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Abstract—Mobile crowdsensing emerges as a new paradigm
that takes advantage of pervasive sensor-embedded smartphones
to collect sensory data. Many incentive mechanisms for mobile
crowdsensing have been proposed. However, none of them takes
into consideration the spatio-temporal tasks in mobile crowd-
sensing systems, where the sensing areas of tasks can have
overlaps, and the collective sensing time for each task needs to
meet the specified time duration. In this paper, we present two
system models for location sensitive users and location insensitive
users, respectively, and formulate the social optimization problem
for each model. We design two reverse auction based truthful
incentive mechanisms to minimize the social cost subject to
the constraint that each of the spatio-temporal tasks can be
completed with its collective sensing time no less than a minimum
sensing time required by the platform. Through both theoretical
analysis and extensive simulations, we demonstrate that the pro-
posed mechanisms achieve computational efficiency, individual
rationality, truthfulness, and guaranteed approximation.

Index Terms—Mobile crowdsensing, Incentive mechanism, Re-
verse auction, Spatio-temporal tasks

I. INTRODUCTION

In the past few years, the market of smartphone has pro-

liferated rapidly and continues to expand. According to IDC,

worldwide smartphone shipments reach 1.41 billion units in

2018 [1]. With arise of the 4G/5G networks and the embedded

sensors, such as accelerometer, digital compass, gyroscope,

GPS, and camera, the smartphone gradually becomes a pow-

erful programmable mobile data interface. These sensors can

This work has been supported in part by the NSFC (No. 61872193,
61872178), and NSF (No. 1717315).

sense various human activities and surrounding environment

cooperatively. Mobile crowdsensing outsources the collection

of sensory data to a crowd of participating users, who usually

carry increasingly capable mobile devices (e.g., smartphones,

smartwatches, and smartglasses) with a plethora of on-board

sensors. Realizing the great potential of the mobile crowdsens-

ing, many researchers have developed numerous applications

and systems, such as trip selection for public bike system [2],

real-time traffic management system [3], and SmartBike [4]

for monitoring city air pollution.

Incentive mechanisms are crucial to mobile crowdsensing

since the smartphone users spend their time and consume

battery, memory, computing power and data traffic of device to

sense, store and transmit the data. Moreover, there are potential

privacy threats to smartphone users by sharing their sensed

data with location tags, interests or identities. A lot of efforts

[5-7] have been focused on developing incentive mechanisms

to entice users to participate in crowdsensing. Generally, the

requirements of time and/or locations of crowdsensing tasks

have great influence on the task allocation. Some incentive

mechanisms [8-10] consider the crowdsensing system, where

the tasks are location dependent, i.e., the tasks only can be

performed by the users who are in the specific sensing posi-

tions or areas. The incentive mechanisms for time dependent

crowdsensing tasks [11-13] consider that the crowdsensing

tasks are with time property.

In many crowdsensing scenarios (e.g., environment monitor-

ing, traffic monitoring), users are required to sense in specific

areas for sufficient time. The task in above scenarios falls
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Fig. 1. Motivating example of spatio-temporal tasks in mobile crowdsensing.

into the range of general spatio-temporal task, which requires

the sensing data with sufficient time from sufficient sensing

areas. In some scenarios, the platform requires the sensing data

within a specific time window [12, 13]. There may exist both

spatial correlation and time correlation. For example, both the

sensing areas and the time window of tasks may have overlaps.

The mobile crowdsensing scenarios with such spatio-

temporal tasks are very pervasive [9-12]. Taking traffic mon-

itoring illustrated in Figure 1 as an example, the mobile

crowdsensing platform requires traffic videos reported by users

for all roads, and the traffic videos should be sufficient for

the purpose of data integration, analysis, or prediction. Thus,

the collective traffic videos for each road need to meet a

requirement of specific time duration. The users can move

along the road and record traffic video in any position of the

road. Note that a user in the crossroad can record traffic video

for every road passed through the crossroad simultaneously.

In this traffic monitoring scenario, the roads can be seen as

the AoIs (Area of Interests) that overlap with each other at the

crossroads. Obviously, collection of the traffic videos for each

road is a spatio-temporal task.

It is important to consider the overlapping of sensing areas.

First, the tasks may be publicized by different requesters, and

the overlapping of sensing areas is a common phenomenon in

mobile crowdsensing. More importantly, the data reuse in the

overlapped sensing areas can reduce the sensing cost of users.

However, there is no incentive mechanism designed for the

special case of spatio-temporal tasks in mobile crowdsensing

systems, where the sensing areas of tasks can have overlaps,

and the collective sensing time for each task needs to meet

the specified time duration. In this paper, we aim to design

truthful incentive mechanism for such spatio-temporal tasks in

mobile crowdsensing. Consider that the platform announces a

set of sensing tasks with sensing areas that may overlap with

each other and minimum sensing time required for each. The

users can move in their own active areas. The objective of our

incentive mechanism is to minimize the social cost subject to

the constraint that each task can be completed with its sensing

time no less than a given minimum sensing time.

We model the mobile crowdsensing process as a sealed

reverse auction. In our system model, each user can bid with

an active area he/she can move in and a maximum sensing

time he/she can spend for performing tasks. The platform

selects a subset of users and notifies the selected winners,

and allocates the sensing time of each winner for each task.

Fig. 2. Reverse auction framework for mobile crowdsensing with spatio-
temporal tasks.

The winners perform the tasks in their active areas according

to the allocated sensing time. Finally, each winner obtains the

payment, which is determined by the platform. The whole

process is illustrated by Figure 2.

The problem of designing truthful incentive mechanisms to

minimize the social cost for spatio-temporal tasks in mobile

crowdsensing is very challenging. First, the sensing areas of

tasks have overlaps, and the users located in the overlaps

can contribute to multiple tasks simultaneously. We need to

determine the value of sensing data provided by such users.

Second, different from most crowdsesing models, the users

can move to any position, which may belong to different

sensing areas of tasks, within their active areas. We need an

efficient method to allocate the sensing time of the users for

their sensing areas rather than simply allocate the tasks to the

users. Moreover, each user may take a strategic behavior by

submitting dishonest bidding price to maximize its utility.

The main contributions of this paper are as follows:

• To the best of our knowledge, this is the first work to

design incentive mechanisms for spatio-temporal tasks in

mobile crowdsensing systems, where the AoIs of tasks

can have overlaps, and the collective sensing time for

each task need to meet the specific requirement.

• We present two auction based system models: location

sensitive model and location insensitive model, and for-

mulate the social optimization problems for both models.

• We present a sensing time allocation algorithm to allocate

the sensing time of each user for each task.

• We design an incentive mechanism for each of two mod-

els. We show that the designed mechanisms satisfy de-

sirable properties of computational efficiency, individual

rationality, truthfulness, and guaranteed approximation.

The rest of the paper is organized as follows. Section II

formulates the system models and problems, and lists some

desirable properties. Section III and Section IV present the

detailed design and analysis of our incentive mechanisms for

both two system models, respectively. Performance evaluation

is presented in Section V. We review the state-of-art research

in Section VI, and conclude this paper in Section VII.

II. SYSTEM MODEL AND DESIRABLE PROPERTIES

In this section, we model the mobile crowd sensing system

as a reverse auction and present two different models: location

sensitive model and location insensitive model. In the loca-

tion sensitive model, each user is associated with a specific

geographic position (such as office and residence), and can

perform the sensing tasks whose AoIs cover the position. The
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AoI of a task is an area, where the platform is interested in

collecting the sensing data. In location insensitive model, each

user has an active area, and the user can move to any position

in this active area to perform sensing tasks, of which the AoIs
overlap the active area. In reality, the active areas of users can

be the areas the users live in. For example, a college student’s

campus can be viewed as one of his/her active area. At the

end of this section, we present some desirable properties.

A. Location Sensitive Model

We consider a mobile crowdsensing system consisting of

a platform and many smartphone users. The platform resides

in a cloud. The smartphone users connect the platform via

the cloud. The platform publicizes a set Γ = {τ1, τ2, ..., τm}
of m homogeneous sensing tasks, and seeks to collect the

sensory data with same type, such as air pollution readings

[14] or noise levels [15] in multiple places in a city. Each

task τj , j = 1, 2, ...,m, is associated with a pair of spatio-

temporal property
(
tj , aj

)
, where tj is the minimum sensing

time required to complete the task, and aj is the associated

AoI of this task. Without loss of generality, the AoIs can be

of any shape. For convenience, we consider that the sensing

time is discrete, and the sensing time mentioned in this paper

can be viewed as the number of time units.

Assume that a crowd U = {1, 2, ..., n} of n smartphone

users are interested in participating sensing tasks. Each user

i ∈ U submits a bid Bi = (ti, li, bi) to the platform, where ti is

the maximum sensing time the user i can spend in performing

the tasks, li is the position of the user i, and bi is user i’s
bidding price for spending time of ti to perform the tasks.

Each user i also has a cost ci. We consider that ci is the private

information and is known only to user i. Different from most

mobile crowdsensing systems [16-18], in our system model,

the users only bid for the sensing time rather than specific

tasks. Let U j be the set of users whose positions are in the AoI
of any task τj , j = 1, 2, ...,m. Let Γi = {τj | li ∈ aj , ∀τj ∈ Γ}
be the set of tasks, of which the AoIs cover the position of

user i. In reality, the overlaps of AoIs for the given position

are small. Thus we consider maxi∈U |Γi| ≤ ε, where ε is a

small positive integer.

Note that the AoIs of tasks may have overlaps, and all

tasks are homogeneous. Thus a user located in the overlaps

can sense for multiple tasks simultaneously. As illustrated in

Figure 3, the user 2 can sense for all three tasks simultaneously

because the AoIs of these three tasks cover the position of user

2. Accordingly, user 3 can sense for two tasks simultaneously,

and user 1 only can sense for one task.

Given the task set Γ and the bid profile B =
(B1, B2, ..., Bn), the platform calculates the winning set S ⊆
U , and notifies winners of the determination. The winners

perform the sensing tasks in their positions and send data back

to the platform. Each user i is paid pi by the platform.

We define the utility of user i as the difference between the

payment and its real cost:

Fig. 3. An example of location sensitive model. There are three users and
three tasks with AoIs.

u (i) =

{
pi − ci if i ∈ S

0 otherwise
(1)

Specially, the utility of the losers would be zero because

they are paid nothing in our designed mechanisms and there

is no cost for sensing.

Note that bi can be different from the real cost ci because we

consider the users selfish. So, the users may take a strategic

behavior by claiming dishonest cost to maximize their own

utility. We consider that the maximum sensing time and

positions reported by the users are always truthful since the

platform can check whether the assigned tasks are performed

with declared sensing time.

The monopoly is harmful to crowdsensing system since the

monopolist can manipulate the price and quality of sensing

data. To prevent monopoly, we assume that all spatio-temporal

tasks still can be completed if any user does not participate in

the auction. This assumption is reasonable for crowdsensing

systems as shown in [8, 12, 13].

Next, we define the utility of the platform as:

u0 = V (Γ)−
∑

i∈S pi (2)

where V (Γ) is the value to the platform when it obtains

all sensory data with sensing time no less than the minimum

sensing time for every task in Γ.

Moreover, the social welfare is:

usoc = u0 +
∑

i∈S ui = V (Γ)−
∑

i∈S ci (3)

The incentive mechanism M (Γ,B) outputs a winning set

S and a payment profile p = (p1, p2, ..., pn). The objective

is maximizing the social welfare subject to the constraint that

each of the tasks in Γ can be completed with the collective

sensing time no less than the minimum sensing time.

The problem of maximizing social efficiency is equivalent

to the problem of minimizing the social cost since all tasks

in Γ are required to be completed according to Equation (3).

We call this problem Location Sensitive Social Optimization
(LSSO) problem, which can be formulated as follows:

Objective : min
∑

i∈S ci (4)

Subject to :
∑

i∈Uj ,i∈S ti ≥ tj , ∀τj ∈ Γ (5)
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Fig. 4. An example of location insensitive model. There are one user with
active area and three tasks with AoIs.

B. Location Insensitive Model

In this subsection, we consider the case where each user is

location insensitive. Particularly, each user i ∈ U submits a

bid Bi = (ti, ai, bi) to the platform, where the definitions of ti
and bi are same as those in location sensitive model. ai is the

active area of user i, which also can be of any shape. The active

areas can be determined through the future schedules or daily

mobility routines with little effect on their daily life. Different

from the location sensitive model, the users are willing to

move to any position within the active areas to perform the

tasks, of which the AoIs overlap its active area.

Another key factor for determining the active area is the

number of tasks the user is willing to perform. Let Γi =
{τj |ai ∩ aj �= ∅, ∀τj ∈ Γ} be the set of tasks whose AoIs
overlap the active area of any user i. In reality, the active area

can be a road the user passes through, or the area of the user’s

company. Thus we also consider |Γi| is bounded by ε.

Similar to the location sensitive model, a user located in the

overlaps of AoIs can sense for multiple tasks simultaneously.

As illustrated in Figure 4, there are seven potential sensing

areas within the active area of the user. Thus the specific

problem in location insensitive model is how to allocate the

time spend on multiple sensing area in the active area for each

winner. Since the sensing areas can exist with any overlap

of the member of power set of |Γi| except the empty set,

there are at most 2|Γi| − 1 sensing areas for any user i. Let

SAi = {sai,1, sai,2, ..., sai,2|Γi|−1} be the set of sensing areas

of user i. Let |sai,k|, k = 1, 2, ..., 2|Γi| − 1, represent the

number of tasks overlapped in sensing area sai,k. Let tsai,k be

the sensing time of user i allocated in sensing area sai,k. Let

TSA be the sensing time allocation for all users. To maximize

the value provided by each user, the platform always prefers

to allocate the sensing time to the sensing area with maximum

overlaps.

We also consider that the users may take a strategic behavior

by claiming dishonest cost to maximize their own utility. The

incentive mechanism M (Γ,B) outputs a winning set S, the

sensing time allocation TSA, and a payment profile p. We

formulate the Location Insensitive Social Optimization (LISO)
problem as follows:

Objective : min
∑

i∈S ci (6)

Subject to :
∑

i∈S,sai,k∩aj �=∅ tsai,k ≥ tj , ∀τj ∈ Γ (7)

TABLE I
FREQUENTLY USED NOTATIONS

Γ task set τj task j

tj
minimum sensing

time of task j
aj AoI of task j

U user set Bi bid of user i

ti
maximum sensing

time of user i
li position of user i

bi
bidding price of

user i
ci cost of user i

ai
active area of

user i
SAi

set of sensing
areas of user i

TSA sensing time allocation sai,k
kth sensing area

of user i
ε maximum size of Γi B bid profile
pi payment to user i p payment profile
S winner set usoc social welfare

ui utility of user i u0
utility of

the platform

Uj set of users whose positions
are in the AoI of task j

Γi
set of tasks whose AoIs cover/overlap

the position/sensing area of user i

V (Γ)
value to the platform when all tasks in Γ

are performed

tsai,k
sensing time of user i allocated in

sensing area sai,k

The definition of LISO problem shows the objective of

selecting the winners with minimum social cost, which is the

sum of the real costs of winners. The constraint shows that the

platform guarantees that each sensing task can be finished,

i.e., the sum of sensing time allocated in the sensing areas,

which overlap the AoI of any task is no less than the minimum

sensing time of this task required by the platform.

Remark: The hybrid scenario with both location sensitive

users and location insensitive users can be viewed as the

special case of location insensitive model by setting the active

areas of location sensitive users to the points.

C. Desirable Properties

Our objective is to design the incentive mechanisms satis-

fying the following desirable properties:

• Computational Efficiency: An incentive mechanism is

computationally efficient if the winner set S, (sensing

time allocation TSA if necessary) and the payment p
can be computed in polynomial time.

• Individual Rationality: Each user will have a non-

negative utility while reporting true private information,

i.e.,ui ≥ 0, ∀i ∈ U .

• Truthfulness: A mechanism is truthful if no user can

improve its utility by submitting false cost, no matter

what others submit. In other words, reporting the real

cost is a weakly dominant strategy for all users.

• Approximation Ratio: The goal of the mechanism is

to minimize the social cost. We attempt to find the

algorithms with low approximation ratios.

The importance of the first two properties is obvious,

because they together ensure the feasibility of the incentive

mechanism. The last two properties are indispensable for
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guaranteeing the compatibility and high performance. Being

truthful, the incentive mechanism can eliminate the fear of

market manipulation and the overhead of strategizing over

others for the participating users.

We list the frequently used notations in Table 1.

III. INCENTIVE MECHANISM FOR LOCATION SENSITIVE

USERS

In this section, we present an Incentive Mechanism in
Location Sensitive Model (MLS).

A. Mechanism Design

First of all, as the following theorem shows, it is NP-hard

to find the optimal solution for the LSSO problem presented

in Equation (4) and (5).

Theorem 1. The LSSO problem is NP-hard.

Proof. We consider a corresponding instance of LSSO: Let

Γ = {τ1, τ2, ..., τm} be the universe set of all tasks publi-

cized by the platform. Each task τj , j ∈ {1, 2, ...,m} has

a minimum sensing time tj . For a family of task multi-set

T = {T1, T2, ..., Tn}, each user i is associated with a task

multi-set Ti and a cost ci, where Ti includes all the tasks in

Γi defined in Subsection II-A, and each task τj ∈ Γi is with a

multiplicity min{ti, tj}. The question is whether there exists

a set T
′ ⊆ T with

∑
Ti∈T ′ ci < v, such that each element τj

can be covered at least tj times. Then we can see that this

problem is the Multi-set Multi-cover (MSMC) problem. Since

the MSMC problem is a well-known NP-hard problem, the

LSSO problem is NP-hard.

Since the LSSO problem is NP-hard, it is impossible to

compute the winner set with minimum social cost in poly-

nomial time unless P=NP. In addition, we cannot use the off-

the-shelf VCG mechanism [19] since the truthfulness of VCG

mechanism requires that the social cost is exactly minimized.

Our auction based incentive mechanism follows a greedy

approach. As illustrated in Algorithm 1, MLS consists of

winner selection phase and payment determination phase.

In the winner selection phase, the users are sorted according

to the effective average cost. Given the uncovered time units

of each task t
′j , τj in Γi, the effective coverage of user i is

min{ti, t′j}. The effective average cost of user i is defined as
bi∑

τj∈Γi min{ti,t
′j} . In each iteration of the winner selection

phase, we select the user with minimum effective average

cost over the unselected user set U\S as the winner until the

winners’ sensing time can meet the requirement of minimum

sensing time of each task in Γ.

In payment determination phase, for each winner i ∈ S,

we execute the winner selection phase over U\{i}, and the

winner set is denoted by S
′
. We compute the maximum price

that user i can be selected instead of each user in S
′
. We will

prove that this price is a critical payment for user i later.

Algorithm 1 : MLS
Input: task set Γ, user set U , bid profile B
Output: winner set S, payment profile p

//Phase 1: Winner Selection

1: S ← ∅;

2: for all τj ∈ Γ do
3: t

′j ← tj ;

4: end for
5: while

∑
τj∈Γ t

′j �= 0 do
6: i← arg minh∈U\S bh∑

τj∈Γh min{th,t
′j} ;

7: S ← S ∪ {i};
8: for all τj ∈ Γi do
9: t

′j ← t
′j −min{ti, t′j};

10: end for
11: end while

//Phase 2: Payment Determination

12: for all i ∈ U do
13: pi ← 0;

14: end for
15: for all i ∈ S do
16: U

′ ← U\{i}, S′ ← ∅, t′′j ← tj ;

17: while
∑

τj∈Γ t
′′j �= 0 do

18: ih ← arg minh∈U ′\S′ bh∑
τj∈Γh min{th,t

′′j} ;

19: S
′ ← S

′ ∪ {ih};
20: pi ← max{pi,

∑
τj∈Γi min{ti,t

′′j}
∑

τj∈Γih
min{tih ,t′′j}bih};

21: for all τj ∈ Γih do
22: t

′′j ← t
′′j −min{tih , t

′′j};
23: end for
24: end while
25: end for

B. Mechanism Analysis

In the following, we present theoretical analysis, demon-

strating that MLS can achieve the desired properties.

Lemma 1. MLS is computationally efficient.

Proof. Finding the user with minimum effective aver-

age cost takes O (nε), where computing the value of∑
τj∈Γh

min{th, t′j} takes O (ε) time. Hence, the while-loop

(Lines 5-11) takes O
(
n2ε

)
. In each iteration of the for-loop

(Lines 15–25), a process similar to line 5–11 is executed.

Hence the running time of the whole auction is dominated

by this for-loop, which is bounded by O
(
n3ε

)
.

Lemma 2. MLS is individually rational.

Proof. Let ih be user i’s replacement which appears in

the ith place in the sorting over U\{i}. Since user ih
would not be at the ith place if i is considered, we have

bi∑
τj∈Γi min{ti,t

′j} ≤
bih∑

τj∈Γih
min{tih ,t′j} . Hence we have bi ≤

∑
τj∈Γi min{ti,t

′j}
∑

τj∈Γih
min{tih ,t′j}bih =

∑
τj∈Γi min{ti,t

′′j}
∑

τj∈Γih
min{tih ,t′′j}bih , where the
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equality relies on the observation of t
′j = t

′′j for every h ≤ i
because the fact that S = S

′
for every h ≤ i. This is sufficient

to get bi ≤ maxh∈U ′\S′

∑
τj∈Γi min{ti,t

′′j}
∑

τj∈Γih
min{tih ,t′′j}bih = pi.

Before analyzing the truthfulness of MLS, we firstly intro-

duce the Myerson’s Theorem [18].

Theorem 2. An auction mechanism is truthful if and only if:
• The selection rule is monotone: If user i wins the auction

by bidding bi, it also wins by bidding b
′
i ≤ bi;

• Each winner is paid the critical value: User i would not
win the auction if it bids higher than this value.

Lemma 3. MLS is truthful.

Proof. Based on Theorem 2, it suffices to prove that the

selection rule of MLS is monotone and the payment pi for

each i is the critical value. The monotonicity of the selection

rule is obvious as bidding a smaller value cannot push user

i backwards in the sorting. We next show that pi is the

critical value for i in the sense that bidding higher than pi
could prevent i from winning the auction. Note that pi =

maxh∈{1,...,L}
∑

τj∈Γi min{ti,t
′′j}

∑
τj∈Γih

min{tih ,t′′j}bih . If user i bids bi ≥ pi,

it will be placed after L since bi ≥
∑

τj∈Γi min{ti,t
′′j}

∑
τj∈ΓiL

min{tiL ,t′′j}biL

implies bi∑
τj∈Γi min{ti,t

′j} ≥
biL∑

τj∈ΓiL
min{tiL ,t′j} . Hence, user

i would not win because the first L users have met the

requirement of minimum sensing time of each task in Γ.

Lemma 4. MLS can approximate the optimal solution within a
factor of HK , where K = maxi∈U

∑
τj∈Γi

min{ti, tj}, HK =

1 + 1
2 + ...+ 1

K .

Due to space limitation, we omit the proof; see our technical

report for the details of the proof [23].

The above four lemmas together prove the following theo-

rem.

Theorem 3. MLS is computationally efficient, individu-
ally rational, truthful, and HK approximate, where K =
maxi∈U

∑
τj∈Γi

min{ti, tj}.
IV. INCENTIVE MECHANISM FOR LOCATION INSENSITIVE

USERS

In this section, we consider the case, where the users are

location insensitive, and present an Incentive Mechanism in
Location Insensitive Model (MLI).

A. Mechanism Design

First of all, as the following theorem shows, the LISO
problem presented in Equation (6) and (7) is also NP-hard

to find the optimal solution.

Theorem 4. The LISO problem is NP-hard.

Proof. We show that the LISO problem is equivalent to the

MSMC problem. The proof is similar to Theorem 1. The

difference is the setting of the family of multi-set T =

{T1, T2, ...., Tn} in the instance of LISO. Let each Ti ∈ T
includes all tasks in Γi defined in Subsection II-B. Since

the platform will always prefer allocating the sensing time

to the sensing area with maximum overlaps, the sensing

time for each sensing area can be determined. Then we set∑
k tsai,k, ∀sai,k ∈ SAi, sai,k ∩ aj �= ∅ as the multiplicity of

each task τj ∈ Γi.

Remark: Since the LISO problem is a generalization of the

LSSO problem, it suffices to prove that the LISO problem is

NP-hard. Here, we show the equivalence between the LISO
problem and the MSMC problem to assist the approximation

analysis of MLI, which will be given in Theorem 5.

Algorithm 2 : MLI
Input: task set Γ, user set U , bid profile B
Output: winner set S, sensing time allocation TSA ,payment

profile p
//Phase 1: Winner Selection

1: S ← ∅;TSA← 0;TSA
′ ← 0;

2: for all τj ∈ Γ do
3: t

′j ← tj ;

4: end for
5: while

∑
τj∈Γ t

′j �= 0 do

6: TSA← Allocation
(
Γ, U\S,B, {t′1, t′2, ..., t′m}

)
;

7: i← arg minh∈U\Scost
TSA
h ;

8: S ← S ∪ {i};
9: for all τj ∈ Γi do

10: t
′j ← t

′j −∑
k:sai,k∩aj �=∅ tsai,k;

11: end for
12: end while

//Phase 2: Payment Determination

13: for all i ∈ U do
14: pi ← 0;

15: end for
16: for all i ∈ S do
17: U

′ ← U\{i}, S′ ← ∅, t′′j ← tj ;

18: while
∑

τj∈Γ t
′′j �= 0 do

19: TSA
′ ← Allocation

(
Γ, U

′\S′
,B, t

′′
)

;

20: ih ← arg minh∈U ′\S′ costTSA′
h ;

21: S
′ ← S

′ ∪ {ih};
22: pi ← max{pi,

∑
τj∈Γi

∑
k:sai,k∩aj �=∅ tsa

′
i,k

∑
τj∈Γih

∑
k:saih,k∩aj �=∅ tsa

′
ih,k

bih};
23: for all τj ∈ Γih do
24: t

′′j ← t
′′j −∑

k:saih,k∩aj �=∅ tsa
′
ih,k

;

25: end for
26: end while
27: end for

As illustrated in Algorithm 2, MLI also consists of winner

selection phase and payment determination phase.

The winner selection phase also follows the greedy ap-

proach. The users are sorted according to the effective average

cost. Given the uncovered time units of each task t
′j , τj ∈ Γi,

the effective coverage of user i is
∑

k:sai,k∩aj �=∅ tsai,k, i.e.,
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the total sensing time allocated in the sensing areas, which

overlap the AoI of task τj . Thus, for ∀τj ∈ Γi, the effective

coverage of user i is
∑

τj∈Γi

∑
k:sai,k∩aj �=∅ (tsai,k · |sai,k|).

The effective average cost of user i is defined as costTSA
i =

bi∑
τj∈Γi

∑
k:sai,k∩aj �=∅ (tsai,k·|sai,k|) . In each iteration of the

winner selection phase, we calculate tsai,k by calling function

Allocation(·) for each user i ∈ U, k = 1, 2, ..., 2|Γi| − 1,

and select the user with minimum effective average cost over

the unselected user set U\S as the winner until the winners’

sensing time can meet the requirement of minimum sensing

time of each task in Γ.

We denote TSA
′

as the sensing time allocation matrix in

the payment determination phase. For each winner i ∈ S, we

execute the winner selection phase over U\{i}, and the winner

set is denoted by S
′
. We compute the maximum price that user

i can be selected instead of each user in S
′
. We will prove

that this price is a critical payment for user i later.

Next, we present the algorithm of function Allocation(·)
to calculate the sensing time allocation matrix. Note that the

platform want to maximize the value provided by each user,

i.e., the effective coverage of user i for all tasks in Γi. As

illustrated in Algorithm 3, for each user i ∈ U , we allocate the

sensing time to the sensing areas iteratively. In each iteration,

we select the sensing areas with most overlaps of AoIs. Here,

we need a uniform tiebreaking rule when there are multiple

sensing areas with same number of overlaps (e.g. index the

sensing areas according to the geographic positions of the

centroids). The allocated time is the minimum of the residual

sensing time of user i and all residual sensing time of all tasks

overlapping the selected sensing area. The iterations terminate

when we have allocated all sensing time of user i or there is

no unallocated sensing area.

Algorithm 3 : Allocation
Input: task set Γ, user set U

′′
, bid profile B, residual sensing

time set R
Output: sensing time allocation TSA

1: for all i ∈ U
′′

do
2: t

′
i ← ti; SA

′
i ← SAi; {t′1, t′2, ..., t′m} ← R;

3: while t
′
i > 0 and SA

′
i �= ∅ do

4: k ← argmaxk:sa
i,k

′∈SA
′
i
|sai,k′ |;

5: j ← argmin
j′ :aj

′∩sai,k �=∅t
′j′ ;

6: tsai,k ← min{t′j , t′i};
7: t

′
i ← t

′
i − tsai,k;

8: SA
′
i ← SA

′
i\{sai,k};

9: for all τj ∈ Γis.t. a
j ∩ sai,k �= ∅ do

10: t′j ← t′j − tsai,k;

11: end for
12: end while
13: end for

Theorem 5. MLI is computationally efficient, individually
rational, truthful, and Hk approximate, where
K = maxi∈U

∑
τj∈Γi

∑
k:sai,k∩aj �=∅ (tsai,k · |sai,k|).

Fig. 5. Illustration for MLI, where there two spatio-temporal tasks represented
by the circles with t1 = 5, t2 = 6, respectively. There are five users
represented by the rectangles with seven sensing areas. The maximum sensing
time and bidding price are given in Table 2.

TABLE II
WINNER SELECTION OF MLI

User 1 User2 User3 User4 User5
ti 4 1 2 4 4
bi 5 2 3 7 9

tsa1,1 tsa1,2 tsa1,3 tsa2,1 tsa3,1 tsa4,1 tsa5,1
Round 1 4 0 0 1 2 4 4
Winner 4190 4190 4190

Round 2 1 2 1 2
Winner 4190

Round 3 1 1 0
Winner 4190

Proof. For the time complexity, finding the user with min-

imum effective average cost takes O (n · 2ε). The function

Allocation(·) also takes O (2ε) time. Hence, the while-loop

(Lines 5-12) takes O
(
n2 · 2ε). The running time of the whole

auction is dominated by the for-loop (Lines 16–28), which is

bounded by O
(
n3 · 2ε). Since ε is a small positive integer, the

time complexity of MLI is acceptable. The proofs for individ-

ual rationality and truthfulness are similar to those of MLS.

Since the LISO problem is equivalent to the MSMC problem,

the greedy algorithm illustrated in Algorithm 2 is also Hk ap-

proximate, where K = maxi∈U
∑

τj∈Γi

∑
k tsai,k, ∀sai,k ∈

SAi, sai,k ∩ aj �= ∅ is the maximum size of the elements in

multi-set collection T .

Remark: Note that we analyze the time complexity of MLI
by considering both AoIs and active areas of users can be

of any shape. In many crowdsensing systems, the number of

sensing areas of a user is much smaller than 2ε−1 in practice.

In the traffic monitoring crowdsensing system illustrated in

Figure 1, the sensing areas of any user only exist on the

crossroads, which is at most m− 1. In this scenario, the time

complexity of MLI is O
(
n3 ·m)

in fact.

B. A Toy Example

We use an example in Figure 5 to show how MLI works.

We directly give the sensing time of each round calculated

by Algorithm 3 in Table 2, due to the space limitations.

Winner Selection:
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Round 1: t
′1 = 5, t

′2 = 6, S = ∅
b1

2tsa1,1
= 5

8 ,
b2

tsa2,1
= 2, b3

tsa3,1
= 3

2 ,
b4

tsa4,1
= 7

4 ,
b5

tsa5,1
= 9

4 .

Round 2: t
′1 = 5− 4 = 1, t

′2 = 6− 4 = 2, S = {1}
b2

tsa2,1
= 2, b3

tsa3,1
= 3

2 ,
b4

tsa4,1
= 7, b5

tsa5,1
= 9

2 .

Round 3: t
′1 = 1, t

′2 = 2− 2 = 0, S = {1, 3}
b2

tsa2,1
= 2, b4

tsa4,1
= 7. Thus S = {1, 3, 2}.

For the payment determination, we directly give winners

when user i is excluded from the consideration, and only give

the calculation for winner 1, due to the space limitations.

Payment Determination:

For winner 1, winners are 3, 4, 2, 5 orderly.

• t
′′1 = 5, t

′′2 = 6, 2×4
tsa3,1

× b3 =
2×4
2 × 3 = 12

• t
′′1 = 5, t

′′2 = 6− 2 = 4, 2×4
tsa4,1

× b4 =
2×4
4 × 7 = 14

• t
′′1 = 5− 4 = 1, t

′′2 = 4, 2×1+1×3
tsa2,1

× b2 =
5
1 × 2 = 10

• t
′′1 = 1− 1 = 0, t

′′2 = 4, 1×4
tsa5,1

× b5 =
4
4 × 9 = 9

• Thus p1 = max{12, 14, 10, 9} = 14

For winner 2, winners are 1, 3, 4 orderly, and p2 = 7.

For winner 3, winners are 1, 2, 5 orderly, and p3 = 9.

V. PERFORMANCE EVALUATION

We have conducted thorough simulations to investigate

the performance of MLS and MLI, and compare them with

following five benchmark mechanisms: (1) MLS-GB: greedily

select the user with minimum bidding price as the winner in

the location sensitive model. (2) MLS-GC: greedily select the

user with maximal effective coverage as the winner in the

location sensitive model. (3) MLI-GB: greedily select the user

with minimum bidding price as the winner in the location

insensitive model. (4) MLI-GC: greedily select the user with

maximal effective coverage as the winner in the location

insensitive model. (5) ApproxMCS: truthful approximation

algorithm [11] to find a sensing time schedule for maximizing

the revenue of owner in mobile crowdsensing, where each user

is able to perform at most one sensing task. All the simulations

were run on a Centos 7 machine with Intel(R) Xeon(R) CPU

E5-2630 2.6GHz and 128 GB memory. Each measurement is

averaged over 100 instances.

We use the air pollution data [20] from the sites in Beijing

and the T-Drive trajectory data [21], which contains trajecto-

ries of 10,357 taxis in Beijing, with geographic coordinates

at different time for every trajectory. We randomly choose the

sites and the taxis as the tasks and users, respectively. We

set large AoIs to build the overlaps in metropolitan city of

16.41 thousand square kilometers. We consider that the AoI of

each task is a circular region with radius uniformly distributed

over [20, 110] kilometers. The task’s sensing time is uniformly

distributed over [5, 15] time units. The default number of tasks

and users are 40 and 140, respectively. In MLS, we randomly

choose one coordinate from taxi trajectory as user’s location.

In MLI, we regard the taxi trajectory between 14:30:29 and

15:00:29 as the active areas of the user. The maximum sensing

time and cost of users are uniformly distributed over [5,

(a) Social cost VS number of tasks (b) Social cost VS number of users

(c) Social cost VS minimum sensing
time

(d) Social cost VS radius of AoI

Fig. 6. Social cost

10] and [6, 10], respectively. We will vary the value of key

parameters to explore the impacts of these parameters.

Figure 6 shows the social cost of all incentive mechanisms.

Note that the MLS can output the solution with guaranteed

approximation for our LSSO problem, and outperforms the

MLS-GB and MLS-GC in all cases. The social cost of MLS-
GC is very close to MLS. However, MLS-GC is untruthful.

MLI outperforms the MLI-GB and MLI-GC in all cases too.

Specifically, MLS outputs 22.3% and 5.3% less social cost than

MLS-GB and MLS-GC on average, respectively. MLI outputs

33.6% and 7.8% less social cost than MLI-GB and MLI-GC
on average, respectively.

Figure 7 depicts the running time of all incentive mech-

anisms. It can be seen that the running time increases with

the numbers of tasks, users and the minimum sensing time

of tasks. The result is consistent with our time complexity

analysis in Section III and Section IV. The running time of all

incentive mechanisms decreases with the increase of radius of

AoI becasue the number of winner decreases when the number

of overlaps increases. Note that all incentive mechanisms

iterate the winners in the payment determination phase, thus

less time is needed. The running time of MLS-GB is much

smaller than those of MLS and MLS-GC. This is because MLS-
GB doesn’t need to calculate the effective coverage, which

dominates the time complexity of MLS and MLS-GC. The

running time of MLS is more than that of MLS-GC since there

are fewer winners in MLS-GC. The similar analysis can be

applied to MLI, MLI-GB, and MLI-GC.

VI. RELATED WORK

Feng et al. proposed an incentive mechanism for mobile

crowdsensing, where each task is with a sensing position, and

each user has its sensing area [8]. The sensing areas can have

overlaps, but the sensing data serves for single task exclusively.

Moreover, the tasks don’t have the time property.
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(a) Running time VS number of
tasks

(b) Running time VS number of
users

(c) Running time VS minimum sens-
ing time of task

(d) Running time VS radius of AoI

Fig. 7. Running time

Xu et al. proposed the incentive mechanisms for time

window dependent tasks in mobile crowdsensing [12, 13],

where every task requires the sensing data in a specific time

period. In [11], Han et al. proposed a truthful scheduling

mechanism for powering mobile crowdsensing, where every

task needs the sensing data of multiple time units. However,

all above works focus on the time dependent tasks, and the

location property of task is neglected.

In [9], the task specifies what sensor readings to report,

and when and where to sense. If the sensing data satisfies the

task requirement, the sensing data can be used to complete the

task. In [10], smartphone users need to provide location-based

services. The mobile crowdsensing app utilizes place detection

to determine whether the user is at specific location. Wang

et al. proposed a heterogeneous incentive mechanism [22],

where the measurements of sensing task need to be executed

at specific location during the specific time period. However,

all above works consider that the tasks require the sensing data

at the specific locations rather than the specific areas.

Overall, the overlaps between the sensing areas and the cor-

responding time allocation haven’t been studied yet. There is

no off-the-shelf incentive mechanism designed in the literature

for the crowdsensing system modeled in this paper.

VII. CONCLUSION

In this paper, we have designed the incentive mechanisms

for the mobile crowdsensing system with spatio-temporal

tasks. We have presented two system models, location sensitive

model and location insensitive model, to generalize the new

scenario. We have designed two incentive mechanisms: MLS
and MLI, to solve the problem of minimizing the social cost

subject to the constraint that each task can be completed with

the collective sensing time no less than the required minimum

sensing time for the two models, respectively. Moreover,

we have presented a sensing time allocation algorithm to

allocate the sensing time of users to different sensing areas.

Through both theoretical analysis and simulations, we have

demonstrated that the proposed incentive mechanisms achieve

computational efficiency, individual rationality, truthfulness,

and guaranteed approximation.
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