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Abstract
Mobile crowd sensing has become an efficient paradigm for performing large scale sensing tasks. An incentive mechanism is
important for the mobile crowd sensing system to stimulate participants, and to achieve good service quality. In this paper, we
design the incentive mechanisms for mobile crowd sensing, where the price and supply of the resource contributed by the
smartphone users are determined by the supply-demand relationship of market. We present two models of mobile crowd sensing:
the resource model and the budget model. In the resource model, each sensing task has the least resource demand. In the budget
model, each task has a budget constraint. We design an incentive mechanism for each of the two models. Through both rigorous
theoretical analysis and extensive simulations, we demonstrate that the proposed incentive mechanisms achieve computational
efficiency, profitability, individual rationality, and truthfulness. Moreover, the designed mechanisms can satisfy the properties of
non-monopoly and constant discount under certain conditions.

Keywords Mobile crowd sensing . Incentive mechanism . Supply-demand relationship

1 Introduction

Nowadays, smartphones are integrated with a variety of sen-
sors such as camera, light sensor, GPS, accelerometer, digital
compass, gyroscope, microphone, and proximity sensor.
These sensors can collectively monitor a diverse range of hu-
man activities and surrounding environment. Compared with
the traditional sensor network, mobile crowd sensing has a
huge potential due to the prominent advantages [1], such as
wide spatio-temporal coverage, low cost, good scalability, and
pervasive application scenario. It will be an efficient approach

to meet the demand in large scale sensing applications if we
take advantage of pervasive smartphones to collect data.

Mobile crowd sensing can enable attractive sensing appli-
cations in various domains, such as BikeNet [2] for healthcare,
CenceMe [3] for behavior and relationship discovery, PIER
[4] for personalized environmental impact and exposure, Haze
Watch [5] for pollution monitoring, Ear-Phone [6] for creating
noise maps, SignalGuru [7] for providing traffic information,
Frequent Trajectory Pattern Mining [8] for activity monitor-
ing, LiFS [9]for indoor localization, crowd-participated sys-
tem [10] for bus arrival time prediction, CCCN [11] for con-
tent delivery in content-centric network, etc.

The incentive mechanisms are crucial for mobile crowd
sensing systems to compensate participants’ resource con-
sumption and potential privacy breach. The incentive mecha-
nisms also help to achieve good service quality since sensing
services are truly dependent on the quantity of users and the
quality of sensed data. A lot of research effort has been fo-
cused on developing such incentive mechanisms to entice
users to participate in mobile crowd sensing.

Unfortunately, existing studies in the literature have not yet
considered the issue of pricing determination for mobile
crowd sensing systems. In reverse auction based incentive
mechanisms [12–17], the payments to the winners are deter-
mined by the reserve price and the mechanism adopted. In this
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model, the reserve price is self-determined by each user.
However, it is difficult to find the reference to determine
the reserve price, and the user usually submits it empiri-
cally. Thus there is a threat to each user by submitting the
reserve price, which deviates from the market expectation.
In Stackelberg game based incentive mechanisms [14,
18], the platform first announces her policy on rewards,
and the users would then make decisions on their contri-
bution levels. In this model, the cost (or the range of cost)
of each user is assumed to be fixed and known in ad-
vance. Recently, some pricing mechanisms based on the
quality of information (QoI) [19] have been proposed.
However, it is difficult to set the benchmark reward.
Thus, it is urgent to design the economic model of price
determination for mobile crowd sensing systems.

In this paper, we regard the mobile crowd sensing as a
resource market, where the resource price and contribution
of users are determined by the supply-demand relationship.
The supply-demand relationship based pricing has been stud-
ied for data trading in user provided networks [20] and band-
width sharing in dynamic spectrum access networks [21]. In
our models, the contribution of each user to the sensing system
is considered as the resource consumed for the sensing. The
resource supply of each user is determined by the resource
pricing function.

However, it is very challenging to design incentive
mechanisms for mobile crowd sensing based on supply-
demand relationship. First, since the resource price is de-
termined by the supply-demand relationship of market, we
cannot incentivize the users by increasing the price which
deviates from the market. We need to design the resource
pricing function tactically to stimulate the users to con-
tribute more to the system. Second, a user can take a
strategic action by submitting a dishonest available re-
source to maximize its utility. Moreover, the sensing tasks
are associated with some constraints, such as the least
resource demand or budget.

The main contributions of this paper are as follows:

& We introduce a resource pricing function, which
takes the resource supply-demand relationship into
consideration. Moreover, the designed resource pric-
ing function can always stimulate users to contribute
more.

& We present two system models based on the supply-
demand relationship: the resource model and the budget
model. In the first one, the platform has the least resource
demand for each task. While in the budget model, each
task is with a budget. We design an incentive mechanism
for each of two models.

& We show that the designed mechanisms always satisfy
four desirable properties: computational efficiency, profit-
ability, individual rationality, and truthfulness. Moreover,

the designed mechanisms also satisfy the properties of
non-monopoly and constant discount under certain
conditions.

The rest of the paper is organized as follows. Section 2
formulates the two system models and lists some desirable
properties. Section 3 and Section 4 present the detailed design
of our assignment mechanisms for the two models, respective-
ly. Performance evaluation is presented in Section 5. We re-
view the state-of-art research in Section 6, and conclude this
paper in Section 7.

2 System model and desirable properties

In this section, we model the mobile crowd sensing based
on the supply-demand relationship. We present two
models: the resource model and the budget model. In the
resource model, each task has the least resource demand.
This model is quite practical since many crowd sensing
systems require the fused data over the fragmented data
from participants, such as sampling the cell tower se-
quences on whole bus route [10], measuring the long-
term equivalent noise levels [6], and gathering the air pol-
lution readings all the time [5]. While in the budget model,
there is a budget for each task. The crowd sensing systems
with budget constraint have been widely studied [12, 22].
In both models, the platform wants to stimulate the users to
contribute more resource. At the end of this section, we
present some important economic properties.

2.1 The resource model

We consider a mobile crowd sensing system as shown
in Fig. 1. It consists of a platform and a set of
smartphone users U = {1, 2,…, n}, who are interested
in participating sensing tasks. The platform publicizes
a set of tasks T = {1, 2,…, m} and the threshold re-
source demand L = (L1, L2,…, Lm), where Lk, k ∈ T, is
the least resource to complete task k. In other words,
the sum of resource derived from multiple users should
be not less than Lk for each k ∈ T. We assume that there
are enough smartphone users who can satisfy the thresh-
old resource demand. This assumption is reasonable for
crowdsourcing systems as made in [14, 16, 23–25]. The
resource means the comprehensive contribution of sens-
ing, storage, transmission to the tasks. For the sake of
simplicity, we assume that the resource contribution of
user i ∈U for task k is only determined by the sensing
time stki ∈ℕ .

Each task is dedicated to a specific area of interest
(AoI). The users can perform a task if they are located
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in the corresponding AoIs. To participate in the mobile
crowd sensing, each user i can respond a finite available
sensing time atki ∈ℕ for task k according to the private
future schedules, habits, preferences or behavior profiles
[26]. We assume that each user can distribute its available
sensing time freely among all tasks. Thus the response of
users is an n×m available sensing time matrix AT.

We assume that the unit price of resource of user i for task k
is p stki

� �
, which is a function of sensing time. The resource

demand and resource supply follow the basic supply-demand
relationship [27]:

Dk
i ¼ α−βp stki

� � ð1Þ

Ski ¼ aþ bp stki
� � ð2Þ

where Dk
i is resource demand of task k for user i, Ski is

resource supply of user i for task k, α, β, a and b are
constants, α > a, b > 0, β > 0, stki ∈ℕ

þ. Specifically, the
constants α and a embody the effects of all factors
other than price that affect demand and supply, respec-
tively. The constants β and b show how the price of the
resource affects the quantity demanded and the quantity
supplied.

It is easy to see that when Dk
i ¼ Ski , the market

achieves the supply-demand equilibrium with equilibri-
um price pe ¼ α−a

βþb.

We define the utility of user i as the difference between its
payment and cost. Then the utility of user i can be computed
as follows:

ui ¼ ∑m
k¼1 p stki

� �
−g

� �
aþ bp stki

� �� �
; stki ∈ℕ

þ ð3Þ

where g ∈ (0, pe) is the unit cost of resource.
Specially, the utility of the losers would be zero because

they are paid nothing in our designed mechanisms and there is
no cost for sensing.

Let Ak be the number of winners of task k. We define the
utility of the platform as the difference between the value and
payment:

u0 ¼ ∑Ak

i¼1∑
m
k¼1 r−p stki

� �� �
aþ bp stki

� �� �
; stki ∈ℕ

þ ð4Þ

where r ≥ pe is the unit value of resource.
The platform selects a subset of usersW ⊆U as winners and

determines the sensing time stki for each user, where stki ≤atki .
Then the platform notifies winners. Each winner i performs
task k with sensing time stki , respectively, and sends data back
to the platform. Each user i is paid pki for task k, which is
computed by the platform.

Since we consider the smartphone users are selfish in-
dividuals, each user i can behave strategically by submit-
ting dishonest available sensing time, which is different
from the real available sensing time rtki , to maximize its
utility ui. We assume that each user i is required to log on
the mobile crowd sensing application at least atki time for
performing task k. By this way, the user cannot submit
atki > rtki . However, the user can adopt the strategic be-

havior by submitting atki < rtki . We also assume a, b and g
are public information.

2.2 Budget model

The definitions of U ; T ; stki ; at
k
i ; rtki ; p tki

� �
; Dk

i ; S
k
i ;

pe, u0, uiare the same as those in the resource model.
Different from the resource model, The tasks are with
the budgetB = (B1, B2,…, Bm), where Bk, 1 ≤ k ≤ m, is
the budget of task k ∈ T. We assume the platform al-
ways tends to maximize its utility under the budget
constraint.

2.3 Desirable properties for incentive mechanisms

Our objective is to design an incentive mechanismM, which
returns a winner setW, an n×m sensing time matrix ST and an

Fig. 1 System model of the
smartphone sensing system

Peer-to-Peer Netw. Appl.

Author's personal copy



n×m payment matrix P for each model, satisfying the follow-
ing desirable properties:

& Computational efficiency: An incentive mechanism M
is computationally efficient if the winner setW, the sensing
time matrix ST and the payment matrix P can be comput-
ed in polynomial time.

& Profitability: The platform should not incur a deficit.
In other words, the value brought by the winners
should be at least as large as the total payment paid
to the winners.

& Individual rationality: Each user will have a non-
negative utility while reporting true available sensing
time, i.e., ui ≥ 0, ∀ i ∈U.

& Truthfulness: A mechanism is truthful if no user can im-
prove its utility by submitting an available sensing time
vector different from its real available sensing time vector,
no matter what others submit. In other words, reporting
the real available sensing time vector is a dominant strat-
egy [28] for all users.

& Non-monopoly: The mechanismM is non-monopolistic
if no user can complete any task k ∈ T alone. In other
words, each task needs at least two users to complete in
mechanism M.

& Constant discount: We define the discount as the
ratio between the average unit price obtained by
the mechanism M and the average unit price when
the single user performs any task alone. If the up-
per bound of the discount is within a constant with-
in (0, 1), we call that M satisfies the property of
constant discount.

The importance of the first three properties is obvious,
because they together assure the feasibility of the incen-
tive mechanism. Being truthful, the incentive mechanisms
can eliminate the fear of market manipulation and the
overhead of strategizing over others for the users. Being
non-monopolistic, the incentive mechanism can improve
the variety and quality of sensing data. With constant
discount, the platform is always economical when
adopting the incentive mechanism to perform tasks
through the paradigm of mobile crowd sensing, compar-
ing with the monopoly case.

3 Incentive mechanism for the resource
model

3.1 Pricing based on the supply-demand relationship

Generally, the unit price of resource will decrease if the
supply of goods is larger than the demand, and it will
increase otherwise. So the unit price of resource will shift

around the equilibrium price as the time elapses. To in-
centivize the users, we introduce a simple price shift mod-

el, where the shift rate of unit price of resource
dp stkið Þ
dstki

has

the direct proportion with the excess demand Dk
i −S

k
i

� �
at

sensing time stki :

dp stki
� �
dstki

¼ h Dk
i −S

k
i

� �
; stki ∈ℕ

þ ð5Þ

where h > 0 is a constant.
Substituting (1) and (2) into (5), we obtain:

dp stki
� �
dstki

¼ λ pe−p stki
� �� �

; stki ∈ℕ
þ ð6Þ

where λ = (b + β)h > 0.
Solving (6), we obtain the pricing function:

p stki
� � ¼ pe þ p0−peð Þe−λstki ; stki ∈ℕþ ð7Þ

where p0 is the initial unit price of resource.
In order to stimulate users to contribute more, we set p0 <

pe, making the unit price of resource be a strictly monotone
increasing function with sensing time. Here we let

p0 ¼
g−pe
e−λ

þ pe ð8Þ

3.2 Mechanism design

In this section, we present an incentive mechanism for
mobile crowd sensing in the resource model, named IM-
R. For each task k ∈ T, IM-R selects the winners itera-
tively based on their available sensing time in nonin-
creasing order until the contributed resource is not less

than the threshold resource demand. We define fAT as
the matrix of available sensing time, which is not con-
sidered so far, and define SW as the contributed resource
of winners for each task.

We first calculate the unit price of winner i for task k based
on the available sensing time using (7). If the winner’s re-

source contribution aþ bp fatki� �
does not exceed the remain-

ing resource demand, we set the sensing time of winner i as its
claimed available sensing time and the payment to i can be
determined with unit price p stki

� �
.
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Otherwise, winner i is only required to contribute the
remaining resource demand Lk − SW, and the unit price
Lk−SW−a

b can be obtained using (2). Then there are two
cases: If the unit price is less than p(1), which is the
minimum value of the pricing function defined in (7),
let the sensing time and unit price to be 1 and p(1), re-
spectively. Otherwise, we set the unit price Lk−SW−a

b and

sensing time − 1
λ ln

Lk−SW−a−bPe
b p0−peð Þ

l m
through (2) and (7), re-

spect ive ly. The whole process is i l lus t ra ted in
Algorithm 1. Obviously, IM-R can stimulate users to con-
tribute the resource as more as he has since IM-R selects
the winners based on atki in nonincreasing order.

3.3 Mechanism analysis

In the following, we present the theoretical analysis, demon-
strating that IM-R achieves the desired properties.

Lemma 1 IM-R is computationally efficient.

Proof There are at most n users that can be selected as winners.
For each selection, IM-R selects the user withmaximum avail-
able sensing time, which takes O(n). The above selection pro-
cess is performed for allm tasks. Thus the running time of IM-
R is O(mn2).

Lemma 2 IM-R is profitable.

Proof It is not difficult to obtain p stki
� �

> 0 from (7) and (8).
Moreover, p stki

� �
is a strictly monotone increasing function

with stki , and p stki
� �

→pe when stki →∞. So we have

0 < p stki
� �

< pe. Note that r ≥ pe, we can obtain:

r−p stki
� �� �

aþ bp stki
� �� �

> 0 for∀i∈U ;∀k∈T ð9Þ

Thus the utility of the platform defined in (4) is
nonnegative.

Lemma 3 IM-R is individual rational.

Proof Based on (3), it suffices to prove that p stki
� �

≥g.
The unit price is calculated through the following for-
mula in IM-R:

p stki
� � ¼

pe þ p0−peð Þe−λ
f
atki ; if Lk−SW ≥aþ bp fatki� �

p 1ð Þ ; otherwise if
Lk−SW−a

b
< p 1ð Þ

Lk−SW−a
b

; otherwise

8>>>>><
>>>>>:

In the first case, it is not difficult to obtain that theminimum

value of the pricing function is g when fatki ¼ 1. In the second

case, p stki
� � ¼ p 1ð Þ ¼ g. In the third case, we have p stki

� �
¼ Lk−SW−a

b ≥p 1ð Þ ¼ g. Thus, we have ui ≥ 0.

Lemma 4 IM-R is truthful.

Proof We can obtain the utility of arbitrary user i for
performing arbitrary task k from (3):

uki ¼
p stki
� �

−g
� �

aþ bp stki
� �� �

; stki > 0
0 ; stki ¼ 0

�

Note that we assume the strategic behavior by sub-
mitting atki > rtki can be verified by the mobile crowd
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sensing application. We only prove that no user can
improve its utility by submitting atki < rtki below. If

user i is a loser, submitting atki < rtki cannot make i
be the winner since IM-R selects the winners based
on atki in nonincreasing order, and the utility is still

zero. If user i is the winner, submitting atki < rtki cannot
improve the sensing time of i. Since uki is a strictly monotone
increasing function with sensing time, IM-R is truthful.

The aforementioned four lemmas prove the following
theorem.

Theorem 1 IM-R is computationally efficient, profitable, indi-
vidual rational and truthful.

Note that Lk is the least resource to complete task k, then
we have the following lemma.

Lemma 5 IM-R is non-monopolistic if Lk ≥ α − βpe for all
k ∈ T.

Proof: p stki
� �

is a strictly monotone increasing function

with stki , and p stki
� �

→pe when stki →∞. Accordingly, the
resource supplySki ¼ aþ bp stki

� �
→aþ bpe ¼ α−βpe.

Thus, when Lk ≥ α − βpe, the task k cannot be completed
by single user.

Lemma 6 IM-R is constant discountable if Lk < α − βpe and
Ak ≥ 2 for all k ∈ T.

Proof Based on Lemma 5, the single user can complete
any task k theoretically when Lk < α − βpe. Based on the
resource supply function defined in (2), the unit price of

resource for task k is Lk−a
b if there is only one user. Thus

the average unit price of resource for all tasks is

p ¼ ∑k∈T Lk−ma
mb .

On the other hand, by running IM-R, we have ∑Ak

i¼1

aþ bp stki
� �� �

< Lk þ aþ bp 1ð Þ ¼ Lk þ aþ bg. Then the

average unit price of resource p stkið Þ < Lkþaþbg−Aka
bAk

, for any

k ∈ T. Thus we have p stkið Þ < 1
mb∑k∈T

Lkþaþbg
Ak −a

� �
for ∀k ∈

T. So the discount
p stkið Þ

p <
∑k∈T

Lkþaþbg
Ak

−ma
∑k∈T Lk−ma

. Since Ak ≥ 2 and a +
bg ≪ Lk, we obtain the strict upper bound of the discount
L1þaþbg−2a

2L1−2a ¼ L1þaþbg−2a
2L1−2a < 1 with Ak = 2, m = 1.

The above two lemmas prove the following theorem.

Theorem 2 For all k ∈ T, IM-R is non-monopolistic if
Lk ≥ α − βpe and constant discountable if Lk < α − βpe
and Ak ≥ 2.

4 Incentive mechanism for the budget model

4.1 Mechanism design

In this section, we present an incentive mechanism for mobile
crowd sensing in the budget model, named IM-B. The pricing
mechanism is the same as that in Section 3.1.

Based on (9), each term of (4) is positive. This
means the platform can always improve its utility
through selecting more winners. Based on this observa-
tion, IM-B will keep selecting winners until the remain-
ing budget cannot afford the new users.

The design rationale of IM-B is similar to that of IM-R. We
define PW as the total payment of winners for each task. For
each task k ∈ T, IM-B selects the winners iteratively based on
their available sensing time in nonincreasing order until the
total payment is greater than or equal to the budget of the task.
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We first calculate the unit price of winner i for task k using
(7). If the winner’s payment does not exceed the remaining
budget, we set the sensing time of winner i as it’s claimed
available sensing time and the payment to i can be determined
with unit price p stki

� �
.

Otherwise, there are two cases: If the remaining bud-
get is not less than p(1)(a + bp(1)) (this is the minimum
payment when the sensing time is 1), the payment of
winner i would be the remaining budget. In this case,
the unit price can be obtained by solving p stki

� �
aþ bp stki

� �� � ¼ Bk−PW , and the sensing time can be
obtained using (7). Otherwise, IM-B terminates the se-
lection process for task k. The whole process is illus-
trated in Algorithm 2.

4.2 Mechanism analysis

We present the theoretical analysis, demonstrating that IM-B
achieves the desired properties.

Theorem 3 IM-B is computationally efficient, profitable, indi-
vidual rational and truthful.

Proof The computational efficiency, profitability and truthful-
ness are straightforward since IM-B adopts the same pricing
mechanism and design rationale of IM-R. The proof is almost
the same as that of Theorem 1.

For the individual rationality, it suffices to prove that p stki
� �

≥g based on (3). In IM-B, if Bk−PW ≥p fatki� �
aþ bp fatki� �� �

,

the unit price is calculated through the function

pe þ p0−peð Þe−λeatki . The minimum value of the function is g

when fatki ¼ 1. Otherwise, the unit price is calculated by solving

p stki
� �

aþ bp stki
� �� � ¼ Bk−PW , where Bk − PW ≥ p(1)(a +

bp(1)). Thus we have p stki
� �

≥p 1ð Þ ¼ g in this case.

Lemma 7 IM-B is non-monopolistic if Bk ≥ pe(α − βpe) for
all k ∈ T.

Proof: As discussed above, p stki
� �

is a strictly monotone

increasing function with stki , and p stki
� �

→pe when stki→∞.
Accordingly, the resource supply Ski→aþ bpe ¼ α−βpe.
Thus for the single user i, the total payment would be
less than pe(α − βpe), and IM-B would select the next
user for the same task.

Lemma 8 IM-B is constant discountable if Bk < pe(α − βpe)
and Ak ≥ 2 for all k ∈ T.

ProofWe first consider there is only one user i to perform task
k. Based on Lemma 7, the single user can gain the payment
with whole budget Bk and prevent IM-B from selecting the
next user for the same task theoretically when Bk < pe(α
− βpe). Thus p stki

� �
aþ bp stki

� �� � ¼ Bk . Solving it, we get

p stki
� � ¼ −aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ4bBk

p
2b . Thus, the average unit price of re-

source for all tasks is p ¼ ∑k∈T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ4bBk

p
−ma

2bm .
On the other hand, by running IM-B, we have

∑Ak

i¼1p stki
� �

aþ bp stki
� �� �

≤Bk . Then the average unit price

of resource p stkið Þ≤
−aþ

ffiffiffiffiffiffiffiffiffiffiffi
a2þ4bBk

Ak

q
2b , for any k ∈ T. Thus we have

p stkið Þ≤
∑k∈T

ffiffiffiffiffiffiffiffiffiffiffi
a2þ4bBk

Ak

q
−ma

2bm for ∀k ∈ T. So the discount

p stkið Þ
p ≤

∑k∈T

ffiffiffiffiffiffiffiffiffiffiffi
a2þ4bBk

Ak

q
−ma

∑k∈T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ4bBk

p
−ma

. Since Ak ≥ 2, we obtain the largest

discount
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ2bB1

p
−affiffiffiffiffiffiffiffiffiffiffiffiffi

a2þ4bB1

p
−a

< 1 with Ak = 2, m = 1.

The above two lemmas prove the following theorem.

Theorem 4 For all k ∈ T, IM-B is non-monopolistic if Bk ≥ pe(α
− βpe) and constant discountable if Bk < pe(α − βpe) and Ak ≥ 2.

5 Performance evaluation

5.1 Evaluation setup

We have conducted thorough simulations to investigate the
properties of IM-R and IM-B, including pricing function,
truthfulness, non-monopoly, and constant discount. We use
the real mobility traces WiFi Location from StudentLife pro-
ject [29]. The StudentLife continuous sensing app assesses the
day-to-day and week-by-week impact of workload on stress,
sleep, activity, mood, sociability, mental well-being and aca-
demic performance of a single class of 49 students across a
10 week term at Dartmouth College using Android phones.
WiFi Location calculates the locations based on participants’
WiFi scan log, and each item is recorded as (unix_time,
location). There are 9069 different locations in the data set.
Each location is viewed as an AoI in our simulations. We
calculate the participant’s available sensing time of certain
AoI as the maximum duration from the time it is located first
in the AoI to the first time it is located in another AoI. We set
α = 100, a = 0, b = β = 50, g = 0.5, r = 2, h = 10−7. All the sim-
ulations were run on a Ubuntu 14.04.3 LTSmachine with Intel
Xeon CPU E5–2420 and 16 GB memory. Each measurement
is averaged over 1000 instances.
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5.2 Pricing function

We first investigate the property of the pricing function in
theory. Figure 2 plots the pricing curve, utility curve and pay-
ment curve along with the sensing time. We can see that the
unit price increases with the sensing time. Based on (7) and
the settings in Section 5.1, the unit price distributes in [0.5, 1),
and it approaches to 1 when the sensing time approaches to
infinite. As shown in Fig. 2(b), the utility and payment of the
user are also increases with the sensing time. This is because
the utility function given in (3) is strictly monotone increasing
with the unit price when p stki

� �
≥g. It is not difficult to get that

the utility distributes in [0, 25), and it approaches to 25 when
the sensing time approaches to infinite (i.e. p stki

� �
→1 ) under

our settings. Similarly, the payment functionpi ¼ p tki
� �

aþ bp tki
� �� �

is also monotone increasing with the unit price,
and it approaches to 50 when the sensing time approaches to
infinite. From the investigation, we can demonstrate that our
pricing function can stimulate users to contribute more.

Then we investigate the property of pricing function
through the real data set. Due to the space limitation, We

choose the location of in[sudikoff] in WiFi Location. We set
the threshold resource demand of IM-R as 1000, and set the
budget of IM-B as 1000. Figure 3(a) and (b) plot the unit price,
utility and payment of winners in IM-R and IM-B, respective-
ly. The number of winners in IM-R and IM-B are 27 and 45,
respectively. This is because the unit price is always less than
1 in our settings, and IM-B could recruit more users than that
of IM-R. As shown in Fig. 3, the winner with more available
sensing time would obtain higher unit price, utility and pay-
ment. However, the increase rate of all unit price, utility and
payment tends to decrease. In fact, the unit price, utility and
payment have the strict upper bound 1, 25 and 50 under our
settings, respectively.

5.3 Truthfulness

To investigate the truthfulness of our incentive mechanisms,

we set a new available sensing time atki
0 ¼ γatki , which is a

fraction of atki for each winner i. When the winner i adopts
new available sensing time, we keep other users’ available
sensing time unchanged. The new utility of any winner i is
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Fig. 2 Pricing curve, utility curve and payment curve changing in the sensing time

(a) IM-R with L=1000 (b) IM-B with B=1000

Fig. 3 Unit price, utility and payment of winners in the location of in[sudikoff]
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denoted as ui
′. We assume that each task is dedicated to a

specific location in the data set WiFi Location. There are av-
eragely 4.90 and 4.93 winners for each location in IM-R and
IM-B, respectively. We set L = 1000 for IM-R and B = 1000

for IM-B. We calculate the average utility ratio ru ¼ ∑i∈W
ui
0

ui
jW j .

Figure 4 depicts the average utility ratio of IM-R and IM-B
with γ being varied from 0.1 to 0.9. In our simulation, no
winner can improve its utility by decreasing available sensing
time. Moreover, as shown in Fig. 4, the utility will decrease
accordingly when the available sensing time decreases. The
average utility ratio of IM-R and IM-B are very close since
IM-R and IM-B use the same utility function, which only
determined by the sensing time.

5.4 Non-monopoly

Further, we investigate the property of non-monopoly.
Due to the space limitation, We choose the location of
in[burke] in WiFi Location. Both the threshold resource
demand of IM-R and the budget of IM-B are uniformly
distributed in (δ, δ + 100). Figure 5 plots the average num-
ber of winners of IM-R and IM-B with different δ. As
shown in Fig. 5, the average number of winners of IM-
R increases with the threshold resource demand. This is
because IM-R needs to select more users to meet the
threshold resource demand. The average number of win-
ners of IM-B also increases with the budget since IM-B
could select more users under the large budget. When δ ≥
50, the task cannot be completed by any single user. The
average number of winners of IM-R and IM-B reaches the
minimum of 4.54 and 7.41, respectively, when δ = 50.

5.5 Constant discount

Finally, we investigate the property of constant discount. Let
Ai be the set of tasks that are assigned to the user i. We choose
m locations of WiFi Location randomly. The threshold re-
source demand for each location of IM-R is uniformly

distributed in (25, 50). The average discount of IM-R, denoted
by dR, is defined as the ratio between the average unit price
obtained by IM-R and the unit price when there is only one
user to perform each task, i.e.,

dR ¼ p stkið Þ
p

¼
∑i∈W∑k∈Ai

p stki
� �

∑i∈W jAij
∑k∈TLk−ma

mb

For IM-B, the budget for each location of IM-B is uniform-
ly distributed in (12.5, 50). The average discount of IM-B,
denoted by dB, is defined as the ratio between the average unit
price obtained by IM-B and the unit price when there is only
one user to perform each task, i.e.,

dB ¼ p stkið Þ
p

¼
∑i∈W∑k∈Ai

p stki
� �

∑i∈W jAij
∑k∈T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4bBk

p
−ma

2bm

Figure 6 plots the average discount with different number
of locations. The average discount of both IM-R and IM-B
decrease with the number of locations. This is consistent with
our theoretical result of Lemma 6 and Lemma 8. In our tests,
the average discount of IM-R and IM-B reach the maximum
of 0.83 and 0.78, respectively, when m = 1.

Fig. 4 Average utility ratio when using a fraction of available
sensing time

Fig. 5 Number of winners with different threshold resource demand and
budget

Fig. 6 The average discount with different number of locations

Peer-to-Peer Netw. Appl.

Author's personal copy



6 Related work

Many reverse auction based incentive mechanisms for mobile
crowd sensing have been proposed thus far. Singer proposed a
truthful budget feasible mechanism [12] based on the propor-
tional share allocation rule. However, the designed mecha-
nism was not established on any crowdsensing system model
and only valid for submodular functions. Pricing mechanisms
were also developed in [13] for the budget feasible maximiz-
ing task problem and the budget feasible minimizing payment
problem based on the method proposed in [12]. Koutsopoulos
designed an optimal reverse auction [30], considering the data
quality as user participation level. However, the quality
indicator, which essentially measures the relevance or useful-
ness of information, is empirical and relies on user’s historical
information.Wen et al. proposed an incentive mechanism [31]
based on quality-driven auction, and incorporated the incen-
tive mechanism into a Wi-Fi fingerprint-based indoor locali-
zation system. Yang et al. proposed two different models for
smartphone crowdsourcing [14]: the platform-centric model
where the platform provides a reward shared by participating
users, and the user-centric model where users have more con-
trol over the payment they will receive. They further proposed
IMC [15], which consider the competition among the re-
questers in crowdsourcing. Xu et al. proposed truthful incen-
tive mechanisms for the mobile crowdsensing system where
the tasks are time window dependent, and the platform has
strong requirement of data integrity [23]. Furthermore, they
studied the budget feasible mechanisms for the same
crowdsensing system [22]. In [16], Feng et al. formulated the
location-aware collaborative sensing problem as the winning
bids determination problem, and presented a truthful auction
using the proportional share allocation rule proposed in [12].
However the mechanism is only effective to perform location-
aware tasks. In [17], Zhao et al. investigated the online
crowdsourcing scenario where the users submit their profiles
to the crowdsourcer when they arrive. They designed two
online mechanisms, OMZ, OMG for different user models.
In [32], a reputation-based auction mechanism is incorporated
into crowdsourcing by evaluating the reliability of
crowdsourcing participants. The incentive mechanisms for
the crowdsourcing system with biased requesters were pro-
posed in [33]. However, none of the above work considered
the influence of supply-demand relationship ofmarket, and the
submitted reserve price of each user is baseless in above work.

In Stackelberg game based incentive mechanisms [14, 18],
the cost (or the range of cost) of each user is assumed to be
fixed and known by the platform. The QoI based incentive
mechanism [19] can measure the quality of the contributions,
and reward the participants proportionally to their quantified
contributions. However, it cannot give the ultimate price. In
[34], a linear decreasing function is used to characterize the
relationship between the reward of a task and the number of

received measurements in order to achieve the participation
balance among tasks. The quality based pricing is also applied
to solve other pricing problems, such as message forwarding
problem [35]. In [35], the payment of the any intermediate
node is determined by the contribution time, which is a spe-
cific criterion to measure the contribution to the quality of the
selected path.

The Bargaining theory [36, 37] is also adopted for to de-
termine the price of sensing task for mobile users. However,
the reward of the platform and the cost of each mobile user
should be known in order to calculate the Nash bargaining
solution.

In [38], Tham et al. proposed a market-based approach for
crowdsensing taking data quality into account, and proved the
existence of the market equilibrium. In [39], appealing to ex-
change economy theory, He et al. employed the notion of
BWalrasian Equilibrium^ as a comprehensive metric, at which
there exists a price vector for mobile users and an allocation
for task initiators such that the allocation is Pareto optimal and
the market gets cleared. However, neither of them considers
the specific resource demand of tasks.

7 Conclusion

In this paper, we have investigated the incentive mechanisms
for mobile crowd sensing based on the supply-demand rela-
tionship. We studied two models: the resource model and the
budget model, where the price and supply of the resource are
determined by the supply-demand relationship of the resource
market. We designed a supply-demand relationship based
pricing function to stimulate users to contribute more. We
presented incentive mechanisms for both models, and proved
that they are computationally efficient, profitable, individual
rational and truthful. We further showed that they are non-
monopolistic and constant discountable under certain condi-
tions. In the future work, we will further explore the method
for setting the parameters of proposed incentive mechanisms
and reveal the impacts of the parameters on the performance.
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