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Abstract—Mobile crowd sensing emerges as a new paradigm which takes advantage of the pervasive sensor-embedded
smartphones to collect data. Many incentive mechanisms for mobile crowd sensing have been proposed. However, none of them takes
into consideration the cooperative compatibility of users for multiple cooperative tasks. In this paper, we design truthful incentive
mechanisms to minimize the social cost such that each of the cooperative tasks can be completed by a group of compatible users. We
study two bid models and formulate the Social Optimization Compatible User Selection (SOCUS) problem for each model. We also
define three compatibility models and use real-life relationships from social networks to model the compatibility relationships. We
design two incentive mechanisms, MCT −M and MCT − S, for the compatibility cases. Both of MCT −M and MCT − S consist
of two steps: compatible user grouping and reverse auction. We further present a user grouping method through neural network model
and clustering algorithm. Through both rigorous theoretical analysis and extensive simulations, we demonstrate that the proposed
mechanisms achieve computational efficiency, individual rationality and truthfulness. Moreover, MCT −M can output the optimal
solution. By using neural network and clustering algorithm for user grouping, the proposed incentive mechanisms can reduce the social
cost and overpayment ratio further with less grouping time.

Index Terms—Mobile crowd sensing, incentive mechanism design, online community, compatibility.
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1 INTRODUCTION

SMARTPHONES are widely available in recent years. The
worldwide smartphone market reached a total of 1.42

billion units shipped in 2018. From there, shipments will
reach 1.57 billion units in 2022 [1]. Nowadays, smartphones
are integrated with a variety of sensors such as camera,
light sensor, GPS, accelerometer, digital compass, gyro-
scope, microphone, and proximity sensor. These sensors can
collectively monitor a diverse range of human activities
and surrounding environment. Mobile crowd sensing has
become an efficient approach to meeting the demands in
large-scale sensing applications [2], such as Sensorly [3] for
3G/WiFi discovery, TrMCD [4] for estimating user motion
trajectory, crowd-participated system [5] for bus arrival time
prediction, and participAct [6] for urban crowdsensing.

Incentive mechanisms are crucial to mobile crowd sens-
ing since the smartphone users spend their time and con-
sume battery, memory, computing power and data traffic of
device to sense, store and transmit the data. Moreover, there
are potential privacy threats [32, 33] to smartphone users
by sharing their sensed data with location tags, interests or
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identities. A lot of research efforts have been focused on de-
signing incentive mechanisms to entice users to participate
in mobile crowd sensing system. However, they either focus
on the multiple independent task scenario [7, 9-17], where
each task only needs one user to perform, or pay attention
to the single cooperative task scenario [8, 18], where the
task requires a group of users to perform cooperatively.
An incentive mechanism for multiple cooperative tasks has
been designed in [19, 24], however, they neglect the relation
among users.

The multiple cooperative task scenarios are very com-
mon. For example, the construct of fingerprint database [4]
requires enough users to report sensor readings such that
the correctness of trajectory can be guaranteed. In the bus
arrival time prediction system [5], insufficient amount of
uploaded information may result in inaccuracy in matching
the bus route. Many time window dependent crowd sens-
ing tasks [8], such as continuous measure of trace, traffic
condition, noise and air pollution need a large sample space
such that the results have statistical meaning. All above
applications require users′ collective contributions.

In multiple cooperative task scenarios, people would
prefer to cooperate with trustworthy friends, especially
when people are required to share their privacy with the
cooperators for performing sensing tasks. For example, the
users in the bus arrival time prediction system [5] need to
share their location information with other users to guar-
antee that the pieces of sensed data from multiple users
can be assembled to picture the intact bus route status. For
the monitoring tasks [8], the users can allocate the sensing
time intervals according to their private future schedules,
habits, preferences or behavior profiles [20]. Furthermore,
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the cooperation of friends in mobile crowd sensing also
helps with potential sensory data aggregation and corre-
sponding local computation in the mobile devices in order
to reduce network traffic and privacy threats. Thus choos-
ing the compatible users to perform cooperative tasks can
improve not only the participation willingness of users, but
also the quality and success rates of mobile crowd sensing
service.

In this paper, we consider that the mobile crowd sens-
ing with multiple cooperative tasks is launched in an on-
line community, in which the members (referred as users
in the rest of this paper) are interested in participating
sensing tasks. Each of cooperative tasks requires a specific
amount of compatible users to perform. We use real-life re-
lationships from social networks to model the compatibility
relationships. The objective is designing truthful incentive
mechanisms to minimize the social cost (the total cost of
winners) such that each cooperative task can be completed
by a group of compatible users. In our system model, each
user submits the tasks it can perform and corresponding
bid prices. Meanwhile, each user can submit a set of rec-
ommended users according to its preference. Specifically, if
there is no recommended user, the user can simply submit
the empty set. The platform selects a subset of users and
notifies winners of the determination. The winners perform
the sensing tasks and send data back to the platform. Finally,
each user obtains the payment, which is determined by the
platform. The process is illustrated by Fig. 1.
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Fig. 1. Mobile crowd sensing process with multiple cooperative tasks

The problem of designing truthful incentive mecha-
nisms to minimize the social cost for such mobile crowd
sensing system is very challenging. First, the compatibil-
ity models should be defined to measure the different
compatibility levels. Second, when selecting winners for
tasks, the incentive mechanisms should consider not only
the social optimization but also the compatibility of the
users. Moreover, the user can make a strategic behavior by
submitting dishonest recommended users or bid price to
maximize his/her utility. Finally, the users dont know the
compatible user set exactly in some situations.

The main contributions of this paper are as follows:
• To the best of our knowledge, this is the first work to

design truthful incentive mechanisms for the mobile
crowd sensing system, where each task needs to be
performed by a group of compatible users.

• We present two bid models, and formulate the Social
Optimization Compatible User Selection (SOCUS) prob-
lem for each. We further present three compatibility
models, which can depict the different compatibility
levels, and use real-life relationships from social net-
works to model the compatibility relationships.

• We design two incentive mechanisms MCT−M and
MCT − S for two bid models. We show that the

designed mechanisms satisfy desirable properties of
computational efficiency, individual rationality and
truthfulness. In addition, MCT −M can output the
optimal solution.

• We introduce neural network method to learn the
similarity between users, and group the users using
clustering algorithm according to this similarity for
the situations, where the users don′t know the com-
patible user set exactly. Such user grouping method
also helps to reduce the social cost and overpayment
ratio further.

The rest of the paper is organized as follows. Section 2
formulates two bid models and three compatibility models,
and lists some desirable properties. Section 3 presents the
benchmark mechanisms for both MCT −M and MCT −
S. Section 4 and Section 5 present the detailed design and
analysis of our incentive mechanisms for two bid models,
respectively. Section 6 presents user grouping method based
on neural network and clustering algorithm. Performance
evaluation is presented in Section 7. We give the discussion
about the irrational behaviors in Section 8. We review the
state-of-art research in Section 9, and conclude this paper in
Section 10.

2 SYSTEM MODEL AND DESIRABLE PROPERTIES

In this section, we model the mobile crowd sensing system
as a reverse auction and present two different bid models:
multi-bid model and single-bid model. In the multi-bid
model, each user can submit multiple task-bid pairs and
can be recruited to work on a portion of submitted tasks.
The single-bid model allows each user to bid a global price
for multiple tasks it can perform. Each user is required
to perform all submitted tasks once he is selected as a
winner in the single-bid model. Thus the single-bid model is
suitable for the single-minded users, while multi-bid model
provides more flexibility for the users. Moreover, we present
three compatibility models of users: weak compatibility
model, medium compatibility model and strong compati-
bility model. At the end of this section, we present some
desirable properties.

2.1 Multi-bid Model
We consider a mobile crowd sensing system consisting of a
social network application platform and an online commu-
nity with many smartphone users. The platform resides in
the cloud. The platform publicizes a set T = {t1, t2, ..., tm}
of m cooperative tasks in an online community U =
{1, 2, ..., n} of n smartphone users, who are interested in
participating sensing tasks. Each task tj ∈ T is associated
with the cooperative index rj , which is the least number of
compatible users to perform tj .

The cooperative index is an essential feature of the
multiple cooperative tasks studied in this paper. Actually,
such a requirement has been raised mandatorily in many
proposals on crowdsensing such as [17, 8, 43]. For example,
the model in [17] assumes that the same task should be
performed by multiple users to accomplish a crowdsourcing
mission. In [8], the platform aims to recruit sufficient users
such that the collective sensing time windows can cover
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the required time window of the task. Similarly, the model
in [43] requires that at least k normal users must join the
crowdsensing task, which is casted as a predefined demand
of the task owner for sensing robustness.

Each user i submits a 2-tuple Bi = (βi, ζi), where βi =
{β1

i , β
2
i , ..., β

ki
i } is a set of ki task-bid pairs. The task-bid

pair for task j is denoted by βj
i = (tji , b

j
i ), t

j
i ∈ T . Each tji is

associated with the cost cji , which is the private information
and known only to user i. bji is the claimed cost, which is
the bid price that user i wants to charge for performing tji .
Each user can submit a set of recommended users, called
compatible user set. The user prefers to cooperate with the
users in its compatible user set to perform the tasks. We
also consider that the real compatible user set is the private
information and known only to user i. ζi ⊆ U is the claimed
compatible user set of i.

Since the mobile crowd sensing is launched in an on-
line community, such as Twitter, Microblog, Facebook, and
WeChat, the identities of other users can be known to the
individuals through the social circles. There have been some
mobile crowd sensing systems [35, 36], where the platform
publicizes the tasks in the online community.

The compatible user set can be determined according
to the preference of the user or the historical coopera-
tive relationship for performing the multiple cooperative
tasks. Moreover, if the mobile crowd sensing platform is
owned by the online community, the platform can extract
the personal profile or the social relationship of users
in the online community, and provide the recommended
compatible user set, which can assist the determination. It
is possible to use the knowledge from the online community
since many online communities have developed crowd-
sensing/crowdsourcing systems themselves, such as Stepes
[37] owned by Facebook, Google Image Labeler [38] and
Translate Community [39] owned by Google+, QQ-Crowd
[40] owned by QQ, Crowdtesting [41] and Baidu Baike [42]
owned by Baidu.

Given the task set T and the bid profile B =
(B1, B2, ..., Bn), the platform calculates the winning task-
bid pair set βS ⊆

∪
i∈Uβi and the payment pji for each

winning task-bid pair βj
i ∈ βS . The payment for each

winner i is pi =
∑

βj
i∈βi∩βS

pji . A user i is called a winner
and added into winner set S if it has at least one winning
task-bid pair, i.e., βi ∩ βS ̸= ϕ. We define the utility of user
i as the difference between the payment and its real cost:.

ui = pi −
∑

βj
i∈βi∩βS

cji (1)

Since we consider the users are selfish and rational in-
dividuals, each user can behave strategically by submitting
a dishonest compatible user set or dishonest bid prices
to maximize its utility. We assume that the truthfulness of
submitted task can be achieved since they can be verified
by the platform. In order to prevent the monopoly and
guarantee the sensing quality, we assume each cooperative
task can be completed by at least two different groups of
compatible users. Here, we say two groups are different
iff there is at least one different user between them. This
assumption is reasonable for mobile crowd sensing systems
made in [7, 8, 9]. If a task can only be completed by the

unique group of compatible users, the platform can simply
remove it from T .

The incentive mechanism M(T,B) outputs a
winning task-bid pair set βS and a payment profile
p = (p1, p2, ..., pn). The objective is minimizing
the social cost such that each of cooperative
tasks in T can be completed by a group of
compatible users. We will present the compatibility
models in Section 2.3. We refer to this problem as
Social Optimization Compatible User Selection (SOCUS)
problem, which can be formulated as follows:

min
∑

βj
i∈βi∩βS

cji

s.t.
∑

βj
i∈βi∩βS ,tj=tji

|βj
i | ≥ rj , ∀tj ∈ T

2.2 Single-bid Model
The definitions of T,U, ζi, ti, rj , t

j
i are the same as those in

Section -A. Each user i submits a triple Bi = (βi, bi, ζi),
where βi = {t1i , t2i , ..., t

ki
i } is a set of ki tasks. The task

set βi s associated with the cost ci, which is the private
information and known only to user i. bi is the claimed cost.
We also consider the real compatible user set is the private
information and known only to user i.

Given the task set T and the bid profile B =
(B1, B2, ..., Bn), the platform calculates the winner set
S ⊆ U and the payment pi for each winner i ∈ S. We
define the utility of user i as:

ui = pi − ci (2)

A user can behave strategically by submitting a dishon-
est compatible user set or a dishonest bid price to maximize
its utility. The incentive mechanism M(T,B) outputs a
winner set S and a payment profile p = (p1, p2, ..., pn).
he objective is minimizing the social cost such that each of
the cooperative tasks in T can be completed by a group
of compatible users. The Social Optimization Compatible User
Selection (SOCUS) problem in the single-bid model can be
formulated as follows:

min
∑

i∈S
ci

s.t.
∑

i∈S,tji∈βi,tj=tji
|tji | ≥ rj , ∀tj ∈ T

2.3 Compatibility Model
In this subsection, we present three compatibility models to
depict the different compatibility levels:

• Weak Compatibility Model : The two users i
and j satisfy the weak compatibility (denote as
i=̇j) if j ∈ ζi of i ∈ ζj for any i, j ∈
U . We consider that the relation of weak com-
patibility is symmetric and transitive. Then we
define Weak Compatibility Group (WCG) as
{i|i=̇j,∀i, j ∈ U}. Essentially, the weak compatibil-
ity model is established on the one-way preferences
between the users.

• Medium Compatibility Model : We define the
transitive relation ◃: If k ∈ ζi ∧ j ∈ ζk, ∀i, j ∈ U ,
we say i ◃ j. The two users i and j satisfy the
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medium compatibility (detnote as i , j) if i ◃ j
and j ◃ i for any i, j ∈ U . Then we define
Medium Compatibility Group (MCG) as {i|i ,
j, ∀i, j ∈ U}. The medium compatibility model is
established on the transitive two-way preferences
between the users.

• Strong Compatibility Model : The two users i
and j satisfy the strong compatibility (denote as
i $ j) if j ∈ ζi and i ∈ ζj for any i, j ∈ U .
We consider that the relation of strong compat-
ibility is symmetric and transitive. Then we de-
fine Strong Compatibility Group (SCG) as {i|i $
j, ∀i, j ∈ U}. The strong compatibility model is es-
tablished on the two-way preferences between the
users.

Obviously, the medium compatibility model is a spe-
cial case of strong compatibility model, and the weak com-
patibility model is a special case of medium compat-ibility
model. We illustrate WCG,MCG and SCG respec-tively
via three simple examples in Fig. 2.
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Fig. 2. Examples illustrating WCG, MCG and SCG with 3 users, where
the disks represent users, and the arrows represent the compatible user
sets: (a) An example of WSG. (b) An example of MSG. (c) An example
of SCG.

2.4 Desirable Properties

Our objective is to design the incentive mechanisms satis-
fying the following four desirable properties:

• Computational Efficiency : An incentive mecha-
nism M is computationally efficient if the outcome
can be computed in polynomial time.

• Individual Rationality : Each user will have a
nonnegative utility when bidding its true cost and
compatible user set, i.e., ui ≥ 0, ∀i ∈ U .

• Truthfulness : An incentive mechanism is
compatibility- and cost-truthful (called truthful
simply) if reporting the true compatible user set
and cost is a weakly dominant strategy for all users.
In other words, no user can improve its utility by
submitting a false compatible user set or cost, no
matter what others submit.

• Social Optimization : A mechanism achieves so-
cial optimization if it can output the optimal solution.

3 BENCHMARK MECHANISMS

In this section, we consider the special cases for multi-bid
model and single-bid model, respectively, where any user i
submits the claimed compatible user set ζi = U/{i}.This
means any user can cooperate with all other users without

considering the compatibility of users. We present the in-
centive mechanisms for multiple cooperative tasks in these
special cases, and treat them as the benchmark mechanisms
for MCT − M and MCT − S, respectively, since they
provide the actual lower bound of our SOCUS problem.

3.1 Benchmark Mechanism for the Multi-bid Model
The Benchmark Mechanism for the Multi −
bid Model (Benchmark − M) consists of user selection
phase and payment determination phase. Let U j and Sj

be the users bidding for any task tj and the winners of
any task tj , respectively. In winner selection phase, we
propose an optimal algorithm, which selects rj task-bid
pairs with minimum total bid price as the winning task-bid
pairs for any task tj ∈ T . Obviously, this can output the
optimal solution for the SOCUS problem. In payment
determination phase, we compute payment based on the
Vickrey-Clarke-Groves (VCG) payment rule [10]: A winning
task-bid pair will be paid an amount equal to the benefit it
introduces to the system, i.e., the difference between other
task-bid pairs minimum social cost with and without it
(Line 15 of Algorithm 1), where function cost() means the
minimum social cost computed by selection phase. The
whole process is illustrated in Algorithm 1.

Algorithm 1 Benchmark-M
Input: task set T , bid profile B, user set U

// Winner Selection Phase
1: S ← ∅;βS ← ∅; cost← 0;
2: for all tj ∈ T do
3: Sj ← ∅;U j ← {i|i ∈ U, tj = tji};
4: while |Sj | < rj do
5: i′ ← arg mini∈Uj/Sj bji ;
6: βS ← βS ∪ {βj

i′};
7: Sj ← Sj ∪ {i′};S ← S ∪ {i′};
8: cost← cost+ bji′ ;
9: end while

10: end for
//Payment Determination Phase

11: for all i ∈ U do
12: pi ← 0;
13: end for
14: for all βj

i ∈ βS do
15: pji ← cost(

∪
i∈Uβi \ {βj

i })− (cost(
∪

i∈Uβi)− bji );
16: end for
17: for all i ∈ S do
18: pi =

∑
βj
i∈βi∩βS

pji ;
19: end for
20: return (cost, βS ,p);

For Benchmark-M, we have the following theorem.
Theorem 1. Benchmark-M is computationlly efficient, individ-

ually rational, cost-truthful and an optimal algorithm of
SOCUS problem in the special case of multi-bid model.

Proof: The running time of obtain U j for any task
tj (Line 3) takes O(mn) since there at most mn task-bid
pairs. The while-loop (Line 4-9) is dominated by sorting
the task-bid pairs based on bid price (Line 5), which takes
O(nlogn) since there are at most n task-bid pairs for each
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task. There are m tasks, and the winner selection phase takes
O(mmax{mn,nlogn}) time. In the payment determination
phase, a process similar to winner selection phase is exe-
cuted for each winning task-bid pair. Since there are at most∑m

j=1rj winning task-bid pairs, running time of the Algo-
rithm 1 is bounded by O((

∑m
j=1rj)mmax{mn,nlogn}).

It is easy to know that benchmark − M can output
the optimal solution of SOCUS problem. Since we adopt
V CG payment rule [10], which is known as an individu-
ally rational and cost-truthful auction, benchmark −M is
individually rational and cost-truthful.

3.2 Benchmark Mechanism for the Single-bid Model
First of all, we attempt to find an optimal algorithm for the
SOCUS problem in the special case of single-bid model.
Unfortunately, as the following theorem shows, this prob-
lem is NP-hard.

Algorithm 2 Benchmark-S
Input: task set T , bid profile B, user set U

// Winner Selection Phase
1: S ← ∅;T ′ ← T ;
2: for all tj ∈ T ′ do
3: r′j ← rj ;
4: end for
5: while T ′ ̸= ∅ do
6: i← arg mink∈U\S

bk
|T ′∩Tk| ;

7: S ← S ∪ {i};
8: for all tj ∈ T ′ ∩ Ti do
9: r′j = r′j − 1;

10: if r′j = 0 then
11: T ′ ← T ′ \ {tj};
12: end if
13: end for
14: end while

//Payment Determination Phase
15: for all i ∈ U do
16: pi ← 0;
17: end for
18: for all i ∈ S do
19: U ′ ← U \ {i}, T ′′ ← T, S′ ← ∅;
20: for all tj ∈ T ′′ do
21: r′j ← rj ;
22: end for
23: while T ′′ ̸= ∅ do
24: ik ← arg mink∈U ′\S′

bk
|T ′′∩Tk| ;

25: pi ← max{pi, |T ′′∩Ti|
|T ′′∩Tik

|bik};
26: S′ ← S′ ∪ {ik};
27: for all tj ∈ T ′′ ∩ Tik do
28: r′j = r′j − 1;
29: if r′j = 0 then
30: T ′′ ← T ′′ \ {tj};
31: end if
32: end for
33: end while
34: end for
35: return (S,p);

Theorem 2. The SOCUS problem in the special case of single-bid
model is NP-hard.

Proof: We demonstrate that the SOCUS problem
in the special case of single-bid model belongs to NP firstly.
Given an instance of SOCUS problem in the special case
of single-bid model, we can check whether the winners can
perform all tasks and whether the social cost is at most k.
This process can end up in polynomial time.

Next, we prove the SOCUS problem in the special case
of single-bid model is NP-hard by giving a polynomial time
reduction from the NP-hard Weighted Set Multiple Cover
problem, WSMC .

Instance of WSMC (denoted by A): For a universe set
T = {t̄1, t̄2, ..., t̄m} of m elements, each t̄j is associated with
a positive integer r̄j , for j ∈ {1, 2, ...,m}. There is a family of
sets G = {T1, T2, ..., Tn}. and a positive real k, each Ti ⊆ T
has its weight c′i for i ∈ {1, 2, ..., n}. The question is whether
there exists a set G′⊆G with

∑
Ti∈G′c′i≤k, such that any

element t̄j ∈ T can be covered by r̄j times?
We consider a corresponding instance of SOCUS prob-

lem in the special case of single-bid model (denoted by B):
There is a universe task set T = {1, 2, ...,m} of m tasks,
and each task tj is associated with a task threshold rj , for
j ∈ {1, 2, ...,m}, where rj is a positive integer. There is a
family of task sets E = {β1, β2, ..., βn} and a positive real
k, each user i ∈ U is associated with a task set βi and a cost
ci for i ∈ {1, 2, ..., n}. The question is whether exists a set
E′ ⊆ E with

∑
βi∈E′ci≤k, such that any task tj ∈ T can be

performed by rj times?
This reduction from A to B ends in polynomial time.

We can simply see that x is a solution to A if and only if x
is a solution to B.

Since the SOCUS problem in the special case
of single-bid model is NP-hard, it is impossible
to compute the winner set with minimum social
cost in polynomial time unless P=NP. We design
Benchmark Mechanism for the Single −
bid Model (Benchmark − S) through a greedy approach.
Illustrated in Algorithm 2, the reverse auction consists of
winner selection phase and payment determination phase.

In the winner selection phase, the users are essen-
tially sorted according to the Effective Unit Cost. Given
any uncovered task set T ′, the Effective Unit Cost of
user i is defined as bi

|T ′∩Ti| . In each iteration of the win-
ner selection phase, we select the user with minimum
Effective Unit Cost over the unselected user set U \ S
as the winner until the winners together can perform each
task tj ∈ T by rj times.

In payment determination phase, for each winner i ∈ S,
we execute the winner selection phase over U \ {i}, and the
winner set is denoted as S′. We compute the maximum price
that the user i can be selected instead of each user in S′.

Next, we present the theoretical analysis of Benchmark-
S.

Lemma 1. Benchmark-S is computationally efficient.

Proof: Finding the user with minimum
Effective Unit Cost takes O(mn), where computing
the value of |T ′∩Tk| takes O(m). Hence, the while-loop
(Line 5-14) takes O(mn2). In each iteration of the for-loop
(Line 18-34), a process similar to line 5-14 is executed. Hence
the time complexity of the whole auction is dominated by
this for-loop, which is bounded by O(mn3).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TMC.2019.2911512

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON MOBILE COMPUTING, MANUSCRIPT ID 6

Lemma 2. Benchmark-S is individually rational.

Proof: Let ik be user i′s replacement which appears
in the ith place in the sorting over U \ {i}. Since ik would
not be at ith place if i is considered, we have bi

|T ′∩Ti| ≤
bik

|T ′∩Tik
| . Hence bi ≤ |T ′∩Ti|

|T ′∩Tik
|bik = |T ′′∩Ti|

|T ′′∩Tik
|bik , where the

equality relies on the observation that T ′=T ′′ for every k ≤
i, which is due to the fact that S = S′ for every k ≤ i. This
is sufficient to guarantee bi ≤ maxk∈U ′\S′

|T ′′∩Ti|
|T ′′∩Tik

|bik = pi.

Before analyzing the truthfulness of Benchmark-S, we
firstly introduce the Myerson′s Theorem [13].
Theorem 3. ([14, Theorem 2.1]) An auction mechanism is truthful

if and only if:

• The selection rule is monotone: If user i wins the auction
by bidding bi, it also wins by bidding b′i≤bi;

• Each winner is paid the critical value: User i would not
win the auction if it bids higher than this value.

Lemma 3. Benchmark-S is truthful.

Proof: Based on Theorem 3, it suffices to prove
that the selection rule of Benchmark-S is monotone and the
payment pi for each influenced user i is the critical value.
The monotonicity of the selection rule is obvious as bidding
a smaller value cannot push influenced user i backwards in
the sorting.

We next show that pi is the critical value for the user
i that bidding higher pi could prevent i from winning the
auction. Note pi = maxk∈{1,2,...,L}

|T ′′∩Ti|
|T ′′∩Tik

|bik . If the user i

bids bi > pi, he will be placed after L since bi >
|T ′′∩Ti|
|T ′′∩TiL

|biL

impiles bi
|T ′′∩Ti| ≥

biL
|T ′′∩TiL

| .Hence, the user i would not win
the action because the first L users have finished all tasks.

Lemma 4. Benchmark-S can approximate the optimal solution
within a factor of Hm, where Hm =

∑m
i=1

1
i ≤Inm+1.

Proof: Since SOCUS problem in the special case of
single-bid model is be equivalent to the WSMC problem,
we can obtain the approximation ratio of Hm using the dual
fitting method [22] for the WSMC problem.

As a conclusion of Lemma 1 to Lemma 4, we have the
following theorem.
Theorem 4. Benchmark-S is computationally efficient, individu-

ally rational, truthful, and Hm approximate for the special
case of single-bid model.

4 INCENTIVE MECHANISM FOR THE MULTI-BID
MODEL

In this section, we take the compatibility among users
into consideration, and present an incentive mecha-
nism for Multiple Cooperative Tasks in the Multi −
bid model (MCT −M). MCT −M consists of two steps:
compatible user grouping and reverse auction. MCT −M
first divides the users into compatible user groups, in which
each user is compatible with others. Afterwards, MCT −M
performs a reverse auc-tion mechanism to select the win-
ning task-bid pairs and determine the payment for each
user.

4.1 Compatible User Grouping
MCT −M first divides the users into compatible user groups
based on the compatibility models defined in Section 2.3,
and constructs WCGs, MCGs or SCGs.

For the weak compatibility model, we construct an
undirected graph to represent the user compatibility re-
lation based on the claimed compatible user set. For any
i, j ∈ U, i ̸= j, if there is i ∈ ζj or j ∈ ζi, we add an edge
between i and j. Then the WCGs can be constructed within
O(n2) time through computing the connected components
of the graph.

For the medium compatibility model, we construct a
directed graph. For any i, j ∈ U, i ̸= j, if there is j ∈ ζi,
we add a directed edge from i to j. Then we can construct
MCGs through computing the strongly connected compo-
nents of the graph, which can be solved within O(n2) time.

For the strong compatibility model, we construct an
undirected graph. For arbitrary i, j ∈ U, i ̸= j, if there is
i ∈ ζj and j ∈ ζi, we add an edge between i and j. Then
we can construct SCGs through computing the connected
components.

It is straightforward to construct the compati-
ble user groups according to the original compatible user sets
However, the outcome of compatible user groups depends
strongly on the claimed compatible user sets. In other words,
the users can change the outcome of grouping by misre-
porting their compatible user sets. We use the example in Fig.
3 to illustrate that grouping according to the original com-
patible user sets leads untruthfulness in weak compatibility
model. Let T = {tj}, rj = 2, U = {1, 2, 3}, ζ3 = {2}, ζ1 =
ζ2 = ∅, b1 = 1, b2 = 2, b3 = 3. All users bid for task j.
We first consider the case where all three users submit real
compatible user sets. Obviously, WCG = {2, 3}, u1 = 0 since
user 1 cannot cooperate with any user. We now consider
the case where user 1 lies by submitting ζ1 = 2. In this
case, WCG = {1, 2, 3}, S = {1, 2} and the payment for
user 1 would be 3 if we use V CG payment rule [10]. Thus,
u1 = 3−1 = 2. Note that user 1 improves its utility from 0 to
2 by lying about its compatible user sets. The similar examples
can be illustrated for both medium compatibility model and
strong compatibility model.

� �

�

�

�

�

(a)

� �

� �

�
�

(b)

Fig. 3. An example showing the untruthfulness of grouping according to
the original compatible user sets in the weak compatibility model, where
the disks represent users, and the arrows represent the compatible user
sets. The numbers beside the disks represent the cost for performing
task j. The dotted disks represent WCGs: (a) All users submit real
compatible user sets. (b) User 1 lies by submitting ζ1 = {2}.

To solve this issue, we introduce the Random m̄ −
Partition Mechanism (m̄− RP ) [11], which is a random-
ized truthful mechanism for the approval voting [12]. We
construct a directed graph G without self-loops: For any
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i, j ∈ U, i ̸= j, if there is j ∈ ζi, we add a directed
edge from i to j. Then we select a subset Sk̄ of k̄ users
to maximize the total indegree of selected users. In our
system model, we adopt m̄ − RP to select k̄ users with the
maximum recommendations. Then MCT − M constructs
WCGs, MCGs or SCGs based on the recommendations of
k̄ users selected through m̄−RP .

Algorithm 3 Compatible User Grouping
Input: graph G

1: A← ∅;Sk̄ ← ∅;
2: for all i ∈ {1, 2, ..., m̄} do
3: Ui ← ∅;A← A ∪ Ui;
4: end for
5: Assign each user independently and uniformly at ran-

dom to one of m̄ subsets U1, U2, ..., Um̄;
6: Let Ak̄ ⊆ A be a random subset with size k̄ − m̄⌊k̄/m̄⌋;
7: for all Ui ∈ A do
8: if Ui ∈ Ak̄ then
9: if |Ui| < ⌈k̄/m̄⌉ then

10: Sk̄ ← Sk̄ ∪ Ui;Ui ← ∅;
11: else
12: Let U ′

i⊆Ui be the set of ⌈k̄/m̄⌉ users with highest
indegree based only on edges from U ⊆ Ui;

13: Sk̄ ← Sk̄ ∪ U ′
i ;Ui ← Ui \ U ′

i ;
14: end if
15: else
16: if |Ui| < ⌊k̄/m̄⌋ then
17: Sk̄ ← Sk̄ ∪ Ui;Ui ← ∅;
18: else
19: Let U ′

i⊆Ui be the set of ⌊k̄/m̄⌋ users with highest
indegree based only on edges from U ⊆ Ui;

20: Sk̄ ← Sk̄ ∪ U ′
i ;Ui ← Ui \ U ′

i ;
21: end if
22: end if
23: end for
24: if |Sk̄| < k̄ then
25: for i = 1 to k̄ − |Sk̄| do
26: Select j uniformly from U \ Sk̄;
27: Sk̄ ← Sk̄ ∪ {j};
28: end for
29: end if
30: Group the users in Sk̄ based on the specific compatibility

model. Let G be the set of compatible users groups;
31: return G;

The whole process of compatible user grouping is il-
lustrated in Algorithm 3, which works as follows:

1) The users are assigned independently and uni-
formly at random to one of m̄ subsets (denoted as
U1, U2, ..., Um̄). Let A be the set of these m̄ subsets.

2) Select k̄−m̄⌊k̄/m̄⌋ subsets from A randomly. Let Ak̄

be the set of these k̄ − m̄⌊k̄/m̄⌋ subsets.
3) For each Ui ∈ A, if Ui ∈ Ak̄, select ⌈k̄/m̄⌉ users from

Ui with highest indegree based on edges from U \
Ui; if Ui /∈ Ak̄, select ⌊k̄/m̄⌋ with highest indegree
based on edges from U \ Ui.

4) If any subset Ui is smaller than the number of users
needs to be selected, select all users in this subset.

5) If the size of winner set Sk̄ is smaller than k̄, select
k̄ − |Sk̄| additional users from the unselected users
uniformly.

6) Group the users in Sk̄ based on the specific compat-
ibility model.

4.2 Auction Mechanism Design
Consider that the outcome of compatible user groups is a set
of d compatible user groups G = {G1,G2, ...,Gd}. Let UG be
the set of k̄ users. MCT −M then selects a set of winners
to minimize the so-cial cost through a reverse auction such
that each cooper-ative task can be completed by a group of
users, who belong to the same compatible user groups.

Algorithm 4 Reverse Auction for Multi-bid Model
Input: task set T , bid profile B, compatible user group set
G, the set of k̄ users UG
// Winner Selection Phase

1: S ← ∅; cost← 0;βS ← ∅;G ← {G1,G2, ...,Gd};
2: for k ← 1 to d do
3: Sk ← ∅;
4: end for
5: for all tj ∈ T do
6: for k ← 1 to d do
7: Sk ← ∅;
8: numk←|{βj

i |i ∈ Gk, tj = tji}|;
9: if numk ≥ rj then

10: repeat
11: i′ ← argmini∈Gk\Sk

bji ;
12: Sk ← Sk ∪ {i′};
13: until |Sk| ≥ rj ;
14: end if
15: end for
16: k′←argmink∈{1,2,...,d}

∑
i∈Sk,Sk ̸=∅b

j
i ;

17: for all i ∈ Sk′ do
18: βS ← βS ∪ {βj

i };
19: end for
20: cost← cost+

∑
i∈Sk′ b

j
i ;

21: S ← S ∪ Sk′ ;
22: end for

//Payment Determination Phase
23: for all i ∈ U do
24: pi ← 0;
25: end for
26: for all βj

i ∈ βS do
27: pji = cost(

∪
i∈UG

βi \ {βj
i })− (cost(

∪
i∈UG

)− bji );
28: end for
29: for all i ∈ S do
30: pi =

∑
βj
i∈βi∩βS

pji ;
31: end for
32: return (cost, βS ,p);

In the multi-bid model, each task submitted by users
is with a bid price, thus we can select winning task-bid
pairs for each task independently. For any task tj ∈ T , we
process each compatible user groups Gk, k = 1, 2, ..., d. In each
iteration, we check if there are rj users, who bid for tj in
Gk. If so, we select rj users from Gk with minimum total bid
price, and the set is denoted as Sk. Then MCT −M selects
the set with minimum cost =

∑
k∈Si

bjk as the winner set for
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tj from all Si, i = 1, 2, ..., d. We apply V CG based payment
rule to determine the payment for each winning task-bid
pair. A winning task-bid pair will be paid an amount equal
to the benefit it introduces to the system, i.e., the difference
between other users′ minimum social cost with and without
it:

pji = cost(
∪

i∈UG
βi\{βj

i })−(cost(
∪

i∈UG
βi)−bji ),∀β

j
i ∈ βS

Here function cost() means the minimum social cost
computed by MCT−M . Finally, we determine the payment
for each winner i as pi =

∑
βj
i∈βi∩βS

pji . The whole process
is illustrated in Algorithm 4.

4.3 Mechanism Analysis
In this subsection, we present the theoretical analysis,
demonstrating that MCT − M can achieve the desired
properties.
Lemma 5. MCT-M is computationally efficient.

Proof: It suffices to prove that both Algorithm 3 and
Algorithm 4 are computationally efficient.

In Algorithm 3, the running time of m̄−RP (Line 1-29)
is dominated by sorting the users in Ui (Line 12 or Line 19).
For each of m̄ subset, m̄ − RP performs the sorting. The
worst case happens when all users are assigned to the same
subset. In this case, m̄−RP takes O(nlogn) time. Grouping
the users in Sk̄(Line 30) takes O(k̄2) time. Thus Algorithm 3
takes O(max{nlogn, k̄2}) time.

In Algorithm 4, the running time of winner selection
phase is dominated by sorting the users based on bid price
in each compatible user group (Line 10-13). For each task in T ,
the winner selection phase executes the sorting for each of d
compatible user group. The worst case happens when all users
are in the same compatible user group. In this case, the win-
ner selection phase takes O(mk̄logk̄) time. In the payment
determination phase, a process similar to winner selection
phase is executed for each winning task-bid pair. Since there
are at most

∑m
j=1rj winning task-bid pairs, running time of

the Algorithm 4 is bounded by O((
∑m

j=1rj)mk̄logk̄).
Lemma 6. The reverse auction is optimal and individually ratio-

nal.

Proof: It is easy to know that the reverse auction
can output the optimal solution of SOCUS problem in
the multi-bid model. Since we adopt V CG payment rule,
which is known as an individually rational auction, the
reverse auction is individually rational.

Before analyzing the truthfulness of MCT−M , we first
introduce the Theorem about m̄−RP .
Theorem 5. ([11, Theorem 4.1]) For every value of m̄, m̄-RP is

truthful.

The truthfulness in Theorem 5 means that no user can
improve the chance of being selected into Sk̄ by submitting
a false compatible user set, no matter what others submit.
Lemma 7. MCT-M is truthful.

Proof: The compatibility-truthfulness can be guar-
anteed by Theorem 5. Since we adopt V CG payment rule,
which is known as a cost-truthful auction, MCT − M is
cost-truthful.

The above three lemmas together prove the following
theorem.
Theorem 6. MCT-M is computationally efficient, individually

rational, and truthful, and the reverse auction is an optimal
algorithm of SOCUS problem in the multi-bid model.

5 INCENTIVE MECHANISM FOR THE SINGLE-BID
MODEL

In this section, we consider the case where each
user can submit a single bid price for all sub-
mitted tasks, and present an incentive mechanism
for Multiple Cooperative Tasks in the Single −
bid model (MCT − S) with considering the compatibility
among users.

5.1 Mechanism design
Similar to MCT −M , MCT − S is a two-step mechanism.
The grouping method is the same as that in MCT−M . Thus
we focus on solving the SOCUS problem in the single-bid
model in this subsection. Unfortunately, the following theo-
rem shows that it is NP-hard to find the optimal solution.
Theorem 7. The SOCUS problem in the single-bid model is NP-

hard.

Proof: As Theorem 2 shows, the SOCUS problem
in the special case of single-bid model is equivalent to the
WSMC problem. We can see that the SOCUS problem
in the single-bid model is a generalization of the WSMC
problem when each tj only can be covered by the users who
are within the same compatible user groups. Since the WSMC
problem is NP-hard, the SOCUS problem in the single-bid
model is NP-hard.

Since the SOCUS problem in the single-bid model is
NP-hard, we turn our attention to develop a polynomial
algorithm. The main idea of MCT − S is selecting winners
iteratively with minimum marginal cost for each task. Illus-
trated in Algorithm 5, the reverse auction still consists of
the winner selection phase and the payment determination
phase.

In the winner selection phase, MCT − S processes
tasks in arbitrary fixed order. For each task tj , we process
each compatible user groups Gk, k = 1, 2, ..., d, iteratively. In
each iteration, let Sk be the set of winners in Gk in current
state. Let Qk ⊆ Sk be the set of winners, who bid for tj .
Then MCT − S checks if there are rj users, who bid for
tj in Gk. If so, we select additional rj − |Qk| users in Gk
as winners, denoted by S′

k, with minimum marginal cost.
The minimum marginal cost of Gk for tj is denoted as
cost

tj
Gk

= min
∑

i∈S′
k
bi. For task tj , MCT − S selects S′

k as

the additional winner set with minimum cost
tj
Gk

among all
k = 1, 2, ..., d. The winner selection phase terminates when
all tasks have been processed.

In the payment determination phase, for each winner
i ∈ S, MCT − S calls the winner selection phase to select
winners from UG \ {i} for all tasks iteratively. Let cost(UG \
{i})tj be the marginal cost for performing tj without i. Let
cost(UG)

tj be the marginal cost for performing tj with i.
If i is a winner for tj , i.e., cost(UG)

tj < cost(UG \ {i})tj ,
we compute the maximum price of i to make sure that

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TMC.2019.2911512

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON MOBILE COMPUTING, MANUSCRIPT ID 9

the group with i can be selected instead of another group
without i. We will prove that this price is a critical payment
for user i later.

Algorithm 5 Reverse Auction for Single-bid Model
Input: task set T , bid profile B, compatible user group set
G, the set of k̄ users UG
// Winner Selection Phase

1: S ← ∅;G ← {G1,G2, ...,Gd};
2: for k ← 1 to d do
3: Sk ← ∅;S′

k ← ∅;
4: for all tj ∈ T do
5: cost

tj
Gk
← 0

6: end for
7: end for
8: for all tj ∈ T in arbitrary fixed order do
9: for k ← 1 to d do

10: S′
k ← ∅;

11: Qk ← {i|i ∈ Sk, tj ∈ βi};
12: numk←|{i|i ∈ Gk, tj ∈ βi}|;
13: if numk ≥ rj then
14: if rj ≤ |Qk| then
15: break;
16: else
17: repeat
18: i′ ← arg mini∈Gk\(Qk∪S′

k),tj∈βj
bi;

19: S′
k ← S′

k ∪ {i′};
20: cost

tj
Gk
← cost

tj
Gk

+ bi′ ;
21: until |Qk|+ |S′

k| ≥ rj
22: end if
23: else
24: cost

tj
Gk
←∞;

25: end if
26: end for
27: k′←arg mink∈{1,2,...,d}cost

tj
Gk

;
28: Sk′ ← Sk′ ∪ S′

k′ ;
29: S ← S ∪ Sk′ ;
30: end for

//Payment Determination Phase
31: for all i ∈ U do
32: pi ← 0;
33: end for
34: for all i ∈ S do
35: for all tj ∈ T in arbitrary fixed order do
36: Select winners from UG \ {i} for tj ;
37: Let cost(UG \ {i})tj be the marginal cost for per-

forming tj without i;
38: Let cost(UG)

tj be the marginal cost for performing
tj with i;

39: if cost(UG)
tj < cost(UG \ {i})tj then

40: pi ← max{pi, cost(UG \ {i})tj − (cost(UG)
tj − bi)};

41: end if
42: end for
43: end for
44: return (S,p);

5.2 A Walk-Through Example
We use the example in Fig. 4 to illustrate how the reverse
auction of MCT − S works.

� � � � � �

� � �

� � �
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Fig. 4. An example illustrating how the reverse auction of MCT − S
works, where the disks represent users, the squares represent tasks.
The numbers below the disks represent the costs. The numbers above
squares represent cooperative index. β1 = {1, 2}, β2 = {2, 3}, β3 =
{1, 3}, β4 = {2}, β5 = {1, 2, 3}, β6 = {1, 2}, β7 = {2, 3}. The dotted
squares represent compatible user groups. G1 = {1, 2, 3, 4},G2 =
{5, 6, 7}.

Winner Selection:

• For task 1, S = ∅, S′
1 = {1, 3}, cost11 = b1 + b3 = 10,

S′
2 = {5, 6}, cost12 = b5 + b6 = 17.

• For task 2, S = {1, 3}, S′
1 = {2, 4}, cost21 = b2+ b4 =

8, S′
2 = {5, 6, 7}, cost22 = b5 + b6 + b7 = 21.

• For task 3, S = {1, 2, 3, 4}, S′
1 = ∅, cost31 = 0, S′

2 =
{5, 7}, cost32 = b5 + b7 = 13.

During the payment determination phase, we directly
give the winners when user i is excluded from the consid-
eration, due to the space limitations.
Payment Determination:

• p1: For task 1, winners are {5, 6}, p1 =
cost({5, 6})1 − (cost({1, 3})1 − b1) = 10. For task
2, additional winners are {7}, cost({1, 2, 4})2 >
cost({7})2. For task 3, additional winners are ∅, Thus
p1 = 10.

• p2: For task 1, winners are {1, 3}, cost({1, 3})1 =
cost({1, 3})1. For task 2, additional winners are
{5, 6, 7}, p2 = cost({5, 6, 7})2 − (cost({2, 4})2 −
b2) = 19. For task 3, additional winners are ∅, Thus
p2 = 19.

• p3: For task 1, winners are {5, 6}, p3 =
cost({5, 6})1 − (cost({1, 3})1 − b3) = 14. For task
2, additional winners are {7}, cost({1, 2, 4})2 >
cost({7})2. For task 3, additional winners are ∅, Thus
p3 = 14.

• p4: For task 1, winners are {1, 3}, cost({1, 3})1 =
cost({1, 3})1. For task 2, additional winners are
{5, 6, 7}, p4 = cost({5, 6, 7})2 − (cost({2, 4})2 −
b4) = 15. For task 3, additional winners are ∅, Thus
p4 = 15.

5.3 Mechanism Analysis

We present the theoretical analysis, demonstrating that
MCT − S can achieve the desired properties.
Lemma 8. MCT-S is computationally efficient.

Proof: Since MCT − S adopts the same compati-
ble user grouping method (Algorithm 3) of MCT −M , the
first step of MCT − S takes O(max{nlogn, k̄2}) time. In
reverse auction step (Algorithm 5), the winner selection
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phase in the worst case takes O(mk̄logk̄) time, which
is as same as that in MCT − M . In the payment de-
termination phase, a process similar to winner selection
phase is executed for each winner. Since there are at most
min{

∑m
j=1rj , k̄} winners, the running time of Algorithm 5

is O(min{
∑m

j=1rj , k̄}mk̄logk̄).
Lemma 9. MCT-S is individually rational.

Proof: We assume that user i is selected for task j
in winner selection phase. Since the payment determination
phase processes all tasks and compatible user groups in the
same order, the output of winner selection before task
j will not be changed. This means that, in the payment
determination phase, for task j, it will obtain less or equal
marginal cost to choose a group of additional winners
including i than another group of additional winners
without i, i.e., cost(UG)

tj < cost(UG \ {i})tj . Hence
we have bi < cost(UG \ {i})tj − (cost(UG)

tj − bi) ≤
pi. This is sufficient to guarantee bi <
maxtj∈T (cost(UG \ {i})tj − (cost(UG)

tj − bi)) = pi.

Lemma 10. MCT-S is truthful.

Proof: The compatibility-truthfulness can be guar-
anteed by Theorem 5. Based on Theorem 3, it suffices to
prove that the selection rule of MCT − S is monotone
and the payment pi for each i is the critical value. The
monotonicity of the selection rule is obvious as bidding a
smaller value cannot push user i backwards in the sorting.

We next show that pi is the critical value for i
in the sense that bidding higher pi could prevent i
from winning the auction. Note that in the iteration
of tj , pi = cost(UG \ {i})tj − (cost(UG)

tj − bi). If user
i bids bi > pi, the group of additional winners in-
cluding i would be replaced by another group without
i since bi > cost(UG \ {i})tj − (cost(UG)

tj − bi) implies
cost(UG)

tj > cost(UG \ {i})tj . Hence, user i would not
win the auction for tj . Based on Line 40 in Algorithm 5,
pi = maxtj∈T (cost(UG \ {i})tj − (cost(UG)

tj − bi)). User i
would not win the auction because each tj ∈ T has chosen
a group of additional winners without i.

The above three lemmas together prove the following
theorem.
Theorem 8. MCT-S is computationally efficient, individually

rational and truthful in the single-bid model .

6 LEARNING USER COMPATIBILITY

In Section 4.1, we have presented a compatible user grouping
method based on m̄−RP . However, this grouping method
may not be effective in some situations. For example, the
users may not know the compatible user set exactly. More-
over, m̄ − RP will take long time to group users. From
the perspective of performance, in order to achieve the
truthfulness, m̄− RP excludes some users using a random
method before grouping, which may increase the social cost
and overpayment ratio.

To address these issues, we aim to explore the method
to learn the preferences of users based on the histori-
cal multiple cooperative mobile crowd sensing tasks. In
this section, we can utilize the neural network model to

train the similarity of users in an offline manner. In the
field of Natural Language Processing (NLP ), Word2V ec
[26] maps words to a low dimensional vector space,
and captures semantic relations between words. Its ap-
plications have been extended to other domains beyond
NLP [47, 48]. For example, [49] uses Word2V ec based
method, called item2vec, in recommendation system. The
authors observe that item2vec produces a better repre-
sentation for items, and is consistently better than the
SV D model in term of accuracy. We present User2V ec,
which follows Word2V ec model to learn the similarity
between users, and group the users using Density −
Based Spatial Clustering of Applications with Noise.
DBSCAN [29] according to this similarity.

6.1 User2Vec
We map each user to a high-dimensional vector, and use the
historical user compatible set as a training set to train the
user vector by building User2V ec model.

1x

2x

||Negx

Input layer

Hidden layer
Output layer

{ }
ifNV

wW =×

{ }
ifNV

wW =×

{ }
ifNV

wW =×

{ }''
fiVN

wW =×

N-dim
V-dim

Fig. 5. Learning the similarity between users using User2V ec model

Fig.5 shows the User2V ec model with a multi-user
vector set setting. In our setting, the user size is V = |U |. The
size of hidden layer is N . The units on the adjacent layers are
fully connected. The input is the multiple one-hot encoded
vectors, where each vector represents a user. For each given
user i ∈ N , only one out of V units {xi1, ..., xiV } will be 1,
and all other units are 0. The weights between each input
user vector and the output layer can be represented by a
V ×N matrix W. Each row of W is the N -dimension vector
representation vi of associated user of the input layer. For-
mally, row i of W is vTi = {wi1, ..., wif , ..., wiN}. For a set of
users U ′ who work together to complete the task, User2V ec
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takes the users in and users in set Neg = U ′ \ {i}, i ∈ U ′,
as the target and the input one-hot vectors, respectively. The
hidden layer vector h is:

h =
1

|Neg|
WT (x1 + x2 + ...+ x|Neg|) (3)

=
1

|Neg|
(v1 + v2 + ...+ v|Neg|)

T (4)

From the hidden layer to the output layer, there is an
V × N matrix W′ = w′

if . We compute a score si for each
user xi ∈ U :

si = v′i
T
h (5)

where v′i is the i-th column of the matrix W′.
Traditional weight update method had too many out-

put vectors that need to be updated per iteration [30]. We
have to go through every possible user in U , check its
output probability, and compare output probability with its
expected output. In order to deal with this problem, we only
update a sample of them.

We denote the probabilistic distribution for the sam-
pling process as Pn(u). The method in [27] can determine
a good distribution empirically. Let E be loss function,
and the target is to minimize E. We adopt the following
simplified training objective to produce high-quality user
embeddings [28]:

E = −logσ(v′o
T
h)−

∑
i∈Uneg

logσ(−v′i
T
h) (6)

where Uneg = {i|i = 1, ...,K} is the set of users that are
sampled based on Pn(u), i.e., negative samples. o denotes
the actual output user and σ(·) is sigmoid function.

To obtain the update equations of the user vectors
under negative sampling, we first take the derivative of E
with regard to the net input of the output unit i:

∂E

∂v′i
Th

=

{
σ(v′i

T
h)− 1 if ui = uo

σ(v′i
T
h) if ui ∈ Uneg

= σ(v′i
T
h)− gi (7)

where gi is the label of user i, gi = 1 when i is a positive
sample, gi = 0 otherwise. Next we take the derivation of E
with regard to the output vector of user i:

∂E

∂v′i
=

∂E

∂v′i
Th
·∂v

′
i
T
h

∂v′i
= (σ(−v′i

T
h)− gi)h (8)

which results in the following update equation for its output
vector:

v
′(new)
i = v

′(old)
i − η·(σ(−v′i

T
h)− gi)h (9)

where η > 0 is the learning rate. The weight updating
equation of (9) only need to be applied to i ∈ {o} ∪ Uneg

instead of every user in U .
To backpropagate the error to the hidden layer and thus

update the input vectors of users, we take the derivation of
E with regard to the hidden layer′s output, obtaining:

EH =
∂E

∂h

=
∑

i∈Uneg∪{o}

∂E

∂v′i
Th
·∂v

′
i
T
h

∂h

=
∑

i∈Uneg∪{o}
(σ(−v′i

T
h)− gi)∂v

′
i (10)

where EH , an N -dim vector, is the sum of the user vectors
in Neg, weighted by their prediction error.

Then we apply the following equation for every user i
in Neg to acquire the update equation for the weights from
the input layer to the hidden layer:

v
(new)
i = v

(old)
i − 1

|Neg|
·η·EHT , i = 1, 2, ..., |Neg| (11)

We get the final vector for each user based on the
trained User2V ec model. A continuous space model works
in terms of user vectors, where similar users are likely with
similar vectors.

6.2 Grouping based on DBSCAN
In this subsection, we group the users based on the vec-
tors processed through User2V ec. Since the number of
compatible user groups is unknown, we use DBSCAN to
group users. Given the user set U , DBSCAN is a density-
based clustering algorithm which formulates a local density
denoted as density(i) = |NEps(i)| in the neighborhood of
the i-th user. NEps(i) = {i′|∀i′ ∈ U\{i}, distance(i′, i) <
Eps} is the set of neighboring users in the neighborhood
of within radius Eps, where distance(i′, i) is the Euclidean
distance between i′ and i in high dimensional vector space.

Given the minimal number of users in the neigh-
borhood, MinPts, any user i is defined as a core user
if density(i) ≥ MinPts. Any user i is a noise user if
density(i) < MinPts. For our settings, MinPts is deter-
mined by the cooperative index of tasks.

BDSCAN based Grouping works as follows:

1) Choose arbitrary unvisited user, and find NEps(i).
2) If density(i) ≥ MinPts, user i and NEps(i) gen-

erate a new group together. Recursively process all
unvisited users in the current group in the same way
to expand the group.

3) If density(i) < MinPts, mark user i as noise user.
4) For other unvisited users, repeat step (1) to step (3)

until all users are belong to a group or are marked
as noise users.

7 PERFORMANCE EVALUATION

We have conducted thorough simulations to investigate the
performance of MCT − M and MCT − S for all three
compatibility models. Due to the space limitations, we only
give the numerical results under weak compatibility model.
To investigate the performance of social optimization for
SOCUS problem, we also implement the benchmark algo-
rithms without considering the compatibility among users:
Benchmark−M for multi-bid model and Benchmark−S
for single-bid model, respectively. Furthermore, we compare
our incentive mechanisms with C2 proposed in [19], which
is an incentive mechanism for the multiple cooperative tasks
without considering the compatibility among users.

We measure the number of winners, social cost,
run-ning time and overpayment ratio (a metric to mea-
sure the frugality of a mechanism [23], calculated by∑

i∈Spi−Cost(S)

Cost(S) ), and reveal the impacts of the key param-
eters, including the number of users (n), the number of
cooperative tasks (m) and cooperative index (r).
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Fig. 6. Similarity of Uer2Vec

7.1 Simulation Setup
The simulations are based on Wikipedia vote network [21],
which contains all the Wikipedia voting data for adminship
election from the inception of Wikipedia till January 2008.
Nodes in the network represent Wikipedia users and a
directed edge from node i to node j represents that user
i voted on user j. There are 7115 nodes and 103689 edges in
the network. For our simulations, we select a set of users
randomly from whole Wikipedia vote network in order
to reflect the practical situation of Wikipedia vote as far
as possible. We construct a sub-network only consisting
of selected users and the edges among them, and set the
compatible user set of arbitrary user as the set of users in
the sub-network it voted on.

For the simulations, the cost of each bid is uniformly
distributed in [5, 10]. This setting is rational since the bid
prices in many real auction scenarios [46] usually increase
linearly with the bid time. The cooperative index is an es-
sential feature of the multiple cooperative tasks. In practice,
cooperative index is determined by the demand of specific
tasks, such as the correctness in trajectory estimation system
[4], the length of bus route in bus arrival time prediction
system [5], and the size of time window in time window
dependent crowd sensing system [8]. In our simulations, the
default value of cooperative index is uniformly distributed
in [2, 5]. The number of bidding tasks of each user are uni-
formly distributed in [3, 5]. Let n=300, m=10, k̄=250, Eps=3,
MinPts=5. We will vary the value of key parameters to
explore the impacts of these parameters on the results.

For convenience, we use User2V ec − M and
User2V ec − S to represent the incentive mechanisms by
learning user compatibility for multi-bid model and single-
bid model, respectively. All the simulations were run on an
Ubuntu 14.04.4 LTS machine with Intel Xeon CPU E5-2420
and 16 GB memory. Each measurement is averaged over 100
instances.

7.2 Parameter Setting of User2Vec
First of all, we need to set the value for parameters of
User2V ec. For any user vector trained by User2V ec, we
find the set of users who cooperate with the user in history.
Then we find the set of user vectors with same size, in which

the vectors are most similar to the user vector. The similarity
is defined as the average ratio between the number of the
common users and the size of the set. Due to the limit of
data set adopted in this paper, we only have 6,000 samples
for training, and results are shown in Fig. 6. We find that the
similarity varies with both window size |Neg| and learning
rate η. We set the default value |Neg| = 5, η = 0.1 based on
the similarity.

7.3 Individual Rationality and Truthfulness
Then we verify the properties of individual rationality and
truthfulness of incentive mechanisms designed. For the
individual rationality, we plot the empirical CDF of the
utilities for all users. From Fig. 7(a), we can see that no user
has a negative utility, thus demonstrating that our incentive
mechanisms achieve the property of individual rationality.

We verify the truthfulness of our incentive mechanisms
by randomly picking a winner (ID=6) and a loser (ID=43),
and allowing them to bid prices that are different from their
true costs. We illustrate the results in Fig. 7(b) and Fig. 7(c),
respectively. We can see that the winner 6 always obtains its
maximum utility if bidding its real cost c6 = 5. Accordingly,
the loser 43 always obtains nonnegative utility if he/she
bids truthfully(b43 = c43 = 9).

7.4 Impact of n
To investigate the scalability of designed mechanisms,
we vary the number of users from 300 to 900, and se-
lect 80% users for each instance through m̄ − RP for
MCT , i.e., k̄=0.8*n. As shown in Fig. 8, the number of
compatible user groups goes up under all three compati-
bility models when the number of users increases. There are
2.5, 1.75 and 1.32 users in each WCG, MCG and SCG on
average, respectively.

The social cost decreases with increasing user number
since the platform can find more cheap users. However, the
change of social cost is very slight because in our system
model, the user number needs to be large enough in order to
complete all cooperative tasks. The social cost of MCT −M
and User2V ec are very close to that of Benchmark −M
(only 1.8% more social cost than Benchmark − M on
average) since the reverse auction for multi-bid model (Al-
gorithm 4) can output optimal solution. However, MCT−S
outputs 48.9% more social cost than Benchmark − S on
average. Note that User2V ec−S can reduce 8.24% of social
cost comparing with MCT − S since all users can pass to
the reverse auction step in User2V ec− S. Benchmark− S
can reduce 33.24% of social cost compared with with C2 on
average since Benchmark − S always outputs the social
cost with guaranteed approximation.

Moreover, the designed mechanisms are computational
efficient since the running time of MCT −M and MCT −S
is bounded by 0.8s and 0.4s, respectively, even there are 900
users. The running time of User2V ec−M and User2V ec−
S are only 81.8% and 72.1% of MCT −M and MCT − S,
respectively, since the training of user vector similarity can
be executed offline. C2 takes much more time than that of
Benchmark−S. This is because C2 contains an exponential
time operation of exhausting all possible user groups for
each multiple cooperative task.
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Fig. 8. Impact of the number of users (n): (a) Number of groups. (b) Social cost. (c) Running time. (d) Overpayment ratio
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Fig. 9. Impact of the number of cooperative tasks (m): (a) Number of winners. (b) Social cost. (c) Running time. (d) Overpayment ratio
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Fig. 10. Impact of cooperative index(r): (a) Number of winners. (b) Social cost. (c) Running time. (d) Overpayment ratio

Based on the frugality theory, the overpayment ratio
depends on the competition among users. As seen from
Fig. 8(d), the overpayment ratio of all incentive mechanisms
decreases because the competition among users intensifies
when there are more users. The overpayment ratio of the
incentive mechanisms in multi-bid model is smaller than
that in single-bid model. Obviously, the competition of users
in multi-bid model is greater than that in single-bid model
since the incentive mechanisms in multi-bid model can
select winning task-bid pairs independently from all task-
bid pairs and the cost of each task follows the identical
distribution. Note that the User2V ec based methods can
output smaller overpayment ratio because there are more
users in the reverse auction step compared with m̄ − RP
based methods.

7.5 Impact of m

The number of cooperative tasks can depict the workload
of mobile crowd sensing system. We fix n=300, k̄=250, and
vary m from 6 to 14. As shown in Fig. 9, the number of
winners and the social cost increase severely in all incentive
mechanisms with increasing m since the platform needs
more users to complete the tasks. The winners in multi-
bid model are many more than those of single-bid model
because any user will be the winner if one of the task-bid
pairs it submits is selected in the multi-bid model. Accord-
ingly, the social cost of multi-bid model is more than that
of single-bid model since the cost of each winner follows
the identical distribution in our settings. The running time
also increases with increasing tasks. However the running
time of MCT −M and MCT − S are still lower than 0.4s
and 0.1s when there are 300 users and 14 cooperative tasks,
respectively. The overpayment ratio also increases since the
platform needs to recruit more users to perform tasks, which
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mitigates the competition among users accordingly.

7.6 Impact of r
To investigate the performance for the tasks associated
with different cooperative levels, we vary the distribution
interval of cooperative index from [2, 2] to [2, 8]. As can
be seen from Fig. 10, MCT − S and User2V ec − S cannot
output the solution when the cooperative index is too large
(the upper limit of distribution interval exceeds 7). Both the
winners and the social cost increase with increasing cooper-
ative level since the platform needs more users to perform
each cooperative task averagely. MCT −M and MCT − S
output 6.7% and 52.6% more social cost than benchmark
algorithms, respectively. The social cost can be reduced
further by machine learning based grouping method. The
running time and overpayment ratio also increase when the
cooperative index goes up. The running time of MCT−S is
only 32.9% of that of MCT −M , while the overpayment of
MCT −M is much less than that of MCT −S. For both bid
models, User2V ec based incentive mechanisms can reduce
the overpayment ration compared with the MCTs since
there are more users to compete the winners in auction.

8 DISCUSSION

In real-world scenarios, there may be the user, who only
wants to disrupt the systems and does not care about any
incentive for his/her own benefits. In this section, we dis-
cuss several potential irrational behaviors that may disrupt
the systems:

• Submit a bid price below the real cost

In the short term, this behavior can hurt the crowdsen-
ing market because some of the honest users will lose the
auction due to the existence of irrational users. However,
our incentive mechanisms are cost-truthful, and the irra-
tional users may obtain negative utility. Thus this behavior
cannot last for a long time unless the irrational users are
supported by a third-party outside the system.

• Bid the tasks he/she cannot perform

This behavior can be detected by the platform when
the platform gathers the sensing data submitted by the
users. The punitive actions, such as banning the irrational
users from taking part in future auctions, can be executed to
reduce the harm to the system.

• Report the compatible user set including the incom-
patible users

As Theorem 5 shows, our incentive mechanisms can
assure that no user can improve the chance of being selected
by submitting a false compatible user set, no matter what
others submit. However, if an irrational user reports a
compatible user set including the incompatible users, it is
possible to select a group of incompatible users to perform
a multiple cooperative task. In this case, the platform can
recognize the compatible user set with obvious exceptions
beforehand according to the social relationship or the histor-
ically cooperative relationship of users. Generally speaking,
the irrational user cannot cooperate well with others, and
usually submits the data with low quality. Thus, even after

the sensing, the platform can detect the irrational user by
checking the quality of submitted sensing data of users
through data integration or truth discovery [44, 45].

9 RELATED WORK

Many incentive mechanisms for mobile crowd sensing have
been proposed thus far. Yang et al. proposed two different
models for smartphone crowd sensing [9]: the platform-
centric model where the platform provides a reward shared
by participating users, and the user-centric model where
users have more control over the payment they will receive.
Feng et al. [7] formulated the location-aware collaborative
sensing problem as the winning bids determination problem,
and presented a truthful auction using the proportional
share allocation rule proposed in [15]. Koutsopoulos de-
signed an optimal reverse auction [14], considering the
data quality as user participation level. However, the qual-
ity indicator, which essentially measures the relevance or
usefulness of information, is empirical and relies on users
historical information. Zhao et al. [16] investigated the
online crowdsourcing scenario where the users submit their
profiles to the crowdsourcer when they arrive. The objective
is selecting a subset of users for maximizing the value of the
crowdsourcer under the budget constraint. They designed
two online mechanisms, OMZ and OMG, for different user
models. Zhang et al. proposed IMC [17], which consider
the competition among the requesters in crowdsourcing.
The incentive mechanisms considering the biased requesters
were proposed in [25]. Wang et al. [34] proposed a quality
inference and parameter learning framework for workers′

long-term quality between two consecutive runs based on
Linear Dynamical Systems and EM algorithm. However,
all above works focus on the multiple independent task
scenarios, where each task only needs one user to perform.

Some works aim at the single cooperative task scenario,
where the task requires a group of users to perform coop-
eratively. Xu et al. proposed truthful incentive mechanisms
for the mobile crowd sensing system where the cooperative
task is time window dependent, and the platform has strong
requirement of data integrity [8]. Furthermore, they studied
the budget feasible mecha-nisms for the same crowd sensing
system [20]. Luo et al. designed the truthful mechanisms
for multiple cooperative tasks [19, 24]. However, they don′t
consider the compatibility among users.

Word2V ec was usually used in natural language pro-
cessing and recommendation systems. Mikolov et al. pro-
posed two novel model architectures for computing con-
tinuous vector representations of words from very large
data sets [26]. Ester et al. proposed a clustering algorithm,
DBSCAN , which does not need to define the number of
clusters [29]. However, no one use Word2V ec model and
DBSCAN for user grouping in mobile crowd sensing.

Overall, there is no off-the-shelf incentive mecha-nism
designed in the literature for the mobile crowd sensing
system, where there are multiple cooperative tasks, and each
of tasks requires a group of compatible users to perform.

10 CONCLUSION AND FUTURE WORK

In this paper, we have designed the incentive mechanisms
for the mobile crowd sensing system with multiple co-
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operative tasks. We use real-life relationships from social
networks to model the compatibility relationships. We have
presented two bid models and three compatibility models
for this new scenario, and designed two incentive mecha-
nisms: MCT−M and MCT−S to solve the SOCUS prob-
lem for the two bid models, respectively. We have presented
a user grouping method through neural network model
and clustering algorithm for the situations, where the users
don′t know the compatible user set exactly. Through both
rigorous theoretical analyses and extensive simulations, we
have demonstrated that the proposed incentive mechanisms
achieve computational efficiency, individual rationality and
truthfulness. Moreover, MCT −M can output the optimal
solution. By using neural network and clustering algorithm
for user grouping, the proposed incentive mechanisms can
reduce the social cost and overpayment ratio further with
less grouping time.

In the future, we plan to construct different compati-
bility models according to different indicators, such as the
geographical distance and user quality, for some specific
mobile crowd sensing applications. In addition, we plan
to design other machine learning based grouping methods,
and valuate the accuracy of grouping by real-world mobile
crowd sensing systems.
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