∈V

|ae|
rb

)

Obviously, the performance of Case 2 is worse than that
of Case 1. Thus RSA can output the solution with energy
consumption no more than (1+ �)(O PT + α

∑
e∈V

|ae|
rb

). �

IV. CONFLICT-FREE EV ROUTE SCHEDULING

A. Problem Formulation

However, the charging conflict may occur in Case 2 of the
solution of BRS problem when multiple EVs charged by the
same bus at the same charging road segment. The charging
conflict may decrease the charging efficiency and increase the
radiation to human body because the multiple pair of receiving
and sending antenna of MPT working at the same road
segment simultaneously will increase the microwave signal
radiation range and radiation intensity. Moreover, the charging
conflict may aggravate the traffic congestion and accident risk
because several EVs need to close and follow the same bus
concurrently.

To avoid charging conflict, we define the BFRS problem
by adding the constraint that only one EV can be charged
by the same bus at the same charging road segment. We
extend the decision variable xa

e to xa,b
e to indicate whether

e is charged at road segment a by bus b. The BFRS problem
can be formulated as follows:

BFRS max
∑

e∈V
Ea

e , de ∈ a, a ∈ pe

s.t . (a)
∑

a∈pe

|a|
ra

e
≤ te,∀e ∈ V

(b)
∑

a∈pe

∑
b∈B xa,b

e ≤ 1,∀e ∈ V
(c) �a∈pe Ea

e ≥ 0,∀e ∈ V
(d) �e∈V xa,b

e ≤ 1,∀a ∈ pe,∀b ∈ B
(e) xa,b

e ∈ {0, 1},∀a ∈ pe,∀b ∈ B,∀e ∈ V

(8)

where constraint (d) ensures that only one EV can be charged
by the same bus at the same charging road segment.

B. Algorithm Design and Analysis

In this subsection, we present the conflict-Free Route
Scheduling Algorithm (FRSA) to solve the BFRS problem.
Note that BFRS problem is also NP-hard since BFRS problem
is a tighten version of BRS problem defined in (2). Thus,
we have the following theorem.

Theorem 4: BFRS problem is NP-hard.
The biggest challenge for solving the BFRS problem is that
the route scheduling of any EV is not independent because if
an EV has been scheduled to be charged by a bus at a road
segment, the other EVs cannot be scheduled to be charged
by the same bus at the same road segment. So the method of
finding routes for every EV in sequence is not valid for BFRS
problem.

Considering the potential conflict when assigning a charging
road segment to EV, we use the matching approach to solve
the BFRS problem. The basic idea is that find all paths from
the source to the destination for each EV subject to the time
constraint, and then find a matching between the EVs and the

Algorithm 2 FRSA

Input: G, {te, E0
e , se, de, γe}∀e∈V , {Ab, rb}∀b∈B, �, K ,

{ra
e , ta

b }∀e∈V , ∀a∈A,∀b∈B;
Output: P ;
// Phase 1: Bigraph Construction

1 P ← ∅; G2 ← ∅;
2 foreach e ∈ V do

// Case 1:
3 pe ← SEA(G, te, �, se, de);
4 if c(pe) ≤ E0

e then G2 ← G2 ∪ (e, pe, E0
e − c(pe));

// Case 2:
5 PK

e ← KCSP(G, te, K , se, de);
6 foreach pe ∈ PK

e do
7 foreach b ∈ B do
8 if pe ∩Ab �= ∅ then
9 foreach ab

e ∈ pe ∩Ab do
10 let pe(a, b) denote the route of e charged

by b at road segment a;
11 if �a∈pe(a,b)Ea

e ≥ 0 and
∑

a∈←−pe(a,b)
|a|
ra

e
≤ t

ab
e

b and
∑

a∈−→pe(a,b)
|a|
ra

e
≤ te − t

ab
e

b − |a
b
e |

rb
then

12 G2 ← G2 ∪ {(e, ab
e , E0

e − c(pe(a, b)) )};

// Phase 2: Matching
13 M← H ungarian(G2);
14 foreach m ∈M do
15 if m = (e, pe) then P ← P ∪ {pe};
16 if m = (e, ab

e ) then P ← P ∪ {pe(a, b)};

charging road segments in the paths with maximum residual
energy.

However, enumerating all possible time constrained paths
for an EV will take exponential time. To make the problem
tractable, we find the top K shortest paths from the source to
the destination before deadline for each EV e. This problem
is an instance of K Constrained Shortest Path (KCSP) prob-
lem [36]. Let Pe be the set of all feasible paths for each EV
e from se to de before deadline te. The objective of KCSP
problem is to find a subset PK

e ⊆ Pe of size K such that
the length of each path in P K

e is not larger than any path in
Pe \PK

e . The KCSP problem of each EV e can be defined as
follows:

KCSP finding the subset PK
e ⊆ Pe

s.t . (a) |pe| ≤ |p�e|,∀pe ∈ PK
e ,∀p�e ∈ Pe \ PK

e

(b)
∑

a∈pe

|a|
ra

e
≤ te,∀pe ∈ PK

e

(c) |PK
e | = K ,∀e ∈ V

(9)

As illustrated in Algorithm 2, FRSA consists of bigraph
construction phase and matching phase.

In the bigraph construction phase, we consider the following
two cases:

Case 1: The EV does not pass through the charging road
segment. In this case, we compute the shortest path from the
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Fig. 2. Illustration of FRSA.

source to the destination before deadline for each EV. This
also can be solved by SEA (Line 3). If the path satisfies the
energy constraint, we add the triple (e, pe, E0

e − c(pe)) into
the bigraph G2 (Line 4), where e and pe are the vertexes in
the two sides of the bigraph, and E0

e − c(pe) is the weight
(residual energy) on the edge of (e, pe).

Case 2: The EV passes through one charging road segment.
Find the top K shortest paths from the source to the destination
before deadline for each EV e by calling KCSP( ) (Line 5).
For each selected path, we iterate all possible charging road
segment ab

e of the path for bus b. Let pe(a, b) denote the path
of e charged by b at road segment a. We denote ←−pe(a, b)
and −→pe(a, b) as the sub-paths of pe(a, b) ahead of and behind
the charging road segment ab

e , respectively. We add the triple
(e, ab

e , E0
e − c(pe(a, b))) into the bigraph G2 (Line 12) if the

following three conditions can be satisfied (Line 11): (1) the
energy constraint can be satisfied for each road segment in path
pe(a, b); (2) the EV e can drive into the charging road segment
before the bus; and (3) the EV e can arrive the destination
before the deadline after the charging.

In the matching phase, we find the maximum weighted
matching on G2 to maximize the residual energy of all EVs.
This can be solved by Hungarian Algorithm [37] (Line 13).
For any EV e, if it is matched by pe, put pe into the final
schedule P ; otherwise, if it is matched by ab

e , put pe(a, b)
into the final schedule P (Lines 14-16).

We use the example in Fig. 2 to illustrate how the Algo-
rithm 2 works. In G shown in Fig. 2 (a), there are 4 road
junctions and 5 road segments along with bus b and EVs
e1, e2. γe1 = γe2 = 1. The speed of e1 and e2 at each road
segment are listed as follows: ra1

e1 = ra1
e2 = 0.5, ra2

e1 = ra2
e2 =

2, ra3
e1 = ra3

e2 = 0.5, ra4
e1 = ra4

e2 = 2, and ra5
e1 = ra5

e2 = 1. So,
the time of e1 and e2 traveling each road segment are 2. We set
se1 = 2, de1 = 4, te1 = 4, E0

e1
= 9, se2 = 1, de2 = 4, te2 = 4

and E0
e2
= 10. We set Ab = {a5}, α = 0.9, ta5

b = 2 and
rb = 1. So, the charging energy from bus b is 1.8.

Phase 1: Bigraph Construction

Case 1: The shortest paths from the source to the destination
before deadline for e1 and e2 are pe1 = {a3, a5}
and pe2 = {a1, a4}, respectively. c(pe1) = 3 and
c(pe2) = 5. We add the triple (e1, pe1, 7.8) and
(e2, pe2, 5) into the bigraph G2 because these paths
satisfies the energy constraints.

Case 2: K = 2. Find top 2 shortest paths for e1 and
e2. PK

e1
= {pe1, {a4}}. PK

e2
= {pe2, {a2, a5}}. Let

pe1(a5, b) and pe2(a5, b) denote the routes of e1
and e2 charged by bus b at road segment a5,
respectively. Note that pe1(a5, b) = {a3, a5} and
pe2(a5, b) = {a2, a5}. Then, we add the triple
(e2, a5, 5.8) into the bigraph G2. So, we construct
a bipartite graph G2 as shown in Fig. 2 (b).

Phase 2: Matching

• We compute the maximum weighed matching M of G2
shown in Fig. 2 (c) by calling Hungarian(G2).
• The final route schedule of EV e1 and e2 are path

pe1(a5, b) and path pe2 , respectively.

Theorem 5: BFRS can output the schedule in O(K |V|m ·
max{n(log log n + 1

� ), (|V| + m)2}).
Proof: In Phase 1, finding the K constrained shortest path

takes O(K |V|mn(log log n + 1
� )) time. Finding all possible

charging road segment ab
e takes O(K |V|m) time. In Phase 2,

finding the maximum weighted matching takes O((|V| +
m)2 K |V|m) time. Thus, the time complexity of BFRS is
O(K |V|m ·max{n(log log n + 1

� ), (|V| + m)2}). �

V. NUMERICAL EXPERIMENTS

In this section, we conduct extensive simulations to verify
the performance of our proposed algorithms with different
number of EVs |V|, number of buses |B|, initial energy of
EVs E0

e , and deadline of EVs te,∀e ∈ V .

A. Simulation Setup

We use the data of ‘New York City Bus Data’ [38], which
includes the live data recorded from NYC Buses. This dataset
is from the NYC MTA bus data stream service.

To compare the proposed algorithms with the optimal solu-
tions, we select the bus routes from the dataset to create the
small-scale transportation network and large-scale transporta-
tion network, respectively. We compute the length of road
segments through Google map. The speed of EV e at road
segment a is set to the maximum speed of buses which pass
through the same road segment. We set a random number
in the interval [10], [40] km/h as the speed of EV passing
through a if there is no bus passing through a. Moreover,
we found that the shorter length of road segment is, the less
speeds of buses from the dataset are. The result is consistent
with the practical scenario of urban traffic, i.e., there are
more road segments in the heavy traffic areas than those of
good traffic areas. Furthermore, we assume that the initial
time of EV route schedule is 8:00 AM in our experiments.
The other parameter settings of our simulations are listed
in Table III.

In our simulations, we measure the average residual energy
of EVs ĒR , average travel time of EVs T̄ , and route
assignment ratio, where ĒR = 1

|P | (
∑

pe∈P E0
e − c(pe)),

T̄ = 1
|P |

∑
pe∈P

∑
a∈pe

|a|
ra

e
. Here, |P | denotes the number of

paths in P .
All the simulations were run on a cloud server ECS [39]

with 12 core Intel Xeon Platinum 8269CY and 48 GB memory.
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TABLE III

PARAMETER SETTINGS IN OUR EXPERIMENTS

B. Benchmarks

Since there are no existing algorithms for EV route
scheduling based on bus network assisted wireless charging,
we develop three benchmark algorithms for comparison,

(1) SEA. The solution of Case 1 of BRS or BFRS problem.
(2) OPT. The optimal solution for BRS problem. OPT enu-

merates all the feasible paths of Case 1 and Case 2 of
the BRS problem, and selects the path with maximal
residual energy (minimum energy consumption) as the
solution.

(3) FOPT. The optimal solution for BFRS problem. FOPT
enumerates all the feasible paths of Case 1 and
Case 2 in the bigraph construction phase. For the
matching phase, FOPT uses the same process as that
in FRSA.

C. Performance Evaluation for Small-Scale Network

In this subsection, we evaluate the performance of SEA,
RSA, OPT, FRSA and FOPT in the small-scale network shown
in Fig. 3. Table IV gives the schedules of bus lines in small-
scale transportation network including sub routes, time when
the bus enters road segment, route length, average travel
time, and average speed of bus. The above information are
calculated based on the data records from 8:00-13:00 AM on
December 1-6, 2017.

Impact of number of EVs. We vary number of EVs |V|
from 20 to 200. Fig. 4 shows that RSA reduces 7.89% of travel
time and obtains 121.07% increase of residual energy of SEA
on average, FRSA increases 45.99% of residual energy with
1.79% of extra travel time of SEA on average. This indicates
that the proposed algorithms significantly outperforms SEA.
This is because the output of RSA and FRSA is the better
one of the path obtained by SEA and path with the minimum
energy consumption via charging road segments. From Table I,
the designed wireless charging system can provide amount of
energy to EVs. In most cases, the average residual energy
of paths from Case 2 of RSA and FRSA is larger than that of
paths from Case 1 (computed by SEA). Moreover, the residual
energy of FRSA is less than that of RSA because of avoiding
the charging conflict. Thus, the length of route becomes larger
as FRSA will assign a conflict-free route for each EV. The
average residual energy of RSA and FRSA is 95.47% and

Fig. 3. Small-scale transportation network. The white nodes represent road
junctions and the red lines represent road segments, respectively. There are
three parameters on each road segment, i.e., bus ID, length of road segment
and speed of EV passing through the road segment.

Fig. 4. Impact of number of EVs (|V |): (a) Average residual energy vs.
number of EVs. (b) Average travel time vs. number of EVs.

73.48% of those of OPT and FOPT, respectively. Note that
the performance gap between RSA and OPT is small since
RSA has the guaranteed approximation.

Impact of number of buses. We vary number of buses
|B| from 2 to 5. Fig. 5 shows that RSA reduces 10.52% of
travel time and increases 124.27% of residual energy of SEA
on average, FRSA increases 68.82% of residual energy with
1.02% of extra travel time of SEA on average. Note that RSA
reduces 20.53% of travel time and outputs 81.96% of residual
energy of OPT on average, and FRSA can obtain 97.55%
residual energy with 5.14% of extra travel time of FOPT on
average, respectively. Fig. 5 (a) shows that average residual
energy of RSA, OPT, FRSA and FOPT increase with |B|. This
is because there are more charging road segments, and more
EVs can obtain the energy from the charging system.

Impact of initial energy of EVs. We vary initial energy
of EVs E0

e from 15.5 kWh to 19 kWh. Fig. 6 shows that
RSA reduces 11.75% of travel time and increases 34.21% of
residual energy of SEA on average, FRSA increases 41.27%
of residual energy with 0.44% of extra travel time of SEA
on average. Note that RSA reduces 6.02% of travel time and
outputs 53.15% of residual energy of OPT on average, and
FRSA can obtain 84.08% residual energy with 4.79% of extra
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TABLE IV

SCHEDULES OF BUS LINES IN SMALL-SCALE NETWORK

Fig. 5. Impact of number of buses (|B|): (a) Average residual energy vs.
number of buses. (b) Average travel time vs. number of buses.

Fig. 6. Impact of initial energy (E0
e ): (a) Average residual energy vs. initial

energy. (b) Average travel time vs. initial energy.

Fig. 7. Impact of deadline (te): (a) Average residual energy vs. deadline.
(b) Average travel time vs. deadline.

Fig. 8. Running time.

travel time of FOPT on average, respectively. Fig. 6 (a) shows
that average residual energy for RSA, OPT, FRSA and FOPT

Fig. 9. Route assignment ratio.

Fig. 10. Large-scale transportation network.

Fig. 11. Route assignment ratio.

increase with E0
e . This is because the more initial energy,

the better solution of Case 2.
Impact of deadline of EVs. We vary deadline of EVs te from

1.5 hours to 2.4 hours. Fig. 7 shows that RSA reduces 2.46%
of travel time and increases 128.59% of residual energy of SEA
on average, FRSA increases 90.47% of residual energy with
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Fig. 12. Impact of K : (a) Average residual energy vs. number of EVs. (b) Average residual energy vs. number of buses. (c) Average residual energy vs.
initial energy, (d) Average residual energy vs. deadline.

Fig. 13. Impact of K : (a) Average travel time vs. number of EVs. (b) Average travel time vs. number of buses. (c) Average travel time vs. initial energy,
(d) Average travel time vs. deadline.

31.54% of extra travel time of SEA on average. Note that RSA
reduces 28.55% of travel time and outputs 78.32% of residual
energy of OPT on average, and FRSA can obtain 78.91%
residual energy with 2.46% of extra travel time of FOPT on
average, respectively. Fig. 7 (a) shows that average travel time
of RSA, OPT, FRSA and FOPT increases with te. This is
because with the generous deadline of EVs, RSA and FRSA
can find the better charging road segment for each EV which
can obtain more charging energy from the schedules of bus
lines.

Overall, RSA and FRSA can significantly increase the aver-
age residual energy through the designed algorithms.

Running time. We vary |V| from 20 to 200. Fig. 8 shows
that the running time of RSA, OPT, FRSA and FOPT grow
linearly with the number of EVs. The running time of OPT and
FOPT are 147.68 seconds and 211.70 seconds on average,
respectively. Whereas, RSA and FRSA can complete the route
schedule of all EVs in 10.84 seconds and 25.80 seconds on
average, respectively. So, the proposed algorithms are much
more suitable to the large-scale network.

Route assignment ratio. We vary initial energy E0
e from

0.3 kWh to 1 kWh. Fig. 9 shows that the route assignment
ratio of RSA keeps 100%, and the route assignment ratio of
FRSA and SEA increase with initial energy. Note that RSA
and FRSA obtains 370.59% and 338.82% increase of route
assignment ratio of SEA on average, respectively. This is
because SEA can not find the feasible routes for 93.5% of
EVs when their initial energy are less than 0.6 kWh in the
small-scale transportation network. However, these EVs can
find the feasible routes through the designed algorithms.

D. Performance Evaluation for Large-Scale Network

In this subsection, we evaluate the performance of SEA,
RSA, and FRSA in the large-scale transportation network as

Fig. 14. Impact of number of EVs (|V |): (a) Average residual energy vs.
number of EVs. (b) Average travel time vs. number of EVs.

Fig. 15. Impact of number of buses (|B|): (a) Average residual energy vs.
number of buses. (b) Average travel time vs. number of buses.

shown in Fig. 10. Table V gives the schedules of bus lines in
the large-scale transportation network.

Route assignment ratio. We vary initial energy E0
e from

2 kWh to 2.5 kWh. Fig. 11 shows that the route assignment
ratio of RSA keeps 100%, and the route assignment ratio of
FRSA and SEA increases with initial energy. Note that RSA
and FRSA obtain 1668.49% and 967.52% increase of route
assignment ratio of SEA on average, respectively.

Impact of K . We evaluate the performance of FRSA when K
is changed from 2 to 5, with different number of EVs, number
of buses, initial energy, and deadline. Fig. 12 and Fig. 13
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TABLE V

SCHEDULES OF BUS LINES IN LARGE-SCALE NETWORK

Fig. 16. Impact of initial energy (E0
e ): (a) Average residual energy vs. initial

energy. (b) Average travel time vs. initial energy.

Fig. 17. Impact of deadline (te): (a) Average residual energy vs. deadline.
(b) Average travel time vs. deadline.

show that both average residual energy and average travel time
become stable when K exceeds 4. This is because K is large
enough for FRSA to find the feasible routes for all EVs.

Fig. 14, Fig. 15, Fig. 16, and Fig. 17 indicate that the
proposed algorithms can achieve much better performance
in terms of average residual energy than SEA in large-scale
transportation network. This indicates that the proposed algo-
rithms have good scalability. Moreover, RSA increases 33.27%
of residual energy with 20.79% of extra travel time of SEA

on average. Furthermore, FRSA increases 39.07% of residual
energy with 60.59% of extra travel time of SEA on average.

VI. CONCLUSION AND FUTURE WORK

In this article, we have designed the unique wireless charg-
ing system for EVs supported by the bus network in urban
areas. The buses are charged by the OLEV system, and
equipped with the directed transmitting antennas of MPT. The
EVs are charged by the MPT when they are close enough to
the buses. We have formulated BRS problem to maximize the
total residual energy subject to all EVs can arrive to their
destinations before deadlines, and proposed an approxima-
tion algorithm based on the approximation solution of RSP
problem. To avoid the charging conflict and relieve traffic
congestions, we have further formulated BFRS problem and
proposed a polynomial-time algorithm by solving the KCSP
problem and the maximum weighted matching between the
EVs and the candidate routes. The efficiency of the proposed
algorithms have been confirmed by both of the theoretical
analysis and numerical simulations. The simulation results
show that RSA and FRSA can increase the average residual
energy by 67.66% and 50.36% through the designed charging
system. Moreover, RSA reduces 22.22% of travel time and
outputs 77.23% of residual energy of OPT, and FRSA can
obtain 83.51% residual energy with 3.62% of extra travel
time of FOPT on average, respectively. Furthermore, RSA and
FRSA can increase the route assignment ratio by 1019.50%
and 653.17% compared with the solution without the designed
wireless charging system.

In the future, we plan to extend this work to enable
each EV to be charged more than once during their jour-
neys. In addition, insufficient traffic capacity and/or traffic
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infrastructure may cause the recurrent congestion at some fixed
road junctions or road segments during morning or afternoon
rush hours [40]. Then, the speed of buses and EVs will be
uncertain. Thus, we plan to design a recurrent congestion
analysis pattern based on 5G and edge intelligent system to
predict the real time speed of EVs and buses, for improving
the accuracy of synchronization between EVs and buses.
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