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Abstract—Crowdsourcing has become an efficient paradigm 

for performing large scale tasks. Truth discovery and incentive 
mechanism are fundamentally important for the crowdsourcing 
system. Many truth discovery methods and incentive mechanisms 
for crowdsourcing have been proposed. However, most of them 
cannot be applied to deal with the crowdsourcing with copiers. 
To address the issue, we formulate the problem of maximizing 
the social welfare such that all tasks can be completed with the 
least confidence for truth discovery. We design an incentive 
mechanism consisting truth discovery stage and reverse auction 
stage. In truth discovery stage, we estimate the truth for each 
task based on both the dependence and accuracy of workers. In 
reverse auction stage, we design a greedy algorithm to select the 
winners and determine the payment. Through both rigorous 
theoretical analysis and extensive simulations, we demonstrate 
that the proposed mechanisms achieve computational efficiency, 
individual rationality, truthfulness, and guaranteed 
approximation. Moreover, our truth discovery method shows 
prominent advantage in terms of precision when there are 
copiers in the crowdsourcing systems. 

Keywords—crowdsourcing; truth discovery; incentive 
mechanism; reverse auction; Bayesian analysis 

I. INTRODUCTION  
Crowdsourcing is a distributed problem-solving model, in 

which a crowd of undefined size is engaged to solve the 
complex problems through an open platform. Wikipedia [1], 
Zhihu [2], Freebase [3], and other knowledge repositories 
were created by workers, who contributed knowledge on a 
wide variety of topics. In recent years, crowdsourcing has 
been widely used in many fields, including video analysis [4], 
knowledge discovery [5], and Smart Citizen [6], conducting 
human-robot interaction studies [7]. With the rapid 
proliferation of smartphones integrated with a variety of 
embedded sensors, mobile crowdsourcing has become an 
efficient approach of data acquisition in large-scale sensing 
applications, such as photo selection [8], public bike trip 
selection [9], and indoor positioning systems [10].  

Many crowdsourcing applications require integrating data 
from multiple workers, each of which provides a set of values 
as "facts". However, "facts and truth really don't have much to 
do with each other" [11]. Different workers may provide 
conflicting values, some being true while some being false. To 
provide data with high accuracy to the requesters, it is critical 
for the truth discovery systems to resolve conflicts and 
discover true values.  

The crowdsourcer aggregates and extracts crowdsourced 
information in order to discover the truth, where the accuracy 
of crowdsourcing data is fundamentally important. In 
crowdsourcing, the accuracy of data can be largely affected by 
the expertise and willingness of individual workers [12, 13]. 
Particularly, the workers with different spatial-temporal 
contexts and personal effort levels usually submit data with 
different accuracy. Furthermore, the rational workers tend to 
strategically minimize their efforts when performing the tasks, 
and thus may degrade the accuracy of data.  

Typically, we often expect the true value provided by more 
workers than any particular false one, so we can apply voting 
[14] and take the value provided by the majority of the 
workers as the truth. The main drawback of this approach is 
that they treat the reliability of each worker equally. 
Unfortunately, the behavior of copying between workers is 
common in practice [15], especially when the crowdsourcing 
tasks are in the form of questionnaire. 

In a variety of domains, such as science, business, politics, 
arts, there are a huge number of workers to provide 
information, and a large part of the provided information 
exists repetition. Most of the information is about some static 
aspects of the world, such as the authors and publishers of 
books, directors, the actors and actresses of movies, and the 
presidents of a company in past years. In this scenario, the 
workers may copy, crawl, or aggregate data from other 
workers, and submit the copied data without the declaration of 
ownership.  

TABLE 1: AN EXAMPLE OF CONFLICTING VALUES PROVIDED BY 
CROWDSOURCING WORKERS WITH COPIERS 

       Workers 
Tasks 1 2 3 4 5 

Stonebraker MIT Berkeley MIT MIT MS 
Dewitt MSR MSR UWise UWisc UWisc 

Bernstein MSR MSR MSR MSR MSR 
Carey UCI AT&T BEA BEA BEA 
Halevy Google Google UW UW UW 
The existence of copiers would invalidate the most of the 

existing truth discovery methods [31, 32, 35-37], since they 
consider that workers are independent of each other. For 
example, as shown in Tab. 1, there are five workers, who 
provide the affiliations of five researchers, and only worker 1 
provides all correct data. However, since the affiliations 
provided by worker 4 and worker 5 are copied from worker 3 
(with certain errors during copying), the naive voting method 



would consider them as the majority, making wrong decisions 
of the truth for Dewitt, Carey, and Halevy.  

In this paper, we aim to develop an integrated solution to 
solve the following two issues: given the conflicting values 
provided by crowdsourcing workers with copiers, how to 
estimate the true value? Further, how to incentivize the 
strategic workers with high accuracy to participate in the 
crowdsourcing? 

We consider a crowdsourcing system consisting of a 
platform that launches the crowdsourcing campaign, and a set 
of workers who are connected to the platform via the cloud.  
We model the crowdsourcing process as a sealed reverse 
auction. First, the platform publicizes a set of tasks, and each 
is associated with an accuracy requirement, which is the least 
confidence to discover the truth. The workers who are 
interested in performing the tasks can bid with the data for 
participating. Then, the platform executes the truth discovery 
for each task. Meanwhile, the accuracy of each worker is 
estimated in the truth discovery process. Finally, the platform 
selects a subset of workers as winners, and determines the 
payment to winners based on the bid price and accuracy of 
workers. The whole process is illustrated by Fig.1. 

 
 Fig. 1 Reverse auction based crowdsourcing process 

We aim to present an Incentive Mechanism for 
Crowdsourcing with Copiers (IMC2), which is a two stage 
incentive mechanism, consisting of truth discovery stage and 
reverse auction stage. In truth discovery stage, IMC2 performs 
the Dependence and Accuracy based Truth Estimation 
(DATE), and returns the accuracy of workers at the same time. 
In the stage of reverse auction, IMC2 selects the winners and 
determinate the payment to the workers. 

The problem of designing truthful incentive mechanism for 
the truth discovery in crowdsourcing with copiers is very 
challenging. First, we do not know how workers obtain their 
data, so we need to detect copiers from a snapshot of data. It is 
challenging to detect the copiers because submitting the same 
data with others does not imply the copying behavior directly. 
Second, if any two workers submit the same data, it is not 
obvious which one is the copier only based on a snapshot of 
data. This means that we should calculate the dependence with 
directions. Furthermore, the effective method of accuracy 
calculation is needed for the copiers since the copiers may 
contribute to the truth discovery by submitting the 
combination of the manual data and copied data, or submitting 
the copied data after verification. Finally, the workers may 
take a strategic behavior by submitting dishonest bid price to 
maximize their utility. 

The main contributions of this paper are as follows: 
� To the best of our knowledge, we are the first to design 

the incentive mechanism, which stimulate the strategic 
workers to reach the least confidence for truth discovery 
in the crowdsourcing. 
� We propose a truth discovery algorithm as a component 

of the incentive mechanism for the crowdsourcing with 
copiers. Our truth discovery algorithm considers both the 
dependence and accuracy of workers. Further, we extend 
our truth discovery algorithm to the general cases, where 
the truth can have multiple presentations and the 
distribution of false values is nonuniform.  
� We model the Social Optimization Accuracy Coverage 

(SOAC) problem, and design a reverse auction 
mechanism to solve the SOAC problem.  We show that 
the designed mechanism satisfies the desirable properties 
of computational efficiency, individual rationality, 
truthfulness, and guaranteed approximation. 

The rest of the paper is organized as follows. Section II 
models the SOAC problem and the dependence of workers, 
and lists some desirable properties. Section III presents the 
detailed design of truth discovery. Section IV extends the truth 
discovery to the general cases. Section V presents the detailed 
design of our reverse auction. Section VI presents the detailed 
analysis of designed incentive mechanism. Performance 
evaluation is presented in Section VII. We review the state-of-
art research in Section VIII, and conclude this paper in Section 
IX. 

II. SYSTEM MODEL 
In this section, we model the truth discovery in the 

crowdsourcing system as a reverse auction. Then we define 
the dependence model of the workers. At the end of this 
section, we present some desirable properties. 

A. Reverse Auction Model 
We consider a crowdsourcing system consisting of a 

platform and a set {1,  2,  ...,  }W n= of n workers, who are 
interested in performing the crowdsourcing tasks. The 
platform resides in the cloud. The platform publicizes a set 

1 2{ ,  ,  ...,  }mT t t t=  of m tasks, and wants to discover the truth 
for each task from the data submitted by the workers. Each 
task jt T∈ is associated with the accuracy requirement Θ j , 

which is the least confidence to discover the truth for jt . Let
1 2( , , ..., )m= Θ Θ ΘΘ be the accuracy requirement profile for all 

tasks. Without loss of generality, we consider that each task jt

has ( 1)jnum +
 
different answers. In other words, there are 

one true value and jnum  false values.   
Each worker i W∈  submits a triple ( ,  ,  )i i i iB T b D= , 

where iT  is the task set he/she is willing to perform, and ib is 
his/her bid price that worker i wants to charge for performing 

iT . Each iT  is associated with the cost ic , which is the private 
information and known only to worker i. Different from most 
existing crowdsourcing systems [33, 34, 38, 39], each worker 
sends his/her data iD of task set iT  to the platform at the same 
time. Let 1 2( , , ..., )=    nD D DD  be the data submitted by all 



workers.  
Given the task set T, the bid profile 1 2( , , ..., )=    nB B BB , 

and the accuracy requirement profile 1 2( , , ..., )m= Θ Θ ΘΘ , the 
platform calculates the estimated truth 1 2( , , ..., )met et et=et     
for each task, the winner set S W⊆ , and the payment ip for 
each winner ∈i S . We define the utility of any worker i as 
the difference between the payment and its real cost: 
                                      = −i i iu p c  .                                   (1) 

Since we consider the workers are selfish and rational 
individuals, each worker can behave strategically by 
submitting a dishonest bid price to maximize its utility.  

The utility of the platform is:   
                                0 ( ) i

i S
u V S p

∈

= −∑                               (2) 

where ( )V S  is the value of the platform obtained if all of the 
tasks can be completed by the workers in S with accuracy no 
less than the accuracy requirement. 

We define the social welfare as the total utility of the 
platform and all workers: 
                    0 ( )

∈ ∈

= + = −∑ ∑social i i
i W i S

u u u V S c                    (3) 

We consider an incentive mechanism ( )  M e, f, p  
consisting of an truth estimation function ( )⋅e , an winner 
selection function ( )⋅f , and a payment function ( )⋅p . The 
function ( )⋅e  estimates the truth et  for all tasks, and returns 
an accuracy matrix { }j

i n mA ×=A , where j
iA is the accuracy of 

worker i for task jt  for any , ji W t T∈ ∈ . The function ( )⋅f  
outputs the subset of workers S W⊆ . The function ( )⋅p
returns a vector 1 2( , , ..., )=    np p pp  of payments to all 
winners.  

The objective of our incentive mechanism is maximizing 
the social welfare such that each of tasks in T can be 
completed with accuracy no less than the accuracy 
requirement.  

Note that the problem of maximizing the social welfare is 
equivalent to the problem of minimizing the social cost (total 
cost of winners) since the value of ( )V S  is constant under the 
accuracy constraint. We refer this problem as the Social 
Optimization Accuracy Coverage (SOAC) problem, which can 
be formulated as follows: 
   Objective:              Minimize 

i i
i S

c x
∈

⋅∑                          (4) 

 Subject to:          ,j j
i i j

i W
A x t T

∈

⋅ ≥Θ ∀ ∈∑                       (5) 

                                 {0,1},ix i W∈ ∀ ∈                             (6) 
where ix is the binary variable for each worker ∈i W . Let

1ix = if i is a winner; otherwise, 0ix = . 

The constraint (5) represents the accuracy coverage for each 
task jt T∈ , which ensures that the total accuracy of all the 

winners for this task is no less than the accuracy requirement 
Θ j .  

B. Dependence Model of Workers 
Different from most existing truth discovery methods, we 

take the dependence of workers into consideration in order to 
reduce the impact of copiers on truth estimation. We define 
the dependence of workers in Definition 1. 

Definition 1. (Dependence of workers) We say that there 
exists a dependence between any two workers i and i’ if they 
derive the same part of their data directly from the other 
worker (can be one of i and i’).  

An independent worker provides all values independently. 
It may provide some erroneous values because of incorrect 
knowledge of the real world, mis-spelling, etc. We use 

'i iW W⊥  to represent that workers i and i’ are independent. 
A copier copies a part (or all) of data from other workers 

(independent workers or copiers). Let r be the probability that 
a value provided by a copier is copied. The copier can copy 
from multiple workers by union, intersection, etc. In addition, 
a copier may revise some of the copied values or add 
additional values. Such revised and added values are 
considered as independent contributions of the copier. We 
consider the case when any two workers i and i’ are dependent, 
denoting i depending on i’ by '→i i , and i’ depending on i by 

' →i i , respectively. 
To make the computation tractable, we assume that the 

dependence of workers satisfies the following properties: 
� Independent copying: The dependence of any pair of 

workers is independent of the dependence of any other 
pair of workers. 
� No loop dependence: The dependence relationship 

between workers is non-transitive. 
� Uniform false-value distribution: For each task, there are 

multiple false values in the underlying domain, and an 
independent worker has the same probability of providing 
each of them (we will remove this assumption in the 
general cases considered in Section Ⅳ). 

C. Desirable Properties 
Our objective is to design an incentive mechanism 

satisfying the following desirable properties: 
� Computational efficiency: An incentive mechanism is 

computationally efficient if the truth estimation et , the 
winner set S , and the payment vector p  can be 
computed in polynomial time. 
� Individual Rationality: Each winner will have a non-

negative utility while bidding its true cost, i.e. 
0,  .≥ ∀ ∈iu i S  

� Truthfulness: An incentive mechanism is truthful if 
reporting the true cost is a weakly dominant strategy for 
all workers. In other words, no worker can improve its 
utility by submitting a false cost, no matter what others 
submit. 
� Social Optimization: The objective is minimizing the 

social cost. We attempt to find optimal solution or 
approximation algorithm with low approximation ratio 



when there is no optimal solution terminated in 
polynomial time. For the latter, the approximation ratio 
is the ratio between approximation solution and the 
optimal solution. 

The importance of the first two properties is obvious, 
because they together assure the feasibility of the incentive 
mechanism. The third property is indispensable for 
guaranteeing the compatibility. Being truthful, the incentive 
mechanism can eliminate the fear of market manipulation and 
the overhead of strategizing over others for the workers. The 
last property guarantees that the incentive mechanism can 
have a guaranteed approximation ratio to close to the optimal 
social cost.  

III. TRUTH DISCOVERY 
In this section, we present our truth discovery algorithm 

DATE, which discovers the true values from conflicting 
information provided by multiple workers. DATE performs the 
following three steps (the details will be shown in subsection 
A, B, and C, respectively) illustrated by Fig.2 iteratively until 
the estimated truth does not change or the number of iteration 
exceed the maximum number of iterations ϕ . 

 
Fig. 2 Workflow of DATE 

A. Dependence Between the Workers 
We consider that there are two types of workers: 

independent workers and copiers. For any pair of workers 
, ' , '∈ ∈ ≠i W i W i i , we apply Bayesian analysis to compute 

the probability that i and i’ are dependent given the 
observation of data set D. For this purpose, we need to 
compute the probability of the observed data, conditioned on 
the dependence or independence of these two workers. 

We are interested in three sets of tasks: sT , the set of tasks 
on which i and i’ provide the same true value; fT , the set of 
tasks on which they provide the same false values; dT , the set 
of tasks on which they provide different values.  

Note that the true value can be obtained through the voting 
mechanism on data set D for each task initially. In the 
following iterations, the true value will be determined based 
on the estimated truth et. 

Intuitively, two independent workers providing the same 
false value is a rare event; thus, if we fix s fT T∪ and dT , the 
more common false values that i and i’ provide, the more 
likely that they are dependent. On the other hand, if we fix  

sT and fT , the fewer tasks on which i and i’ provide different 
values, the more likely that they are dependent. We next 
describe how we compute conditional probability of D based 
on this idea. 

We first consider the situation where the two workers i and 
i’ are independent. Since there is only one true value, the 
probability that i and i’ provide the same true value for task jt , 
denoted by j

sP for convenience, is  

          '( | ')j s j j
s j i iP P t T i i A A= ∈ ⊥ = ⋅                             (7) 

where j
iA  and '

j
iA  are the accuracy of i and i’ for task jt  

respectively. We set j
iA ε=  for , ji W t T∀ ∈ ∀ ∈ , (0,1)∈ε  

be the default values initially, and iteratively refine them by 
computing the estimated values in later rounds of DATE. 
   Based on the assumption of uniform false-value distribution 
made in subsection II-B, any independent worker has the same 
probability of providing each false value of task jt . Thus the 
probability that any worker i provides a false value for task  

jt  is 1 j
i
j

A
num
− . Thus, the probability that i and i’ provides the 

same false value for task jt , denoted by j
fP , is 

' '

( | ')
1 1 (1 ) (1 )

    

j f
f j

j j j j
j i i i i

j j j

P P t T i i
A A A Anum

num num num

= ∈ ⊥
− − − ⋅ −

= ⋅ ⋅ =
            (8) 

Then, the probability that i and i’ provide different values 
on task jt , denoted by j

dP , is  

         ( | ') 1= ∈ ⊥ = − −
d

j d j j
j s fP P t T i i P P                           (9) 

Thus, the conditional probability of observing D is 
      ( | ')= s f d

j j j

j j j
s f dt T t T t T

P i i P P P
∈ ∈ ∈

⊥ ⋅ ⋅∏ ∏ ∏D      (10)   

We next consider the situation where i and i’ have the 
dependence relationship. There are two cases where i and i’ 
provide the same value for the task jt . First, with probability 
r, one copies the value from the other (there assumes i copies 
from i’) and so the value is true with probability '

j
iA   and false 

with probability '1 j
iA− . Second, with probability 1 r− , the 

two workers provide the value independently, and so the 
probability of being true or false is the same as that in the 
situation where i and i’ are independent. Thus, when i copies 
from i’ (similar for i’ copying from i), we have 
          '( | ') (1 )s j j

j i sP t T i i A r P r∈ → = ⋅ + ⋅ −                       (11) 

          '( | ') (1 ) (1 ),f j j
j i fP t T i i A r P r∈ → = − ⋅ + ⋅ −               (12) 

    Finally, the probability that i and i’ provide the different 
values on task jt  is the probability that i provides a value 
independently, and the value differs from that provided by i’: 
                ( | ') (1 )∈ → = ⋅ −d j

j dP t T i i P r                             (13) 
    Thus, the conditional probability of observing D is 

'

'

 ( | ')
[ (1 )]

  [(1 ) (1 )] [ (1 )]
s

j

f d
j j

j j
i st T

j j j
i f dt T t T

P i i
A r P r

A r P r P r
∈

∈ ∈

→
= ⋅ + ⋅ −

⋅ − ⋅ + ⋅ − ⋅ ⋅ −

∏
∏ ∏

D
   (14) 

We compute ( ' | )→P i i D  accordingly: 



'

| | 1

'

( ' | )
( | ') ( ')=

( | ') ( ')+ ( | ') ( ')
1-=[1+( )

(1 )
1 ( ) ]

1(1 ) (1 )

s
j

d

f
j

j
s

j jt T
i s
j

f T
j jt T

i f

P i i
P i i P i i

P i i P i i P i i P i i
P

A r P r
P

rA r P r

α
α ∈

−
∈

→
→ →

→ → ⊥ ⊥

⋅
⋅ + ⋅ −

⋅ ⋅
−− ⋅ + ⋅ −

∏

∏

D
D

D D

           

(15) 

where ( ')P i i→  is the a priori probability that worker i and i’ 
are dependent. Let ( ') , ( ') (1 ),0 1P i i P i iα α α→ = ⊥ = − < <  
be the default values for every pair of workers initially, and 
iteratively refine them by computing the estimated values in 
later rounds of DATE. 

Note that the probability of i and i’ providing the same true 
or false value is different with different directions of 
dependence. By applying the Bayesian rule, we can compute 
the probabilities of '⊥i i , '→i i , and ' →i i  for any pair of 
workers i and i’. 

B. Probability of Providing the Value Independently 
We have described how to detect any pair of workers are 

dependent. However, if a worker copies from another, it is 
possible that it provides some of the values independently, and 
it would be inappropriate to ignore the contribution of these 
values. Thus, we describe how to obtain the probability that 
any worker provides the value independently in this 
subsection. 

Note that the probability of dependence calculated by 
formula (15) is based on the whole data collected. To estimate 
the truth for each task, we should calculate the probability of 
providing each possible value independently. Obviously, it 
would take exponential time to enumerate all possible 
dependence for each value between all pairs of workers.  

To make the calculation scalable, we shall find a method 
with polynomial time. The basic idea is calculating the 
probability of providing each possible value v by considering 
the worker one by one for every task. For convenience, let jD  
be the set of values of any task jt T∈ . Let j

vW  be the set of 
workers who provide value v for any task jt T∈ . The goal is 
to calculate the probability of any worker i to provide each 
possible value v of any task jt independently, denoted as 

( )j
vI i . 

For each task jt T∈  and jv D∈ , we denote an ordered set 
j

vW , and put the workers in j
vW  into j

vW  one by one. For 

each worker ,j j
v vi W i W∈ ∉ , we compute the probability for i 

based on the dependence on the workers in j
vW . This method 

is not precise because if any worker i depends only on workers 
in \j j

v vW W  but some of those workers in \j j
v vW W depend on 

the workers in j
vW , our estimation still consider that the 

worker i provides the value independently.  

To minimize such error, we wish that both the probability 
that worker i depends on the workers in \j j

v vW W and the 

probability that the workers in \j j
v vW W  depend on the 

workers in j
vW  be the lowest. Thus, we take a greedy 

algorithm and consider workers in such an order: In the first 
round, we select a worker 0

j
vi W∈ that is associated with the 

highest dependence probability, and make the worker as the 
first one in ordered set j

vW ; In the later rounds, we select a 
worker that has the maximal dependence probability on one of 
the previously selected workers. And this process ends when 
all workers are considered. 

Thus the probability that the worker 0i  provides value v of 
task jt  independently is 

0 0'
( ) (1 ( ' | ))j

v

j
v i W

I i r P i i
∈

← − ⋅ →∏ D            (16) 

C. Accuracy and Truth Estimation 
We next consider how to compute the accuracy of a worker. 

A straightforward way is to compute the fraction of true 
values provided by the worker. However, we do not know 
which the true values are exactly. We instead compute the 
accuracy of a worker as the average probability of its values 
for any task jt T∈  being true. 

 Formally, j
iD  be the set of values of any task jt T∈  

provided by worker i. For each j
iv D∈ , we denote ( )jP v as 

the probability that v is true for any task jt T∈ . We compute 
j

iA as follows. 

                         
( )

.
| |

j
i

j
v Dj

i j
i

P v
A

D
∈=

∑
                                  (17) 

 Now we need a way to compute ( )jP v . Intuitively, the 
computation should consider both how many workers provide 
the value and the accuracies of those workers. We apply a 
Bayesian analysis again. 

We start with the case where all workers are independent. 
Consider a task jt T∈ , for the observation jD  provided by 
each worker ji W∈ , where jW is the set of workers who 
perform task jt , we first compute the probability of  jD
conditioned on z  being true. This probability represents that 
the workers in j

vW  provide the true value and the other 
workers in jW  provide one of the false values. 

          
\

1
( | ) j j j

v v

j
j j i

i ji W i W W

A
P D v is true A

num∈ ∈

−
= Π ⋅Π            (18)  

Among the values in jD , there is one and only one true value. 
Applying the a-priori belief of each value being true is the 
same, denoted by β . We then have 

\

1
( ) ( )j j j

v vj

j
j j i

i ji W i W W
v D

AP D A
num

β
∈ ∈

∈

−
= ⋅Π ⋅Π∑             (19) 

Applying the Bayesian rule, we have 



Algorithm 1: DATE 
Input: worker set W , task set T , data set D , copy 
probability r , initial accuracy ε , priori probability of 
dependence α , maximum number of iterations ϕ   
Output: estimated truth et, accuracy matrix A 
1:  for each i W∈  do 
2:      for each jt T∈  do ;j

iA ε←  
3:      for each ' , . . 'i W s t i i∈ ≠   do  
4:         ( ') , ( ') (1 )P i i P i iα α→ ← ⊥ ← − ; 
5:      end for 
6:  end 
7:  0←K ; 
8:  while ≠et et'  and ϕ≤K  do 
9:        for each jt T∈  do 

10:          for each  jv D∈  do j
zW ← ∅ ; 

11:      end for 
12:      ←et et' ; 

//Step1: Calculate the probability of dependence 
13:  calculate ( ' | )P i i→ D  for every pair of workers 

, ' , 'i i W i i∈ ≠  through formula (15) with et and A; 
           // Step2: Calculate the probability to provide a value 

independently 
14:      for each jt T∈  do 
15:          for each jv D∈  do 
16:             0

: , ' , '
argmin ( ' | ) ( ' | )

j
vi i i W i i

i P i i P i i
∈ ≠

← → + →D D ; 

17:             0{ }j
vW i← ; 

18:             while | | | |j j
v vW W≠  do 

19:                 0
: \ , ' ,

arg max ( ' | )
j j j

v v vi i W W i W i i

i P i i
∈ ∈ ≠

← → D ; 

20:                 0 0'
( ) (1 ( ' | ))j

v

j
v i W

I i r P i i
∈

← − ⋅ →∏ D ; 

21:                  0{ }j j
v vW W i← ∪ ; 

22:             end while 
                  // Step3: Estimate the accuracy and the truth 

23:            

'
'

1
( )

1

j
v

j
vj

j j
i

ji W
j i

j j
i

ji W
v D i

num A
A

P v
num A

A

∈

∈
∈

⋅
Π

−
←

⋅
Π

−∑
 24:          end for               

25:          for each , . . j ii W s t t T∈ ∈   do 

26:               
( )

| |
j

i

j
v Dj

i j
i

P v
A

D
∈←

∑
; 

27:          end for 

28:         ( )j
j v

j j j
i vi Wv D

et arg max A I i
∈

∈
← ⋅∑ ; 

29:     end for 
30:     1← +K K ; 
31: end while 
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For the truth discovery, if a worker i copies a value v from 
other workers, we should ignore i when considering v as the 
truth. Thus, we adopt ( )j

v

j j
i vi W

A I i
∈

⋅∑  as the support counts 

of value v for any task jt T∈ , and find the value with the 

maximal support counts in jD . In the last round of DATE, the 
value with highest support counts is the final estimated truth.  

The whole process of DATE is illustrated in Algorithm 1. 

IV. TRUTH DISCOVERY FOR GENERAL CASES 

A. Discover the Truth with Multiple Presentations 
In some scenarios, part of workers may submit certain 

values in abbreviations, missing or incorrect spelling. These 
values mean the same thing, but without distinction, they will 
be treated as different values. For example, we should treat IT 
and Information Technology as the same value. Therefore, we 
need a method to calculate the similarities between different 
values. 

For any task jt T∈ , if any value ' jv D∈  is similar to  
another value jv D∈ , Intuitively, the workers that support for 

'v  also implicitly support for v. 
Formally, we denote the similarity between v  and 'v  as 

( , ') [0,1]sim v v ∈ , which can be converted to the similarity of  
word vectors[25], then computed by Euclidean Distance [21], 
Pearson Correlation [22], Asymmetric Similarity [23], Cosine 
Similarity [24],  etc.  

After computing the support counts of each value for any 
task jt T∈ , we adjust it by considering the similarities 
between them as follows: 

'
' , ' ' \

( ) ( ') ( , ')
j j j j

v v

j j j j
i v i v

i W v D v v i W W

A I i A I i sim v vρ
∈ ∈ ≠ ∈

⋅ + ⋅ ⋅ ⋅∑ ∑ ∑
  
(21)  

where [0,1]ρ ∈  is a parameter controlling the influence of 
similar values.  

We then use the adjusted support counts for truth estimation 
(line 28 of Algorithm 1).   

B. Nonuniform false-value distribution 
In Section III, we estimate the truth with the assumption of 

uniform false-value distribution made in subsection II-B. 
However, the false values of a task may not be uniformly 
distributed. For example, in the minds of most people, 
Australia's capital is Sydney, but in fact, Canberra is its capital. 
The probability of false value of Sydney will larger than other 
false values. 

We define ( ), [0,1],f h h∈ as the percentage of false values 

whose distribution probability is h ; thus, 
1

0
( ) 1.f h dh =∫ Then, 



the probability that two false-value providers provide the same 

value is 
1 2

0
( )h f h dh∫ instead of 21 1( ) j

j jnum
num num

⋅ = . 

Accordingly, we revise formula (8) as 
1 2

0
( | ') (1 ) (1 ) ( )j f j j

f j i iP P t T i i A A h f h dh= ∈ ⊥ = − ⋅ − ⋅ ∫  (22) 

Similarly, we need to revise formula (18) as follows: 

1

0
ln ( ) | \ |

\

( | )

(1 )
j j

v

j j j
v v

j

df h W Wj j
i ii W i W W

P D v is true

A A e
⋅

∈ ∈
∫= Π ⋅Π − ⋅

   
           (23) 

V. REVERSE AUCTION DESIGN 
First of all, we attempt to find an optimal algorithm for the 

SOAC problem presented in equation (2)～(4). Unfortunately, 
as the following theorem shows, the SOAC problem is NP-
hard. 

Theorem 1. The SOAC problem is NP-hard. 

Proof: We consider a special case of SOAC problem, where 
the accuracy requirements for all tasks in T are the same. Let 

jΘ  be sufficiently close to zero jt T∀ ∈ . This means that, in 
this special case, any task ∈jt T  can be completed upon there 

is any worker i W∈  with 0j
iA > . In this way, the problem 

can be simplified as selecting a subset S W⊆ with minimum 
total cost such that the workers in S can perform every task in 
T. Since each worker can bid for a subset of T with a cost, this 
special problem is actually an instance of the Weighted Set 
Cover (WSC) problem, which can be formulated as follows: 

Objective:              Minimize ii S
b

∈∑                          (24) 

Subject to:          0,j
i ji S

A t T
∈

>   ∀ ∈∑                       (25) 
Since the WSC problem is a well-known NP-hard problem, 

the SOTD problem is NP-hard.                                               ■ 

Since the SOAC problem is NP-hard, it is impossible to 
compute the winner set with minimum social cost in 
polynomial time unless P=NP. In fact, there is no (1 ) ln− nε
approximate polynomial time algorithm for WSC problem [26]. 
In addition, we cannot use the off-the-shelf VCG mechanism 
[27] since the truthfulness of VCG mechanism requires that 
the social cost is exactly minimized. We design our reverse 
auction, which follows a greedy approach. Illustrated in 
Algorithm 2, our reverse auction consists of winner selection 
phase and payment determination phase.  

In the winner selection phase, the workers are sorted 
according to the effective accuracy unit cost, which is defined 

as
min{ ', }

j i

i
j j

it T

b
A

∈
Θ∑

 

for any worker i W∈ . In each 

iteration of the winner selection phase, we select the worker 
with minimum effective accuracy unit cost over the unselected 
worker set \W S  as the winner until the winners’ accuracy 
can cover the accuracy requirement for each task in T . 

In payment determination phase, for each winner Si ∈ , we 
execute the winner selection phase over \{ }W i , and the 
winner set is denoted as 'S . We compute the maximum price 

that worker i  can be selected instead of each worker in 'S . 
We will prove that this price is a critical payment for worker i  
later. 

Algorithm 2:Reverse Auction 
Input: task set T , bid profile B , worker set W ,  
accuracy requirement profile Θ , accuracy matrix A 
Output: winner set S, payment p 
//Winner Selection Phase 
1:  , ' ;S ← ∅ Θ ← Θ  
2:  while ' 0

j

j
t T∈

Θ ≠∑ do 

3:     \arg min
min{ ', }

j k

k
k W S j j

kt T

b
i

A∈

∈

←
Θ∑

; 

4:    { }←S S i∪ ; 
5:    for each ∈j it T do 

6:        ' ' min{ ', }j j j j
iAΘ ← Θ − Θ ; 

7:    end for 
8:  end while 
//Payment Determination Phase 
9:  for each i W∈ do 0←ip ; 
10:for each ∈i S do 
11:   ' \{ }, ' , ''W W i S← ← ∅ Θ ← Θ ; 
12:   while '' 0

j

j
t T∈

Θ ≠∑ do 

13:       '\ 'arg min
min{ '', }

j k

k
k k W S j j

kt T

b
i

A∈

∈

←
Θ∑

; 

14:      ' ' { }← kS S i∪ ; 

15:      
min{ '', }

max{ , }
min{ '', }

j i

k

kj ik

j j
it T

i i ij j
it T

A
p p b

A
∈

∈

Θ
←

Θ

∑
∑

; 

16:       for each ∈
kj it T do 

17:          '' '' min{ '', }
k

j j j j
iAΘ ← Θ − Θ ; 

18:      end for 
19:   end while 
20:end for 

VI. MECHANISM ANALYSIS 
In the following, we present the theoretical analysis, 

demonstrating that IMC2 can achieve the desired properties of 
computational efficiency, individual rationality, truthfulness, 
and low approximation ratio. 

Lemma 1. IMC2 is computationally efficient. 

Proof: The running time of Algorithm 1 is dominated by the 
while loop for sorting the workers in j

zW  (line 18-22), which 
takes  2( )O n  since there are at most n workers in  j

zW . Since 
DATE executes the sorting for each value of each task, and the 
maximal number iteration is ϕ , DATE is bounded by

2

1,2,...,
( max { })j

j m
O n m numϕ

=
. 



For Algorithm 2, finding the worker with minimum 
effective accuracy unit cost takes ( )O nm , where computing 
the value of min{ ', }

j k

j j
kt T

A
∈

Θ∑  takes ( )O m . Hence, the 

while-loop (line 2-8) takes 2( )O n m . In each iteration of the 
for-loop (line 10-20), a process similar to line 2-8 is executed. 
Hence the time complexity of the whole reverse auction is 
dominated by this for-loop, which is bounded by 3( )O n m .     ■ 

Lemma 2. IMC2 is individually rational. 

Proof: Let ik be worker i’s replacement which appears in 
the ith place in the sorting over \{ }W i . Since worker ik would 
not be at ith place if i is considered, we have

min{ ', } min{ ', }
k

kj i j ik

ii
j j j j

i it T t T

bb
A A

∈ ∈

≤
Θ Θ∑ ∑

. Hence 

min{ ', } min{ '', }

min{ ', } min{ '', }
j i j i

k k

k kj i j ik k

j j j j
i it T t T

i i ij j j j
i it T t T

A A
b b b

A A
∈ ∈

∈ ∈

Θ Θ
≤ =

Θ Θ

∑ ∑
∑ ∑

,  

where the equality relies on the observation that ' ''j jΘ = Θ  
for every k≤i, which is due to the fact that '=S S  for every k≤i. 
This is sufficient to guarantee

\ '

min{ '', }
max

min{ '', }
j i

k W S k

kj ik

j j
it T

i i ij j
it T

A
b b p

A∈

∈

∈

Θ
≤ =

Θ

∑
∑

                             ■ 

Before analyzing the truthfulness of IMC2, we first 
introduce the Myerson’s Theorem [28]. 

Theorem 2. ([29, Theorem 2.1]) An auction mechanism is 
truthful if and only if: 

• The selection rule is monotone: If worker i wins the 
auction by bidding bi, it also wins by bidding ' <i ib b ; 

• Each winner is paid the critical value: Worker i would 
not win the auction if it bids higher than this value. 

Lemma 3. IMC2 is truthful. 

Proof: Based on Theorem 2, it suffices to prove that the 
selection rule of IMC2 is monotone and the payment pi for 
each i is the critical value. The monotonicity of the selection 
rule is obvious as bidding a lower price cannot push worker i 
backwards in the sorting. 

We next show that ip is the critical value for worker i  in 
the sense that bidding higher ip  could prevent worker i  from 
winning the auction. Note that

{1,..., }

min{ '', }
max

min{ '', }
j i

k e k

kj ik

j j
it T

i ij j
it T

A
p b

A∈

∈

∈

Θ
=

Θ

∑
∑

. If worker i bids bi≥pi, 

it will be placed after e since
min{ '', }

min{ '', }
j i

e

ej ie

j j
it T

i ij j
it T

A
b b

A
∈

∈

Θ
≥

Θ

∑
∑

implies
min{ '', } min{ '', }

e

ej i j ie

ii
j j j j

i it T t T

bb
A A

∈ ∈

≥
Θ Θ∑ ∑

. Hence, 

worker i would not win the auction because the first e workers 
have met the accuracy requirement for each task in T.           ■ 

Then, we provide our analysis about the approximation 
ratio of IMC2 using the dual fitting method [30]. The 
normalized primal linear program P has been formulated in 
equation (4)～ (6). The dual program D is formulated in 
equation (26)～(29). 

                       D:  max
j

j
j it T i W

y z
∈ ∈

Θ −∑ ∑                  (26) 

             s.t. ( ) ,   
j i

j
i j i it T

A y z b i W
∈

− ≤ ∀ ∈∑                    (27) 

                              0,   ≥ ∀ ∈j jy t T                                 (28) 
                              0,   iz i W≥ ∀ ∈                                   (29) 

We define any task jt T∈ as alive at any iteration in winner 
selection phase if its accuracy requirement is not fully 
satisfied. We define that task jt is covered by iT  if j it T∈  and 

jt is alive when worker i  is selected. The coverage 
relationship is represented as j it T≺ . Moreover, we define the 
minimum accuracy as ∆v . Suppose when worker i is selected, 
the residual accuracy requirement profile is 1* 2* *{ , ,..., }mΘ Θ Θ
and iT is the ji th  set that covers jt , the corresponding 
normalized effective accuracy unit cost in terms of unit 
accuracy can be represented in equation (30): 

                  
*( , )

min{ , }
j i

i
j j j j

it T

b v
w t i

A
∈

∆
=

Θ∑
                    (30) 

We assume that jt is covered by jh sets. Then we have 
( ,1) ... ( , )j j jw t w t h≤ ≤ . We then define two constants 

1
j

j
t Tv ∈

Ω = Θ
∆ ∑ and max , ,j

i i i jA T b i W t Tε = ⋅ ⋅ ∈ ∈ . 

Lemma 4: The following pairs ( ), ,j i jy ,z t T i W∈ ∈ are 
feasible to the dual program D. 

( , )
, ,

2
j j

j j
n

w t h
y t T

H vε
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( )*min{ , }( ( , ) ( , ))
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where 1 11 ...
2

= + + +nH
n

 , 1 11 ...
2Ω = + + +

Ω
H . 

Proof: Suppose for any worker i W∈ , there are is tasks in iT . 
We reorder these tasks in the order in which they are fully 
covered. 

If i S∉ , then we have 0iz = . Suppose when the last unit 
accuracy requirement of jt is covered, the residual accuracy 

requirement profile is 1 2{ , ,  ...,  }m+ + +Θ Θ Θ , then the total 



residual accuracy requirement of alive tasks contained by iT

are represented as min{ , }is k j
kk j

A+
=

Θ∑ . We have 

( , )
min{ , }i

i
j j s k k

ik j

b v
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Therefore, we have  

1 1
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i

i
b b

H
 

If worker i S∈ , then we assume that when worker i is 
selected as a winner, 'is tasks in iT  already been fully covered. 
We have 

1
( )iS j
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Hence, the pairs ( ), ,j i jy ,z t T i W∈ ∈ are feasible to the dual 
program D.                                                                              ■ 

Lemma5: IMC2 can approximate the optimal solution 
within a factor of 2 ΩHε . 

Proof: By substituting the dual solution given in Lemma 4 
into equation (26), we have 
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The above lemmas together prove the following theorem. 

Theorem 3. IMC2 is computationally efficient, individually 
rational, truthful and 2 ΩHε  approximate. 

VII. PERFORMANCE EVALUATION 
We have conducted simulations to investigate the 

performance of IMC2 on the real experience data.  

A. Simulation Setup 
We first measure the performance of DATE, and compare it 

with following three bench mark algorithms: 
� MV (Majority Voting [14]): The truth of each task is the 

corresponding value that supported by the most workers. 
� ED (Enumerate all workers’ Dependence): Enumerate all 

possible dependence for each worker with others when 
calculating the probability of providing each possible value 
independently (Step 2 of DATE). 

� NC (No Copier): Consider all workers are independent. All 
calculations about dependence are not needed in NC. This 
means that NC only includes Step 3 of DATE. 

     We define the precision of the truth discovery as
( * )

| |
∈

=∑
j

j j
t T

g et et

T
, where * jet is the real truth of task jt ,

( )g ⋅ is an indicator function (i.e., ( * ) 1= =j jg et et if event  

*=j jet et is true; otherwise, ( * ) 0= =j jg et et ). 
    Then, we conduct the simulations to evaluate the Reverse 
Auction, and compare it with following algorithms: 
� GA (Greedy Accuracy): Each time, GA selects the 

worker with the highest accuracy, and pays the critical 
value [28] to the winners. 

� GB (Greedy Bid): Each time, GB selects the worker with 
the lowest bid, and follows the Vickrey Auction [20] 
payment rule. 

 
 
 
 
 
 
 

For our simulations, we use the data from Qatar Living 
Forum [40] to simulate the crowdsourcing network. The data 
was collected from survey participants using Qatar Living 
Forum in 2015. It includes 300 questions, 120 workers and 
6000 comments, each comment can be annotated as "Good", 
"Bad" or "Other". The cost of each worker is selected 
randomly from the auction dataset [41], which contains 5017 
bid prices for Palm Pilot M515 PDA from eBay workers. The 
task accuracy requirement of tasks is uniformly over [2, 4]. 
The default number of tasks and workers are 300 and 120, 
respectively. The value of each task is uniformly distributed 
over [5, 8]. In the simulations, we randomly selected 30 
workers and set them to be copiers. This means that the data 
of these workers is copied from the other workers. We will  



 
           (a) Precision versus ε , α                             (b) Precision versus r                            (a) Precision versus tasks                      (b) Precision versus workers              
Fig. 3 Impact of parameters on precision                                                               Fig. 4 Precision with different number of tasks and workers    

 
        (a) Running time versus tasks                (b) Running time versus workers             (a) Social cost versus tasks                 (b) Social cost versus workers                                      
Fig. 5 Running time of DATE                                                                                  Fig. 6 Social cost 

 
        (a) Running time versus tasks               (b) Running time versus workers       (a) Utility of user with ID=26 (winner)  (b) Utility of user with ID=58 (loser)  
Fig. 7 Running time of Reverse Auction                                                                  Fig. 8 Truthfulness of IMC2    

vary the value of the key parameters to explore the impacts of 
these parameters.  

We first measure the performance of DATE with different 
number of workers (n), number of tasks (m), priori probability 
of dependence (α ), initial accuracy ( ε ), copy probability ( r ). 
Then we measure the performance of Reverse Auction with 
different number of workers (n), number of tasks (m). We set 
the maximum iterations 100ϕ = , and stop the loop if the truth 
is not changed or the loop reaches the maximum iterations. All 
the simulations were run on a Centos 7 machine with Intel(R) 
Xeon(R) CPU E5-2630 2.6GHz and 128 GB memory. Each 
measurement is averaged over 100 instances. 

B. Evaluation of DATE 
First of all, we attempt to find the best setting of ε , α , and 

r  for DATE. We fix 0.2r = at a default value, and vary both 
ε  and α from 0.1 to 0.9. Fig.3 shows that the precision 
fluctuates slightly between 0.82 and 0.92. Thus, DATE is not 
sensitive to initial setting of both ε  and α . In our simulations, 
we set 0.2=α and 0.5=ε  since this setting can obtain the 
highest precision of 0.92. However, as shown in Fig. 3, the 
precision increases significantly when we increase r from 0.1 
to 0.4. The precision and becomes convergence when r is 
more than 0.4. The setting of r may be influenced largely by 
the data set adopted, especially, the number of copiers. We set 

0.4r =  in our simulations.  

Fig.4 compares the precision achieved by the DATE against 
the benchmark algorithms. DATE can calculate the workers' 
dependencies, thereby obtaining higher precisions (more than 

0.85 in all cases) than those of MV and NC (with average 
improvement 8.4% and 7.4%, respectively). ED outperforms 
the DATE in terms of precision (with average improvement 
0.8%) since it enumerates all possible dependence for each 
worker with others when calculating the probability of 
providing each possible value independently. However, as we 
shown later, ED takes much more running time than DATE. 
Based on the results of Fig.4(a), the precision decreases when 
the task increases. In our simulations, we select the tasks 
based on the index in the increasing order from the data set. In 
the data set adopted, the tasks with small index are performed 
by more workers. This means that fewer values can be used to 
estimate the truth for the later tasks. Therefore, the precision 
decreases slightly when the number of tasks increases. From 
Fig.4(b), we can see that the all algorithms obtains the higher 
precisions when the worker increases. This is because the 
algorithms can estimate the truth from more responses for the 
tasks.  

Fig.5 depicts the running time of all algorithms. It can be 
seen that the running time of all algorithms increase with the 
increase both of tasks and workers. Intuitively, the running 
time of ED increases faster than other algorithms since ED 
calculates all possible dependencies of workers, which leads 
to the complexity of exponential time. For the setting n=120, 
m=300, our DATE only takes 42.6% of running time 
comparing with ED.  

C. Evaluation of Reverse Auction 
Fig. 6 depicts the social cost of Reverse Auction, GA and 

GB with different number of tasks and workers. The social 
cost increases with increasing tasks since there will be more 



workers to be selected as winners in order to complete the 
tasks. On the contrary, the social cost decreases with 
increasing workers. This is because we can find more workers 
with high-accuracy and lower bid price to perform the same 
task. The Reverse Auction can obtain the lowest social cost 
comparing with GA and GB (with average decrease 40.2% and 
59.4%, respectively) since Reverse Auction can output the 
social cost with guaranteed approximation. 

From Fig.7, we can see that the running time of Reverse 
Auction, GA, GB increase with the increase both of tasks and 
workers. This is consistent with our time analysis in Lemma 1. 
It is not difficult to obtain the time complexity O(n3) of GA 
and O(n2) of GB, respectively, of which both are lower than 
O(n3m) of Reverse Auction. Thus the running time of GA and 
GB is lower than Reverse Auction. 

We verified the truthfulness of IMC2 by randomly picking 
two workers (ID=26 and ID=58) and allowing them to bid 
prices that are different from their true costs. We illustrate the 
results in Fig.8. We can see that the worker 26 always obtain 
its maximum utility of 5 if bidding its real cost 26 3=c . 
Accordingly, the loser 58 always obtains nonnegative utility if 
he/she bids truthfully ( 58 58 8b c= = ). 

VIII. RELATED WORK 

A. Truth Discovery in Crowdsourcing 
For the paradigm of crowdsourcing, a large body of work on 

truth discovery has been proposed in the literature. In [31], 
Miao et al. propose the first privacy-preserving truth 
discovery framework called PPTD. PPTD relies on the 
threshold homomorphic cryptosystem to protect the 
confidentiality of workers' values and weights.   Tang et al. 
[32] propose non-interactive privacy-preserving truth 
discovery which protect workers' data while enabling truth 
distillation. Xiao et al. [37] propose BUR protocol which can 
recruit nearly the minimum number of workers while ensuring 
that the total accuracy of each task is no less than a given 
threshold. Wu et al. [36] design an unsupervised learning 
approach to quantify the workers' data qualities and long-term 
reputations, and exploit an outlier detection technique to filter 
out anomalous data items. However, all of these studies do not 
consider the incentive to the workers.  

Jin et al. [35] propose an integrated framework for multi-
requester mobile crowdsourcing systems, called CENTURION, 
consisting of a truth discovery mechanism and an incentive 
mechanism. The truth discovery mechanism takes workers’ 
reliability into consideration, and calculates highly accurate 
aggregated results for the requesters. However, they don’t 
consider the crowdsourcing systems with copiers.  

B. Quality-aware Incentive Mechanims in Crowdsourcing 
Aware of the importance of stimulating worker participation, 

various quality-aware incentive mechanisms have been 
proposed for mobile crowdsourcing systems. In [16], Jin et al. 
propose INCEPTION, a novel MCS system framework that 
integrates the incentive, data aggregation, and data 
perturbation mechanisms. Wang et al. study the problem of 

measuring workers’ long-term quality and they propose 
MELODY [17], a long-term dynamic quality-aware incentive 
mechanism for crowdsourcing. Wen et al. propose an 
incentive mechanism based on a Quality Driven Auction [18], 
where the worker is paid off based on the quality of sensed 
data instead of working time. Jin et al. [19] design an 
incentive mechanisms based on reverse combinatorial auctions, 
and incorporate the Quality of Information (QoI) of workers 
into the incentive mechanism. However, all these studies do 
not consider the dependence of workers.  

Overall, there is no off-the-shelf mechanism designed in the 
literature, which considers both dependence and accuracy of 
workers. 

IX. CONCLUSION 
In this paper, we have designed a two-stage incentive 

mechanism for truth discovery in crowdsourcing with copiers. 
In truth discovery stage, we calculate the dependence for each 
pair of workers based on the Bayesian analysis, and estimate 
the truth for each task based on both the dependence and 
accuracy of workers. In reverse auction stage, we develop a 
greedy algorithm to maximize the social welfare such that all 
tasks can be completed with the least confidence for truth 
discovery. Through both rigorous theoretical analysis and 
extensive simulations, we have demonstrated that the 
proposed incentive mechanisms achieve computational 
efficiency, individual rationality, truthfulness, and guaranteed 
approximation. Moreover, our truth discovery method shows 
prominent advantage in terms of precision when there are 
copiers in the crowdsourcing systems. 
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