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Abstract 
Bitcoin is the most popular cryptocurrency in the world. Miners in the Bitcoin 
network reduce their risks through participating in mining pool. Existing min-
ing pool systems do not consider the cost and strategy of miners. In this paper, 
we study two mining models: public cost model and private cost model. For the 
public cost model, we design an incentive mechanism, called Mining game, us-
ing a Stackelberg game. We show that Mining game is individually rational, 
profitable, and has the unique Stackelberg Equilibrium. For the private cost 
model, we formulate the Budget Feasible Reward Optimization (BFRO) prob-
lem to maximize the reward function under the budget constraint, and design a 
budget feasible reverse auction to solve the BFRO problem, which is computa-
tionally efficient, individually rational, truthful, budget feasible, and constant 
approximate. Through extensive simulations, we evaluate the performance and 
validate the theoretical properties of our incentive mechanisms. 

Keywords Bitcoin, Mining pool, Incentive mechanism, Nash Equilibrium, 
Auction 

1 Introduction  

Bitcoin is the first decentralized digital currency over the world. It relies on a network 
of computers that synchronize transactions with a process called mining to find valid 
blocks. In this way, miners repeatedly compute hashes until one finds a numerical 
value, which is low enough, and thus get the reward from the block. 

Finding a Bitcoin block is very profitable (at least B12.5, more than $110,000 to-
day), but it is also very difficult for small miners who might find a block in expecta-
tion every a few months or even a few years. As a result, such small miners will par-
ticipate in the mining pool to achieve large computing power in total and share the 
reward from blocks within the pool in order to receive a low but steady stream of 
income.  

———————————————— 

This is an extended and enhanced version of the paper [15] that appeared in the 2nd International Conference on 
Science of Cyber Security, SciSec2019 
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Incentive mechanisms are important for many human-involved cooperative sys-
tems, such as computation offloading [1], spectrum access [2], and crowdsourcing [3, 
4]. Some research efforts have been focused on designing incentive mechanisms to 
entice miners to participate in mining pools. Rosenfeld et al. described the various 
scoring systems to calculate rewards of participants in Bitcoin pooled mining [5]. 
Schrijvers et al. introduced a game-theoretic model for reward function in Bitcoin 
mining pools [6]. Lewenberg et al. examined dynamics of pooled mining and the 
rewards that pools manage to collect, and use cooperative game theory to analyze 
how the pool members share these rewards [7]. However, none of them considers the 
cost of each miner. 

We focus on designing incentive mechanisms for the rational miners with different 
cost. For example, people living in areas with higher electricity bill will have higher 
mining cost than others. Their mining strategies must be influenced by their cost. To 
address this issue, we design incentive mechanisms to motivate the rational miners to 
participate in the mining pool.  

Our first incentive mechanism follows Stackelberg game, where the pool platform 
has the absolute control over the total payment to the miners affiliated, and miners can 
only determine the mining strategies based on the total payment decided by mining 
pool platform.  The first incentive mechanism needs to know the cost of miners in 
advance in order to decide the total payment. 

Our second incentive mechanism considers that the cost of miners is private infor-
mation, and use budget feasible reverse auction to model the mining process. In the 
auction, each miner submits a bid including hash quantity and reserve price to the 
pool platform. Then the platform selects winners from all bidders, and decides the 
payment to them. 

The main contributions of this paper are as follows: 
 We present two models for pool mining system with rational miners: public 

cost model and private cost model. 
 We model the mining process in public cost model as Stackelberg game, 

called Mining game in this paper. We show that Mining game is individually 
rational, profitable, and has unique Stackelberg Equilibrium. 

 For the private cost model, we formulate the Budget Feasible Reward Optimi-
zation (BFRO) problem to maximize the reward function under the budget 
constraint. We design a budget feasible reverse auction to solve the BFRO 
problem based on Proportional Share Allocation Rule [14], which is compu-
tationally efficient, individually rational, truthful, budget feasible, and con-
stant approximate. 

The rest of the paper is organized as follows. Section 2 formulates the system 
models, and lists some desirable properties. Section 3 presents the detailed design of 
our incentive mechanism for the Bitcoin mining pool in the public cost model. Sec-
tion 4 presents the detailed design of budget feasible reverse auction for the Bitcoin 
mining pool in the private cost model. Performance evaluation is presented in Section 
5. We review the state-of-art research in Section 6, and conclude this paper in Sec-
tion 7. 
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2 System Model and Problem Formulation 

In this section, we provide two different models for mining pool: public cost model 
and private cost model. In public cost model, the platform knows the cost of miners 
and can decide the total payment to the miners by estimating the strategies of miners. 
In private cost model, we consider that the cost is the private information and known 
only to miner itself. The miners report their declared cost through reverse auction. 
This means the platform In order to make the miners remunerative, the platform loses 
the absolute control over the total payment to miners in fact. Since the reward of one 
valid block is fixed [20], we set a fixed budget for the total payment in this model. 

Table 1 lists frequently used notations. 

Table 1. Frequently used notations 

Notation Description 
𝑴 
𝒏 
𝒖𝟎, 𝒖𝒊 

𝑷, 𝒑𝒊 
𝑹 
𝒉𝒊, 𝒉, 𝒉 𝒊  

 
 
𝒌𝒊, 𝒃𝒊  

𝜷𝒊(𝒉 𝒊) 
𝒖𝒊, 𝒖𝟎 
𝑨 
𝑫 
𝑽(𝑺) 
𝑽𝒊(𝑺)  
𝑩    

miners set 
number of miners 
utility of platform, utility of miner 𝑖 
total payment, payment to miner 𝑖 
reward of a valid block 
strategy (hash quantity) of miner 𝑖, 
strategy profile of all miners, 
strategy profile excluding 𝑖’s strategy 
unit cost of miner 𝑖, reserve price of miner 𝑖 
best response of miner 𝑖 given ℎ  

utility of miner 𝑖, utility of the platform 
total hash power in bitcoin network 
difficulty to find a valid block 
reward function when the miners in set 𝑆 is chosen 
marginal value of miner 𝑖 when the miners in set 𝑆 is chosen 
budget of the platform 

2.1 Public Cost Model 

 

Fig. 1. Public cost mining pool system 

We use Fig. 1 to illustrate public cost mining pool system. The system consists of a 
mining pool platform and a mining pool which is made up of many rational miners. 
Assume that there is a set 𝑀 =  {1, 2, . . . , 𝑛} of miners who participate in the mining 
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pool, where 𝑛 ≥  2. The Miners provide hash quantity by consuming their computing 
power with different unit cost. Therefore, these rational miners expect the payment to 
compensate for their cost. 

First, the platform publicizes a total payment to the miners. Taking the mining 
cost into consideration, each miner makes its own mining strategy (hash quantity) 
according to the total payment, and then submits the hash to the platform. After col-
lecting the hashes from miners, the platform sends the payment to the miners. If the 
mining pool finds a valid block through the integrated efforts of the miners in the 
pool, the platform will receive the reward for the block. On the other side, if any other 
pool finds a valid block, the platform won’t get the reward. Overall, the platform ab-
sorbs all the risks for the miners in the pool. This is the whole mining process. 

The platform is only interested in maximizing its own utility. Since computing 
power is owned by different individuals, it is reasonable to assume that miners are 
selfish and rational. Hence each miner only wants to maximize its own utility and will 
not participate in mining pool unless there is sufficient incentive. The objective is 
designing an incentive mechanism, which is simple, scalable, and has provably prop-
erties. In this model, the mining strategy of a miner is in the form of its hash quantity. 
A miner participating in mining pool will earn a payment that is no lower than its 
cost. However, it needs to compete with other miners under a fixed total payment. 

For mining a block, the platform announces a total payment 𝑃 > 0, motivating 
miners to participate in the mining pool. Each miner decides its mining strategy based 
on the payment. The mining strategy of any miner 𝑖 ∈ 𝑀 is represented by ℎ , ℎ ≥ 0, 
the hash quantity he is willing to provide. Specifically, if ℎ = 0, miner i indicates 
that he will not participate in the mining pool. The mining cost of miner i is 𝑘 ℎ , 
where 𝑘 >  0 is its unit cost. Assume that the payment received by miner i is propor-
tional to ℎ . Then the utility of miner i can be defined as the difference between pay-
ment and cost: 

                                                   𝑢 =
∑ ∈

𝑃 − ℎ 𝑘 .                (2.1) 

For the reason that the mining process is subject to Poisson process [1], we can 
get the utility of the platform in expectation: 

                                                 𝑢 =
∑ ∈

∑ ∈
𝑅 − 𝑃,                          (2.2) 

where 𝐴 =
×

 is the total hash power in Bitcoin network. We can estimate 𝐴 based 

on the difficulty D of finding a valid block. The value of D is adjusted periodically by 
the Bitcoin network to make sure the blocks are generated every 𝑇 = 600 seconds 
averagely. We suppose that A is a constant because it is almost stable for two weeks 
(the approximate period when Bitcoin network adjusts the value of D). The probabil-
ity of finding a valid block is proportional to its total computing power of the pool in 
the whole network. R is the reward the platform may obtain if it finds a valid block.  

Under this model, the objective of the platform is to decide the optimal value of P 
so as to maximize (2.2), while each miner 𝑖 ∈ 𝑀 decides its hash quantity ℎ  to max-
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imize (2.1) for the given value of P. Since no rational miner is willing to mine with 
negative utility, miner i will set ℎ = 0 when 𝑃 ≤ 𝑘 ℎ

,
. 

2.2 Private Cost Model 

 

Fig. 2. Private cost mining pool system 

We use Fig. 2 to illustrate the private cost mining pool system, which follows the 
reverse auction framework. First, each miner submits a bid 𝐸 = (ℎ , 𝑏 ) to the pool 
platform according to its own hash power and unit cost 𝑘 . 𝑏  is the reserve price min-
er 𝑖 wants to sell its hash of ℎ . We consider the unit cost 𝑘  is the private information 
and known only to miner i. After receiving all the bids from miners, the platform 
selects a subset 𝑆 of miners as winners. Then each winner 𝑖 ∈ 𝑆 provides hash of ℎ  to 
the platform. Finally, the platform determines and sends the payment 𝑝  to each win-
ning miner 𝑖. Due to the limited reward of finding a valid block, the pool platform is 
with a budget 𝐵 to restrict the total payment. As the same in the public cost model, if 
the mining pool finds a valid block through the integrated efforts of the miners in the 
pool, the platform will receive the reward for the block. 

We define the utility of any miner 𝑖 as the difference between the payment and its 
real cost: 

    𝑢 =
𝑝 − ℎ 𝑘 , 𝑖 ∈ 𝑆

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 .                                  (2.3) 

The reward function of finding a valid block in exception is defined as: 

                                           𝑉(𝑆) = 𝑅
∑ ∈

∑ ∈
.                                                (2.4) 

Then the utility of platform can be defined as: 
𝑢 = 𝑣(𝑆) − ∑ 𝑝∈ .                   (2.5) 

Since we consider the miners are selfish and rational individuals, each miner can 
behave strategically by submitting a dishonest bid price to maximize its utility. One of 
our targets is making miner 𝑖 get its maximal utility when he submits  𝑏 =  𝑘  under 
situation that all miners are doing the same strategy as miner 𝑖.  

The objective of the reverse auction is maximizing the reward function such that 
the total payment is not more than the budget. We refer to this problem as the Budget 
Feasible Reward Optimization (BFRO) problem, which can be formulated as follows: 

𝐎𝐛𝐣𝐞𝐜𝐭𝐢𝐯𝐞: Maximize 𝑉(𝑆)

𝐒𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨: ∑ 𝑝∈ ≤ 𝐵
.                                 (2.6) 
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2.3 Desirable Properties 

Our objective is to design incentive mechanisms for mining pool satisfying the 
following desirable properties: 
 Computational Efficiency: A mechanism is computationally efficient if the 

outcome can be computed in polynomial time. 
 Individual Rationality: Each winning miner will have a nonnegative utility 

while bidding its true cost, i.e., 𝑢 ≥ 0, ∀𝑖 ∈ 𝑆. 
 Profitability: The platform should not incur a deficit. In other words, the val-

ue brought by the miners should be at least as large as the total payment to the 
miners, i.e., 𝑢 ≥ 0. Note that profitability here is profitability in expectation 
because of the randomness of Bitcoin mining. 

 Truthfulness: A mechanism is truthful if no miner can improve its utility by 
submitting a reserve price different from its true cost, no matter what other 
submit. 

 Budget Feasibility: The total payments to the winners are no more than the 
budget, i.e., ∑ 𝑝∈ ≤ 𝐵. 

 Approximation: We attempt to find solution with the maximum of reward 
function given in (2.4) only using polynomial-time algorithm. For 𝜒 ≥ 1, we 
say the incentive mechanism is 𝛼-approximate if the mechanism selects a 
winner set Π, such that 𝑂𝑃𝑇 ≤ 𝜒𝑉(Π), where 𝑂𝑃𝑇 is the optimal solution of 
BFRO problem. 

3 Incentive Mechanism for Public Cost Model 

We model this mining process of public cost model as Stackelberg game [8], which 
can be called Mining game. There are two phases in Mining Game: In the first phase 
(called payment determination), the platform announces its payment P; in the second 
phase (called hash determination), each miner strategizes its mining plan to maximize 
its own utility. Therefore, the platform is the leader and the miners in the mining pool 
are the followers in our Mining game. The strategy of the platform is its payment P. 
The strategy of any miner 𝑖 is its hash quantity ℎ . Let 𝒉 =  (ℎ , ℎ , . . . , ℎ ) denote 
the strategy profile of all miners. Let ℎ  denote the strategy profile excluding ℎ . For 
convenience, we write 𝒉 =  (ℎ , ℎ ).  

Note that the second process of Mining Game itself can be considered as a non-
cooperative game, called the Hash Determination (HD) game. We introduce the fol-
lowing definitions:   
Definition 1 (Nash Equilibrium, NE). A set of strategies (ℎ , ℎ , . . . , ℎ ) is a 
Nash Equilibrium of the HD game if for any miner i, 

𝑢 (ℎ , ℎ ) ≥ 𝑢 (ℎ , ℎ ) 
for any ℎ ≥ 0, where 𝑢  is defined in (2.1). 

Definition 2 (Subgame Perfect Nash equilibrium). The Stackelberg game can be 
solved by finding the Subgame Perfect Nash Equilibrium (SPNE), i.e., given the strat-
egies of the other players, the strategy profile serves best for each player, and entails 
every player playing in a Nash Equilibrium in every subgame. 
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The existence of NE is important since the NE strategy profile is stable (no player 
has the incentive to make a unilateral change). The uniqueness of NE enables the 
platform to predict the behaviors of the miners, and thus enables the platform to select 
the optimal value of payment.  

In Section 3.1, we will prove that for any given 𝑃 > 0, the HD game has a unique 
NE, and present an algorithm for computing the NE. In Section 3.2, we will prove that 
the Mining game has a unique SPNE.  

3.1 Hash Determination 

We first introduce the concept of best response strategy. 
Definition 3 (Best Response Strategy). Given ℎ , the strategy is miner 𝑖’s best re-
sponse strategy, denoted by 𝛽 (ℎ ), if it maximizes 𝑢 (ℎ , ℎ ) over all ℎ ≥ 0. 

Based on the definition of NE, every player is playing its best response strategy in a 

NE. From (2.1), we know that ℎ ≤  because 𝑢  will be negative otherwise. To study 

the best response strategy of miner 𝑖, we compute the derivatives of 𝑢  with respect to 
ℎ : 

                             =

∈

𝑃 −
(

∈
)

𝑃 − 𝑘 ,                              （3.1） 

                            = −
\{ }

(
∈

)
< 0.                                              （3.2） 

Since the second-order derivative of  𝑢  is negative, the utility 𝑢  is a strictly con-
cave function with ℎ . Therefore, given any 𝑃 >  0 and any strategy profile ℎ  of the 
other miners, the best response strategy 𝛽 (ℎ ) of miner i is unique, if it exists. If the 
strategy of every other miner 𝑗 ≠ 𝑖 is ℎ =  0, then miner i does not have a best re-
sponse strategy, as it can have a utility arbitrarily close to P, by setting ℎ  to a suffi-
ciently small positive number. Therefore, we are only interested in the best response 
for miner i when ℎ ̇∈ \{ }

> 0. Setting the first derivative of 𝑢  to 0, we have      

                            
∈

𝑃 −
(

∈
)

𝑃 − 𝑘 = 0.                                     (3.3)                                                                    

Solving for ℎ  in (3.3), we obtain 

                                  ℎ =
∑ ∈ \{ }

− ℎ
∈ \{ }

.                                       (3.4) 

Remark: ℎ  is the total hash that can make 𝑖 achieve maximum utility in the current 
mining pool. Of course, i can put the remaining hash power to any other pools. 

If the right-hand side of (3.4) is positive, it is also the best response strategy of 
miner i, due to the concavity of 𝑢 . If the right-hand side of (3.4) is less than or equal 
to 0, then miner i does not participate in the mining task by setting hi = 0 (to avoid a 
deficit). Hence we have 

𝛽(ℎ ) =

0, 𝑖𝑓𝑃 ≤ 𝑘 ℎ
∩

∑ ∈ \{ }
− ℎ

∈ \{ }
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

        (3.5) 
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These analyses lead to the following algorithm for computing an NE of the HD 
game. 

Algorithm 1: Computation of the NE 
1   Sort miners according to their unit costs, 

𝑘 ≤ 𝑘 ≤. . . ≤ 𝑘 ; 
2   𝑆 ← {1,2}, 𝑖 ←  3; 

3   while 𝑖 ≤  𝑛 and 𝑘 <
∑ ∈

| |
 do 

4     𝑆 ← 𝑆 ∪ {𝑖}, 𝑖 ← 𝑖 + 1; 
5   end 
6   for each 𝑖 ∈ 𝑀 do 

7     if 𝑖 ∈ 𝑆 then ℎ =
(| | )

∈

1 −
(| | )

∈

; 

8     else ℎ = 0; 
9  end 
10 return ℎ = (ℎ , ℎ , . . . , ℎ ); 

Theorem 1. The strategy profile ℎ = (ℎ , ℎ , . . . , ℎ ) computed by Algorithm 1 
is a NE of the HD game. 
PROOF: We first prove that the strategy profile ℎ  is a NE. From Algorithm 1, we 
the following observations:  

1) for 𝑖 ∉ 𝑆, 𝑘 ≥
∑ ∈  ; 

 

2)  ∑ ℎ∈ =
(| | )

∈

; 

3) for 𝑖 ∈ 𝑆, ∑ ℎ∈ { } =
(| | )

∈

  

For computing NE, there are two cases: 
①For 𝑖 ∉ S:  It is obvious that 𝑘 ∑ ℎ = 𝑘 ∑ ℎ∈∈ \{ } . Using 1) and 2), we 

get 𝑘 ∑ ℎ∈ ≥ 𝑃. According to (3.5), we have  𝛽(ℎ ) = 0. So, it is the best re-
sponse strategy given ℎ  for ∉ 𝑆 . 

② For 𝑖 ∈ 𝑆: From the Line 3 of Algorithm 1, we get (𝑖 − 1) 𝑘 < ∑ 𝑘 . Then 
we have  

(|𝑆| − 1)𝑘 = (𝑖 − 1)𝑘  + (|𝑆| − 𝑖)𝑘  < ∑ 𝑘 + ∑ 𝑘 = ∑ 𝑘 . 

Thus, 𝑘 <
| |

.  

Furthermore, using 3) we have   

𝑘 ℎ

∈ \{ }

= 𝑘 ℎ

∈ \{ }

= 𝑘
(|𝑆| − 1) 𝑃𝑘

𝑘
∈

= 𝑃
(|𝑆| − 1) 𝑘

𝑘
∈
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                                       < 𝑃

(| | )
∈

| |

∈

= 𝑃. 

Thus, 𝑘 <

∈ \{ }

 . According to (3.5), we have 

𝛽(ℎ ) =  
𝑃 ∑ ℎ∈ \{ }

𝑘
− ℎ

∈ \{ }

=
(|𝑆| − 1)𝑃

∑ ℎ∈

−
(|𝑆| − 1) 𝑃ℎ

∑ ℎ∈

= ℎ  

In summary of ① and ②, ℎ  is an NE of HD game.                                           ■ 
Theorem 2. The NE computed by Algorithm 1 is unique. 
PROOF: First, we assume that there exists one miner 𝑖 ∈ 𝑀 whose ℎ ≠ ℎ , but it 
also satisfies 𝑢 (ℎ , ℎ ) ≥ 𝑢 (ℎ , ℎ ) for any ℎ > 0. We consider the following two 
cases: 

①If 𝑖 ∉ 𝑆, There must have ℎ  > 0 becasue ℎ ≠ ℎ  and ℎ =0. However, it can-

not change the truth that 𝑘 <
∑ ∈

| |
 , which means that 𝑘 ∑ ℎ∈ ≥ 𝑃 (See the 

proof of Theorem 1). So, its ℎ  have to be 0 in order to avoid a deficit. ℎ = 0 is con-
tradict with ℎ > 0. 

②If 𝑖 ∈ 𝑆, reminding that (2.1) is a concave function, and reaches the maximum 
when ℎ = ℎ . So,  𝑢 (ℎ , ℎ ) < 𝑢 (ℎ , ℎ ) . This contradict with 𝑢 (ℎ , ℎ ) ≥
𝑢 (ℎ , ℎ ) for any ℎ > 0. 

In summary of ① and ②, there is no any miner 𝑖 ∈ 𝑀 whose ℎ ≠ ℎ , and it also 
satisfies 𝑢 (ℎ , ℎ ) ≥ 𝑢 (ℎ , ℎ ) for any ℎ > 0. So, The NE in theorem 1 is unique. 

  ■ 

3.2 Payment Determination 

According to the above analysis, the platform, which is the leader in the Mining game, 
knows that there exists a unique NE for the miner for any given value of P. Hence the 
platform can maximize its utility by setting the optimal value of P. Substituting ℎ  
into (2.2), we have  

                                             𝑢 = − 𝑃                                       (3.6) 

where 𝑋 = ∑
(| | )

∈

(1 −
(| | )

∈

)∈ .                                       

𝑋’ = = ∑
(| | )

∈

(1 −
(| | )

∈

)∈ . Obviously, 𝑋’ is a constant. We use Y to rep-

resent 𝑋’. 
Theorem 3. There exists a unique Stackelberg Equilibrium (𝑃∗, ℎ ) in the Mining 
game, where 𝑃∗ is the unique value of P to maximize the utility of the platform given 
in (3.6) over 𝑃 ∈  [0, ∞). 
PROOF：We have 

                   =
( )

− 1,                                  (3.7) 
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                     = −
( )

< 0.                                     (3.8) 

Therefore the utility 𝑢  defined in (3.6) is a strictly concave function of P, for any 
𝑃 ∈ [0, ∞). Since the value of 𝑢  in (3.6) is 0 if 𝑃 = 0, and goes to −∞ when 𝑃 goes 
to ∞, it has a unique maximum value 𝑃∗ that can be effectively computed using New-
ton’s method [9].                                                                                                          ■ 

In the following, we present the analysis, demonstrating that Mining game can 
achieve the desired properties. 
Theorem 4. Mining game is individually rational, profitable, and has unique Stackel-
berg Equilibrium. 
PROOF: For the individual rationality, any miner 𝑖 can set ℎ = 0 to make 𝑢 = 0 
according to (2.1). Since the miners in Mining game always maximize their utilities, 
we have 𝑢 ≥ 0. For the profitability, the pool can always set 𝑃 = 0 to get  𝑢 = 0 
according to (2.2) (In this case, all miners should set ℎ = 0 according to (3.5)). Since 
the platform in Mining game always maximizes its utility, we have 𝑢 ≥ 0 . The 
uniqueness of Stackelberg Equilibrium has been proved in Theorem 3.                     ■ 

4 Incentive Mechanism for Private Cost Model 

Although the incentive mechanism of payment determinable achieves maximum utili-
ty for both platform side and miner side, it cannot be applied to the situation when the 
pool platform does not know the cost of all miners. To address this problem, we mod-
el the mining process as a reverse auction. In the auction, each miner submits a bid 
including its private cost to the platform first. Since we consider the miners are self-
ish, the miners may achieve more utility by submitting a false cost. To prevent such 
strategy behavior, the designed auction should be strategy-proof. Moreover, to avoid 
the deficit of platform, the designed auction should achieve the property of budget 
feasibility.  

In this section, we use the budget feasible reverse auction to solve the BFRO prob-
lem defined in (2.6). First, we give the definitions of marginal value and non-
decreasing submodular. 
Definition 4 (Marginal Value). When a set of miners 𝑆 have already taken part in the 
mining pool, the marginal value of a miner 𝑖 is the increased reward of platform in 
exception caused by adding 𝑖 into 𝑆. The marginal value of miner 𝑖 for miner set 𝑆 is 
defined as: 

𝑉 (𝑆) = 𝑉(𝑆 ∪ {𝑖}) − 𝑉(𝑆) = 𝑅
∑ ∈ ∪{ }

∑ ∈ ∪{ }
− 𝑅

∑ ∈

∑ ∈
. 

Definition 5 (Non-decreasing Submodular). Function 𝑉: 2| | → 𝑅  is nondecreasing 
submodular if 𝑉(𝑆 ∪ {𝑖}) − 𝑉(𝑆) ≥ 𝑉(𝑇 ∪ {𝑖}) − 𝑉(𝑇)  and 𝑉(𝑆) ≤ 𝑉(𝑇)  for ∀𝑆 ⊆
𝑇. 

Next, we show that our reward function defined in (2.4) is a non-negative non-
decreasing submodular function. 
Theorem 5. The reward function 𝑉(𝑆) is a non-negative non-decreasing submodular 
function. 
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PROOF:  According to Definition 5, we need to show that 𝑉(𝑆 ∪ {𝑖}) − 𝑉(𝑆) ≥
𝑉(𝑇 ∪ {𝑖}) − 𝑉(𝑇) , for any 𝑆 ⊆ 𝑇 ⊆ 𝑀  and 𝑖 ∈ 𝑀\𝑇 . Considering 𝑉(𝑆) =

𝑅
∑ ∈

∑ ∈
, we rewrite 𝑉(𝑆) as 𝑉(𝑥) = 𝑅 . It is obvious to see that  𝑉 (𝑥) < 0. So 

𝑉′(𝑥 + 𝜖 ) < 𝑉′(𝑥 ) for ∀𝑥 , 𝜖 > 0, and 
𝑉(𝑥 + 𝜖 + 𝜖 ) − 𝑉(𝑥 + 𝜖 ) < 𝑉(𝑥 + 𝜖 ) − 𝑉(𝑥 ) for ∀𝜖 > 0.       (3.9) 

Let 𝑥 = ∑ ℎ∈ , 𝑥 = ∑ ℎ∈ , 𝑥∆ = ∑ ℎ∈ \ , we have  𝑥 = ∑ ℎ∈ +

∑ ℎ∈ \ = 𝑥 + 𝑥∆ . Thus, 𝑥 ∪{ } = 𝑥 + ℎ  and 𝑥 ∪{ } = 𝑥 + ℎ = 𝑥 + 𝑥∆ + ℎ . 
According to (3.9), we have 𝑉(𝑥 + 𝑥∆ + ℎ ) − 𝑉(𝑥 + 𝑥∆) < 𝑉(𝑥 + ℎ ) − 𝑉(𝑥 ) , 
i.e., 𝑉(𝑆 ∪ {𝑖}) − 𝑉(𝑆) ≥ 𝑉(𝑇 ∪ {𝑖}) − 𝑉(𝑇) for ∀𝑆 ⊆ 𝑇.                        

It is also obvious to see that 𝑓 (𝑥) > 0, i.e., 𝑓(𝑥 + 𝜖 ) > 𝑓(𝑥 ) for ∀𝑥 , 𝜖 > 0.  
So 𝑓(𝑥 + 𝑥∆) > 𝑓(𝑥 ), i.e., 𝑉(𝑆) ≤ 𝑉(𝑇) for ∀𝑆 ⊆ 𝑇. The nonnegativity of 𝑉(𝑆) is 
obvious.                                                                                                                        ■ 

Since the reward function is a non-negative non-decreasing submodular function. 
The BFRO problem is a budget feasible submodular maximization problem actually. 
We apply the budget feasible reverse auction proposed by Singer [14], which has 
been proved to satisfy the computational efficiency, individual rationality, budget 
feasibility, truthfulness, and constant approximation. 

The budget feasible reverse auction consists of winner selection phase and pay-
ment determination phase. Illustrated in Algorithm 2, the budget feasible reverse auc-
tion selects the winners using a greedy approach, and determines the payment through 
proportional share allocation rule. 

 Algorithm 2: Budget Feasible Reverse Auction 
Input: user set 𝑀, budget 𝐵, bid profile 𝐄 = (𝐸 , 𝐸 , … , 𝐸 )   
Output: winner set 𝑆, payment profile 𝐩 = (𝑝 , 𝑝 , … , 𝑝 )  
// Winner Selection 
1:   𝑆 ← ∅; 𝑖 ← arg 𝑚𝑎𝑥 ∈

( ); 

2:   while 𝑏 ≤
( )

( ∪{ })
 do 

3:      𝑆 ← 𝑆 ∪ {𝑖}; 
4:      𝑖 ← arg 𝑚𝑎𝑥 ∈ \

( ); 

5:   end while 
// Payment Determination 
6:   foreach 𝑖 ∈ 𝑀  do 𝑝 ← 0; 
7:   foreach 𝑖 ∈ 𝑆 do 
8:      𝑀′ ← 𝑀\{𝑖}; 𝑆′ ← ∅; 

9:      𝑖 ← arg 𝑚𝑎𝑥 ∈
( )

; 

10:     while 𝑏 ≤
( )

( ∪{ })
 do 

11:         𝑖 ← arg 𝑚𝑎𝑥 ∈ \
( )

; 

12:         𝑝 ← 𝑚𝑎𝑥 {𝑝 , 𝑚𝑖𝑛 {
( )

( ∪{ })
,

( )

( )
}}; 

13:        𝑆′ ← 𝑆′ ∪ {𝑖 }; 
14:     end while  
15:  end for 
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In the winner selection phase, the miners are sorted according to the unit marginal 

value, which is defined as 
( )

 

for any miner 𝑖 ∈ 𝑀.  Let 𝑆 ← ∅ initially, and in each 

iteration of the winner selection phase, we select the miner with maximum unit mar-
ginal value over the unselected miner set 𝑀\𝑆 as the winner until 𝑏 >

( )

( ∪{ })
. 

In payment determination phase, for each winner 𝑖 ∈ 𝑆, we execute the winner se-
lection phase over 𝑀\{𝑖}, and denote the winner set as 𝑆′. For each miner 𝑖 ∈ 𝑆′, we 

compute the maximum value of 𝑚𝑖𝑛 {
( )

( ∪{ })
,

( )

( )
} as the payment to each winner 

𝑖 ∈ 𝑆. 

We can obtain the following theorem according to [14] straightforwardly. 

Theorem 6. The incentive mechanism for private cost model is computationally effi-
cient, individually rational, truthful, budget feasible, and constant approximate. 

5 Performance Evaluation  

5.1 Evaluation of Public Cost Model 

Since we only care about the proportion of reward to the miners, the reward of a valid 
block is inessential to our model. We set the block reward as 𝑅 = 100. The default 
number of miners in the pool is 100. We assume the unit cost of each miner subjects 
to two different distributions: normal distribution and uniform distribution with 𝜇 =
4.0788 × 10 , which can be estimated from the miners in [10].  

First, we test variance σ of two distributions to make the evaluation meaningful.  
Fig. 3 shows that when σ is larger than 10  under normal distribution, the size of 
|S| will be small, and it is approximately equal to the minimum value of 2. Note that 
|𝑆| ≥ 2 is the condition to make Algorithm 1 effective. Through the similar tests, 𝜎 
should not larger than  10  under uniform distribution. 

 

Fig. 3. Number of selected miners with different σ  

To explore the influence of 𝜎  further, we pick some meaningful value of 𝜎 , and 
measure the hash quantity and utility of miners. Note that the miners are sorted based 
on unit cost in the nondecreasing order. The results are shown in Fig. 4, Fig. 5, Fig. 6, 
and Fig. 7. 
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Fig. 4. Hash quantity of each miner under           Fig. 5. Hash quantity of each miner under 
normal distribution                                               uniform distribution 

  

Fig. 6. Utility of each miner under normal          Fig. 7. Utility of each miner under uniform 
distribution (blank areas represent 𝑢 = 0)          distribution (blank areas represent 𝑢 = 0) 

First, we can see from Fig. 4 and Fig. 5, the larger σ is, the wider the range of hash 
quantity is. This is because the strategies in NE taken by mines largely depend on 
their unit cost based on Theorem 1. 

Moreover, as shown in Fig. 4 and Fig. 5, the miners with low cost are willing to 
provide more hash to the pool since the NE computed by Algorithm 1 is a decreasing 
function with the unit cost.  

From Fig. 6 and 7, we can see that the miners who contribute more hash will be 
paid more. This is because the payment received by miner is proportional to its hash 
quantity provided. Note that each miner is with nonnegative utility in all cases, clari-
fying the desirable profitability of individual rationality. 

   

Fig. 8. Utility of platform with different total     Fig. 9. Total hash quantity in the pool with  
hash power in Bitcoin network                            different total hash power in Bitcoin network 
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In Fig. 8, we can see that the utility of platform under two distributions are equal ex-
actly no matter how much the σ is (as long as σ is in the meaningful domain). As 
shown in Fig. 9, the total hash provided under two distributions are also equal exactly. 

We can see form Fig. 8 that the platform almost gets the expected utility of 100 
when A is low. When A becomes larger, the expected utility of the platform decreases 
acutely. This is because when A is small, the pool has high probability to win the 
block and gets the block reward. On the other side, when A is large, the probability to 
win the block becomes small, and the expected utility of platform will decrease when 
A goes up. 

According to Fig. 9, when A is low, the platform only collects a little hash quantity 
from miners. When A becomes larger, the platform collects more hash quantity from 
miners. This is because when A is small, the pool can control the Bitcoin network. 
This means that the pool only needs to pay a little money to incentive miners to work 
for it. When A is large, the pool has to pay more money to incentive miners to provide 
more hash to compete with other pools.  

Moreover, we note that the expected utility of the platform is nonnegative in all 
cases, validating the desirable profitability of profitability.  

5.2 Evaluation of Private Cost Model 

As same as subsection 5.1, we set the block reward as 𝑅 = 100. The default number 
of miners in the pool is 100. We assume the unit cost of each miner subjects to normal 
distribution with 𝜇 = 4.0788 × 10  and σ = 1 × 10 . The hash quantity submit-
ted by the miners subjects to normal distribution with 𝜇 = 1 × 10  and σ = 1 ×
10 , where 𝑟 is an adjustable parameter. 

Fig. 10. Utility of platform with different           Fig. 11.  Total payment with different budgets 
budgets 

 

Fig. 12. Truthfulness of miner 3                        Fig. 13. Utility of each miner



Fig. 10 shows the utility of platform with different budgets. We can see that the plat-
form will obtain more utility when the miners provide more hash quantity. Note that 
the utility of platform does not always increase with budget. This is because although 
large budget may make the pool get more hash quantity, it also makes pool pay more 
to miners. Fig. 11 shows that the total payment always increases with the budget. The 
total payment never exceeds the budget, validating the desirable profitability of budg-
et feasible. 

Then, we choose the 3rd miner from all the 100 miners. Fig. 12 shows that if miner 
3 submits a bid, which is different from its real cost (0.0004), he will not increase its 
utility. Thus the 3rd miner has no motivation to submit a false cost, clarifying the de-
sirable profitability of truthfulness. From Fig. 13, we can see that for each miner 𝑖, the 
payment of 𝑖 is always larger than its cost, clarifying the desirable profitability of 
individual rationality. 

6 Related Work 

Since launched in 2009, Bitcoin has received lots of attention in the research commu-
nity. Rosenfeld et al. [5] describe the various scoring systems used to calculate re-
wards of participants in Bitcoin pooled mining, and explain the problems each were 
designed to solve and analyze their respective advantages and disadvantages. 
Schrijvers et al. [6] introduce a game-theoretic model for reward functions in 
Bitcoin mining pools. They define a precise condition for incentive compatibility to 
ensure miners’ strategy choices optimize the welfare of the pool as a whole. Lewen-
berg et al. [7] use cooperative game theoretic tools to analyze how pool members may 
share rewards. However, they do not take miners’ cost into consideration. 

Some other work analyzes cryptocurrency security in realistic settings, which take 
the cost into consideration. For example, Tsabary et al. [16] propose a system, called 
the gap game, which takes into account all elements of expenses and rewards. Alt-
hough they introduce the mining cost, they do not design incentive mechanism for 
mining pool.  

Taking into cost into consideration for mining pool is important because there are 
many selfish strategies of miners. These selfish strategies may deviate the pool man-
ager’s real intention, and even are harmful to the whole Bitcoin system if there is no 
incentive mechanism to stimulate the rational miners. Some of the selfish strategies 
can be selfish mining [11], bride attack [17], sybil attack [18], and withholding attack 
[19], etc. 

Overall, there is no off-the-shelf incentive mechanism designed in the literature for 
the mining pool system to stimulate the strategic users. Hence, it is urgent to study 
how the cost influences the behavior of miners and pool manager. 

7 Conclusion 

In this paper, we have presented two models for pool mining system with rational 
miners: public cost model and private cost model. We have modeled the mining pro-
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cess in public cost model as Stackelberg game, called Mining game, at which the pool 
platform is the leader, and the miners in the pool are the followers. We have shown 
how to compute the unique Stackelberg Equilibrium. For the private cost model, we 
have formulated the Budget Feasible Reward Optimization problem to maximize the 
reward function under the budget constraint. we have shown that the BFRO problem 
is a budget feasible submodular maximization problem, and designed a budget feasi-
ble reverse auction, which is computationally efficient, individually rational, truthful, 
budget feasible, and constant approximate.  
 
Acknowledgements This research was partly funded by the National Natural Science 
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