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Abstract—The Internet of Things (IoT) has such a profound
impact that we have witnessed crowdsensing has emerged as
the most popular sensing paradigm where participants sense
and aggregate data to the platform by smart devices. However,
the participants may not be willing to involve in data sensing
and aggregation if they are not sufficiently compensated or
their personalized private information are disclosed. In order to
overcome the above issues, this paper proposes a payment-privacy
protection level (PPL) game, where each participant submits his
sensing data with a specified PPL while the platform chooses
a corresponding payment to the participant. Additionally, we
derive the Nash equilibrium (NE) point of the game. Considering
that the payment-PPL model is unknown in practice, we employ
a reinforcement learning technique, i.e., Q-learning to obtain the
payment-PPL strategy in a dynamic payment-PPL game. We
further use deep Q network (DQN), which combines a deep
learning technique with Q-learning to accelerate learning speed.
Through extensive simulations, we verify that our proposed
algorithm using DQN achieves superior performance in terms of
utilities of both platform and participants and data aggregation
accuracy compared with the one using Q-learning.

Index Terms—Data aggregation, crowdsensing, differential pri-
vacy, equilibrium, Q-learning, deep reinforcement learning.

I. INTRODUCTION

THE development of IoT technology and the populariza-

tion of mobile smart terminals have become the corner-

stone for the construction of smart cities. The emergence of

various IoT based applications has fostered the development

of wireless sensor networks, wireless body area networks,

vehicular networks, and so on. Among them, a new paradigm,

i.e., crowdsensing which finds ideas and solves large-scale

computing or sensing tasks with the help of public wisdom

has attracted great attention [1]. Compared with traditional
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paradigms, participants in crowdsensing not only act as the

ultimate consumers of data, but also play more roles, in-

cluding data transmission, analysis, and so on. At present,

crowdsensing has entered a rapid development stage, and its

application involves all aspects of people’s work and life. More

specifically, typical applications include environmental mon-

itoring [2], intelligent transportation [3], social sensing [4],

road condition detection [5], air quality monitoring [6], indoor

positioning [7], etc.

When taking part in crowdsensing, participants need to fin-

ish sensing tasks through sensors such as camera, gyroscope,

accelerometer, and so on, and they need to upload sensing data

to the platform, incuring costs such as battery and bandwidth.

In this case, a rational participant may provide sensing or

computing services only if he is incentivized by reward.

Therefore, it is necessary to design an incentive mechanism

to encourage smartphone users to participate in crowsensing.

Game theory is an important way to solve incentive problems,

by adjusting the payments of participants to reflect user

engagement, participation contributions, and so on.

An important feature of crowdsensing is that platform can

collect sensitive personal information of participants such as

locations and social relations [8], and thus deduce their occu-

pation, preferences, etc., which are of great value, as shown in

Fig. 1. Therefore, in crowdsensing, it is a challenging task to

protect participants’ individual information from being leaked,

at the same time to extract accurate sensing data to guarantee

that the sensing tasks can be completed. A traditional approach

is, when there is a sensing request, the sensing data is uploaded

to the platform first, then it is added noise uniformly. However,

the privacy sensitivity of different participants for their sensing

data is not considered in this approach.

Currently, differential privacy [9], among all the existing

privacy protection mechanisms, has gained great attention due

to the fact that it provides a strong theoretical guarantee for

individual data in aggregated statistics. However, the utility of

platform will be damaged if the participants add unified noise

to the sensing data when uploading it to the platform. In this

case, it is reasonable to consider different privacy levels. On

the one hand, it can differentiate the privacy sensitivities for

different participants. On the one hand, it can evaluate the

privacy of participants more accurately.

In this paper, we propose a personalized privacy-preserving

data aggregation game based on the interactions between

platform payment and participants’ PPLs, which is to meet
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Fig. 1: An attacker can deduce participants’ personal infor-

mation from crowdsensing platform if the sensing data is not

disturbed.

the requirement of different privacy sensitivities for differ-

ent participants. For the privacy-preserving data aggregation

game, only one sensing task is considered, and the platform

verifies the correctness of participants’ PPLs and pays the

corresponding payment. Through such repeated interactions,

the platform and participants constantly adjust their strategies,

in which participants tend to obtain more payment, and the

platform is keen to acquire more accurate sensing data. In this

case, on the participant side, on the one hand, the impact of

invalid data on the aggregated sensing data can be suppressed;

on the other hand, participants’ privacy can be personalized.

On the platform side, on the one hand, it aims to encourage

participants to participate in crowdsensing and reduce their

privacy by enabling them to obtain the payment they deserve;

on the other hand, it also aims to achieve a balance between

platform utility and data aggregation accuracy.

As shown in Fig. 2, the platform as the leader first broad-

casts the payment to the participants, and then the participants

as the followers upload their PPLs and sensing data to the

platforms. We derive an NE for our personalized privacy-

preserving data aggregation game. More specifically, more

payment will enforce participants to choose lower PPLs, and

less payment may lead to more invalid data which is beyond

the data range of actual physical significance. In this way, the

utilities of both platform and participants can be maximized

by an appropriate payment-PPL matching strategy.

The platform’s payment and the participants’ PPLs can be

seen as a finite Markov decision process. In this paper, we

assume that the transition probabilities of payment levels under

the current state and reward function are unknown to the

participants, and the transition probabilities of PPLs under the

current state are also unknown to the platform. The proposed

game runs for several rounds, each round does not need to

sample the information of the last round to update strategy.

In this case, we propose to use Q-learning, a reinforcement

learning algorithm to update strategy in real time. Under

Q-learning algorithm, we introduce two Q-functions, which

are the discounted long-term reward for a state-action pair.

Platform use a Q-function which is related to data aggregation

accuracy to obtain optimal payment, and participants use a

Q-function which is related to their own payment to obtain

optimal PPLs.

However, with the increase of the number of participants,

PPLs, and payment levels, the size of Q-table increases ex-

ponentially and the utility convergence speed of platform will

be greatly reduced. In order to overcome the above problem,

we propose to employ DQN, which is a deep reinforcement

learning technique. More specifically, on the participant side,

we use Q-learning due to limited resources of smart phones.

On the platform side, we use DQN to accelerate the acquisition

of optimal payment policy, thereby increasing the utility of

platform.

This paper’s contributions are as follows:

• Static Payment-PPL Game: We formulate a payment-

PPL game and derive its NE, which reveals the balance

between platform payment and participants’ PPLs.

• Dynamic Payment-PPL Game Based Q-learning: We pro-

pose to use Q-learning to learn the payment policy of

platform and PPLs of participants respectively, so as to

solve the dynamic game under an unknown payment-PPL

model.

• Dynamic Payment-PPL Game Based DQN: We propose

to use DQN to accelerate the speed of acquiring payment-

PPL strategy. The proposed DQN based algorithm shows

that compared with Q-learning both platform and partic-

ipants can gain more utilities and the time to obtain the

optimal strategies is reduced.

The remainder of paper is organized as follows. We review

related work in Sec. II. Sec. III presents the system model

for data aggregation. Sec. IV formulates the static privacy-

preserving data aggregation game and derive the NE of the

game. We propose a DQN-based payment-PPL strategy for the

dynamic privacy-preserving data aggregation game in Sec. V.

Sec. VI presents simulation results. Finally, Sec. VII concludes

the paper.

II. RELATED WORK

Privacy in crowdsensing has gained great attention with

many pieces of work explored. In [10], the authors study

the real-time release of data in an untrustworthy situation,

and propose a distributed privacy protection framework based

on differential privacy. The authors in [11] discuss a data

privacy protection scheme based on one-way hashing, marking

hybrid network and packet in the scenario of fog computing.

The authors in [12] use k-anonymity to protect user privacy

and use incentive payment mechanisms to reduce the loss of

data information. In [13], the authors propose a personalized

privacy protection and task allocation framework, in which

privacy protection is based on differential privacy, and task

assignment is a mechanism that utilizes probability to win.

Several work has focused on data aggregation in privacy-

preserving crowdsensing. In [14], the authors employ fog

nodes in different regions to assist the crowdsensing server to

achieve privacy-preserving task allocation and data aggregate.

In [15], the authors propose an anonymized data collection

method which is able to accurately estimate data distributions.

In [16], the authors propose a k-anonymous privacy preserving

scheme for multimedia sensing data by integrating data coding
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Fig. 2: Our proposed system consists of a platform which evaluates and aggregates sensing data and participants who execute

a privacy protection mechanism.

and message transfer. The authors in [17], [18] achieve privacy

protection by using blockchain. In [19], the authors infer

the private information of users using embedded sensors in

smart devices via deep learning. However, these work does

not consider how to incentivize participants to participate in

crowdsensing, where participants may be reluctant to con-

tribute sensing services without sufficient incentives.

In crowdsensing, an efficient incentive mechanism can

greatly promote the enthusiasm of participants. In the crowd-

sensing environment of the Internet of Vehicles, the authors

in [20] rely on reinforcement learning and game theory to

solve the trade-off between sensing accuracy and the overall

payment of crowdsensing server. In [21], the authors use

game theory to solve the problem of profit distribution among

providers and to associate service quality with privacy levels.

CENTURION [22] offers a double auction mechanism to

stimulate data requesters to publish sensing requests and

workers to participate in sensing tasks in order to achieve data

aggregation. However, auction mechanisms focus on multiple

tasks in crowdsensing. For one sensing task, game theory is

usually employed to design incentive mechanisms. In [23], the

authors present a crowdsourcer-centric model where an incen-

tive mechanism is designed by using a Stackelberg game. In

[24], the authors design an incentive mechanism by applying

a two-stage Stackelberg game to determine the incentive of

service provider and the participation levels of mobile users. In

[25], the authors motivate mobile users to participate in crowd-

sensing by using a multi-stage stochastic programming based

game. In [26], the authors motivate data carrier and mobile

relay users to contribute data collection in mobile opportunistic

crowdsensing by using a two-user cooperative game. However,

these work all assumes the interactions between the platform

and participants have a specific model. In [27], the authors

design an incentive mechanism by formulating a model-free

multi-leader and multi-follower Stackelberg game, and use

deep reinforcement learning to obtain the optimal pricing

strategies of task initiators. A pioneer study on networked

data integration with machine learning methods is conducted

in [28], where a directionality learning model is proposed with

edge-based network representation. However, all the above

work do not consider privacy issues in crowdsensing.

Some work have been done to encourage participants to

take part in privacy-preserving crowdsensing. In [29], the

authors design a differential privacy auction mechanism to

minimize the platform’s payment by taking each worker’s

bid privacy into consideration. The authors in [30] propose a

truthful incentive mechanism with location privacy-preserving

for mobile crowdsourcing systems. INCEPTION [31] intro-

duces a crowdsensing framework which taking incentive, data

aggregation and perturbation into consideration. In [32], the

authors propose to put the participants into multiple groups

and perform auctions within the groups to protect bid informa-

tion. However, these work considers that participants perform

multiple sensing tasks, which is not consistent with our work

where only one data aggregation task is needed by partic-

ipants. REAP [33] offers different contracts to participants

with different privacy preferences to reconcile fusion center’s

aggregation accuracy and individual participant’s data privacy.

However, it does not consider how to maximize the utilities

of both platform and participants.

III. SYSTEM MODEL AND DESIGN

In this section, we first give an overview of our personalized

privacy-preserving system and describe our task model, private

protection model, data evaluation and aggregation model.
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TABLE I: The main notations through the paper.

M The number of participants

ε The action set of participants

p The action set of platform

ε
(t )
i

PPL of participant i in time slot t

p(t ) Payment policy strategy

J The number of PPLs

N The number of payment levels

ci The cost of participant i excluding privacy cost

s
(t ) The state of platform in time slot t

s
(t )
i

The state of participant i in time slot t

α The learning rate of Q-learning/DQN

ϕ(t ) State sequence in time slot t

θ (t ) The weight of CNN in time slot t

B The minibatch size of CNN

W The experience size of CNN input sequence

A. System Overview

The goal of our crowdsensing platform is to recruit M

smartphone users located in the areas of interests to collect

sensing data and create a crowdsensing application, as shown

in Fig. 2. The crowdsensing platform first selects its pay-

ment policy and broadcasts a recruitment message that lists

the payment-PPL pairs. Each selfish and rational participant

chooses his PPL, according to his energy consumption and

data perturbation cost.

The platform first broadcasts location-based sensing tasks

to the participants. Then, the participants use their sensors

(such as smartphones, portable computers and environmental

monitoring sensors) to collect sensing data and send them with

PPLs to the platform through base stations (BSs) and access

points (APs).

The platform first evaluates each participant’s data through a

data evaluation server (DES). We assume that each participant

is rational such that the submitted PPL is accurate. As a result,

a participant who offers a higher PPL requires more payment

from the platform. The payment strategy of platform is given

by a comprehensive control server (CCS). The data analysis

server (DAS) of platform is set up for data aggregation visu-

alization, e.g., a web server. The crowsensing system provides

a trade off between platform payment and participants’ PPLs.

Also if the platform has a higher budget, it can pay more to

motivate participants to accept sensing tasks. For the ease of

our reference, our commonly used notations are summarized

in Table I.

B. Task Model

Considering the time sensitivity of sensing data, we define

time-invariant tasks τ1 and time-varying tasks τ2, so the

sensing tasks are indicated by τ = τ1 ∪ τ2. For time-invariant

tasks such as sensing a profile of an object, in order to avoid

the fact that the sensing data is far from the actual data, we

consider collecting sensing data multiple times. If collecting V

times, the sensing results for participant i is given as follows:

xi =
{

x1,i, x2,i, . . . , xV,i

}

, (1)

and we take average of the sensing results as the final result,

i.e.,

xi =
1

V

V
∑

j=1

x j,i . (2)

In a time-varying task such as monitoring the air condition

of some areas of interest within a time period, we consider

sensing data for multiple locations. If sensing U locations,

the sensing results for participant i in time slot t is given as

follows:

x
(t )
i
=

{
x

(t )

1,i
, x

(t )

2,i
, . . . , x

(t )
U,i

}
, (3)

then we use the average of all locations as the final result in

time slot t, i.e.,

x̄
(t )
i
=

1

U

U
∑

j=1

x
(t )
j,i
. (4)

If the sensing time range is T , the sensing results for

participant i for time period T is given as follows:

x
(T )
i
=

{
x

(1)
i
, x

(2)
i
, . . . , x

(T )
i

}
, (5)

then we use the average of all time slots as the final result for

time period T , i.e.,

x̄
(T )
i
=

1

T

T
∑

t=1

x
(t )
i
. (6)

C. Privacy Protection Model

We use differential privacy to provide PPLs for the data

collected by each participant. Each participant can indepen-

dently conduct obfuscation of the data collected, and then

upload the obfuscated sensing data and PPL to the platform for

evaluation. Here, we assume that the platform can accurately

detect each participant’s PPL.

Different types of sensing data may have different tolerable

error ranges, i.e., sensitivity. For example, a human body

temperature’s tolerable error range is 1, while the tolerable

error range of a vehicle’s velocity is 10, we normalize sensing

data to the range [0, 1]. If the data submitted to the platform

is out of range, the system will prohibit this participant from

participating in this task. We define sensitivity as follows:

Definition 1 (l-Sensitivity). D(d) and D′
(d)

are adjacent data

which satisfies l-sensitivity, if



D(d) − D′

(d)




1
≤ l, where l is

the data range of sensing data, d is data dimension, | |1 is the

1-th order norm distance.

Next, we define differential privacy as follows:

Definition 2 (Differencial Privacy [9]). Suppose ε is a

positive real number, f represents a random algorithm. For

two adjacent data sets D and D′, if any output result x of

algorithm f on data sets D and D′ satisfies the following

inequality,

Pr
[

f (D) = x
] ≤ exp(ε) Pr

[

f
(

D′
)

= x
]

, (7)

f satisfies ε-differential privacy.

For different types of sensing data, privacy protection

methods are different. There are two common noise adding
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mechanisms, namely Laplace mechanism and exponential

mechanism. The former is for numerical results and the latter

is for non-numeric results. In this paper, we only consider

numerical data, so participant i uploads data xi with Laplace

mechanism, i.e., xi = xi + Laplace(0, l
εi

). As shown in Fig.

3, if the obfuscated data of participant i is xi , its actual data

may be x̃i or x̃
′

i
with probability pi and p

′

i
, so an attacker

is difficult to determine the actual sensing data. Additionally,

qi and q
′

i
represent the probabilities that the actual data di

is selected under different PPLs. We can see from the figure

that the higher the PPL, the higher probability that the actual

sensing data is selected, the easier the data is leaked.

For time-invariant tasks, we have the following threom:

Theorem 1. For a time-invariant task, a participant per-

forms sensing V times. For the i-th sensing, the sensing

data achieves ε j,i-differential privacy. By adding noise which

follows Laplace distribution with probability density function

(pdf) 1
2b

e−
|x j, i |

b , where b = Vl
∑V

i=1
εj, i

, the time-invariant task

satisfies
∑V

i=1 ε j,i-differential privacy.

Proof. See Appendix A. �

Similarly, the following theorem is for time-varying tasks:

Theorem 2. For a time-varying task at time slot t, a partici-

pant performs sensing U locations. For the i-th location, the

sensing data achieves ε
(t )
i

-differential privacy. By adding noise

which follows Laplace distribution with pdf 1
2b

e−
����x

(t )
j, i

����
b , where

b = l

max ε
(t )
j, i

, the time-varying task satisfies max ε
(t )
j,i

-differential

privacy.

Proof. See Appendix B. �

Theorem 3. For a time-varying task for time period T, by

adding noise which follows Laplace distribution with pdf

1
2b

e−
����x

(t )
i

����
b , where b = l

max
1≤t≤T

max
1≤k≤U

ε
(t )

k, i

, the time-varying task

satisfies max
1≤t≤T

max
1≤k≤U

ε
(t )

k,i
-differential privacy.

Proof. The proof is similar to that of Theorem 2. �

D. Data Evaluation and Aggregation Model

Before data aggregation, we first evaluate the effectiveness

of sensing data, we give the follow definition:

Definition 3 (β-Effectiveness). For the sensing data with

noise, i.e., x uploaded by a participant at one time, if it

satisfies:

D(x) < β, (8)

x is valid, otherwise x is considered invalid, where D(x) is

defined as follows:

D(x) =

√

(x − µ)T H−1(x − µ), (9)

where µ is the mean value of sensing data x, the calculation

method is shown in Eqs. (2) and (4), and H−1 is covariance

of sensing data x.

Fig. 3: Illustration of Private Protection Model.

Fig. 4: Data evaluation for the student information of a college,

where β is 6.

Fig. 4 presents an example of data evaluation for the student

information of a college.

Definition 4 ((λ, η)-Accuracy). The aggregated result x̂ of

sensing data can achieve (λ, η)-accuracy, if

Pr[| x̂ − x | ≥ λ] ≤ 1 − η (10)

where x is the sensing data with noise.

This definition means that probability of aggregation error λ

is limited by 1−η. From the perspective of estimation theory, λ

represents the confidence interval, η represents the confidence

level. Then, we propose to deduce the relationship between

participants’ PPLs and platform aggregation error.

Theorem 4. For a given η ≤ 1, the aggregation error λ of

sensing data under our privacy protection mechanism is given

by the following formula:

λ = l

(1 − σ)
∑M

i=1
1
εi
+

√

(1 − σ)2(
∑M

i=1
1
εi

)2
+ 8(1 − η)σ

∑M
i=1

1

ε2
i

2M (1 − η)
,

(11)

where σ ∈ (0, 1) is a control parameter. We can see that the

platform hopes to obtain higher PPLs to reduce aggregation

error, while participants hope to adopt lower PPLs to protect

their privacy better.
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Proof. We introduce a generalized form of Chebyshev in-

equality combined with Markov inequality:

P( |x − E(x) | ≥ λ) = P( |x | ≥ λ) ≤

σ
V ar (x)

λ2
+ (1 − σ)

E( |x |)
λ
, σ ∈ (0, 1)

(12)

thus we have:

(1 − σ)λ2 − [(1 − σ)
l

M

M
∑

i=1

1

εi
]λ − 2l2

M2

M
∑

i=1

1

ε2
i

= 0. (13)

Then we have

λ = l

(1 − σ)
∑M

i=1
1
εi
+

√

(1 − σ)2(
∑M

i=1
1
εi

)2
+ 8(1 − η)σ

∑M
i=1

1

ε2
i

2M (1 − η)
(14)

For the ease of the following discussion, we let σ = 1, then

we have

λ =

√
2l

M
√

1 − η

√
√

√

M
∑

i=1

1

ε2
i

. (15)

�

After the participants upload sensing data to the platform,

PES first evaluates sensing data by using Eq. (9). We denote

N̂ as the number of valid data, which is given as follows:

N̂ =

K
∑

i=1

I (β(xi )) (16)

where I (·) is the indication function which judges whether xi
satisfies β(xi )-Effectiveness and K is the number of uploaded

sensing data .

For time-invariant tasks, the valid sensing result is:

x̄i =
1

N̂

N̂
∑

j=1

x j,i, (17)

where x N̂,i represents effective data, and N̂ ≤ V .

According to Theorem 1 we can obtain that the ag-

gregated sensing data of time-invariant tasks satisfies

(λ, 2

λ2 N̂2

∑N̂
i=1 ( l

∑V
j=1

εj, i
)
2
)-accuracy.

For time-varying tasks, the valid sensing result at time slot

t is:

x̄
(t )
i
=

1

N̂

N̂
∑

j=1

x
(t )
j,i
, (18)

where x
(t )
j,i

represents effective data, and N̂ ≤ U.

Similarly, according to Theorem 2 we can obtain that

the aggregated sensing data of time-varying tasks satisfies

(λ, 2

λ2 N̂2

∑N̂
i=1 ( l

max ε
(t )
j, i

)
2
)-accuracy.

If the sensing data is invalid, CCS refuses the data and

feeds back the corresponding information to the participant,

otherwise passes the data to DAS for further processing.

Finally, the participant will be notified the corresponding

information such as upload success or upload fail.

Smartphone participant i

(follower)

MCS Platform

(leader)

Payment Policy 

Sense Report x with Noise
Data Privacy 

Protection

Data Sensing Efforts

Payment Result
Evaluation 

Privacy

time time

 = !"#$%0&$&'  

"#$  
($ = )*")*+, -1#$. / ($  

Fig. 5: Game overview. The stackelberg game is between the

platform and the participants. Firstly, the platform acts as a

leader to broadcast a payment list, then the participants act

as followers, choosing their PPLs and uploading the sensing

data. Finally, the participants get payment from the platform.

IV. STATIC PRIVACY-PRESERVING DATA AGGREGATION

GAME

In this section, we propose to make use of static Stackelberg

game to solve the conflict between leaders and followers

[34], where the platform as a leader first broadcasts payment

strategy to each participant who participates in sensing tasks,

and then the participant as a follower spontaneously chooses

a PPL to obtain the corresponding payment. For simplicity,

the PPL of participant i, i.e., εi is quantified as J + 2 levels,

εi ∈ ε = {a−1, a0, a1, · · · , aJ }. For example, if εi = a−1,

participant i adds too much noise to the sensing data, if

εi = a0, participant i does not provide sensing service

because he is not willing to reveal his privacy, if εi = J, it

fully performs sensing tasks without considering his privacy,

and other conditions indicate that the participant personalizes

his privacy to participate in sensing tasks. Based on the

evaluation algorithm, it is assumed that the platform knows

εi by evaluating the sensing data. Participants who provide

higher PPLs require higher payment from the platform. The

payment for participant i with PPL εi is represented by

pεi ∈ p. Since each PPL matches one payment, the payment

of platform is quantified as N + 2 levels, and is represented

by p = [p−1, p0, p1, p2, · · · , pN ], where p−1 is the payment

for PPL a−1 and p0 is the payment for PPL a0. We define

yn = {ynj }1≤n≤N,1≤ j≤J , where ynj is the payment for level n

and PPL j and monotonically increasing. And pεi is chosen

from yn, where εi ∈ {a1, · · · , aJ } and 1 ≤ n ≤ N . The static

privacy-preserving data aggregation game is shown in Fig. 5.

When receiving a sensing task from the platform, participant

i determines whether to participate in the sensing task and his

PPL. If participant i sends a sensing data with PPL εi, the

utility ui can be expressed as:

ui
(

εi, pεi
)

= pεi − εicεi − ci, (19)

where cεi is the unit cost for εi , ci is the cost of participant i

excluding privacy such as energy consumption.

Based on Eq. (15), the platform benefit is:

Bene f it(ε, p) =
R

√
2l

M
√

1−η

√

∑M
i=1

1

ε2
i

, (20)

where R is a constant.

We can observe the benefit of platform from Fig. 6(a) that,

as the range of PPLs increases, the overall benefit of platform

increases. We can see from Fig. 6(b) that when PPLs are
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within a given range, the finer the granularity of the range,

the greater the overall benefit of platform. For different ranges

of sensing data, the benefit of platform decreases as the data

range increases, as shown in Fig. 6(c).

Thus the utility of platform is given as follows:

us (ε, p) = Bene f it(ε, p) −
M
∑

i=1

pεi . (21)

The NE of the game is denoted by [ε∗, p∗], where ε
∗
=

[ε∗
i
]0≤i≤M and p

∗
= [p∗

j
]−1≤ j≤J , where ε∗ and p∗ are given

by

ε∗i = arg max
εi ∈ε

ui
(

εi, p
∗) , 1 ≤ i ≤ M (22)

p∗j = arg max
pj ∈p

u
(

ε
∗, pj

)

. − 1 ≤ j ≤ J (23)

We consider a special case with 2 PPLs for data aggregation,

i.e., J = 1. In this case, participant i either sends sensing data

with PPL εi = a1 or does not attend the task with εi = a0.

When εi = a0, from Eqs. (21) and (23), we have p∗
0
= 0.

Thus the NE of the payment strategy of platform is given by

p
∗
= [0, p∗

1
].

Theorem 5. If

(

R
√

1−η
√

2Ml
− ca1

)

a1 > max1≤i≤M ci , then the

unique optimal NE of the static payment-PPL game G with

J = 1 is as follows

ε∗i = a1, 1 ≤ i ≤ M

p
∗
=

[
0, max

1≤i≤M
cεi + ci

]
.

(24)

Proof. From Eq. (19), if p∗
1
= max1≤i≤M εicεi + ci , we have

ui (a1, p
∗) = p∗

1
− a1ca1

− ci ≥ 0 = p∗
0
= ui (a0, p

∗). Thus,

if p∗
1
≥ max1≤i≤M a1ca1

+ ci , Eq. (22) holds for ε∗
i
= a1,

∀1 ≤ i ≤ M. From Eq. (21), u monotonically decreases

with p1, yielding us ([a1, · · · , a1], [0, p1]) =
R
√

M (1−η)a1√
2l

−

Mp1 <
R
√

M (1−η)a1√
2l

− Mp∗
1
= us

(

[a1, · · · , a1],
[
0, p∗

1

] )
,

∀p1 > p∗
1
, and from Eq. (23), we have p∗

1
=

max1≤i≤M a1ca1
+ ci . If

(

R
√

1−η
√

2Ml
− ca1

)

a1 > max1≤i≤M ci, we

have us
(

[a1, · · · , a1],
[
0, p∗

1

])
> 0. Thus, Eq. (23) holds for

Eq. (24), which is an NE of the game.

Now we prove that this NE is unique. We assume an-

other NE is (ε
′
, p
′
), where (ε∗, p∗) , (ε

′
, p
′
). We assume

ε′
i
= a0 is participant i’s PPL. As shown in Eq. (19),

ui
(

ε′
i
, p′

)

= 0 < ui
(

ε∗
i
, p∗

)

. Thus, (ε∗, p∗) is unique. �

Remark 1. In this scenario, all M participants perform sens-

ing tasks including time-invariant tasks and time-varying

tasks.

We now consider the scenario with 3 PPLs, in which

participant i submits a high-PPL sensing data, i.e., εi = a1,

a low-PPL sensing data, i.e., εi = a2, or does not attend the

task, i.e., εi = a0. As p∗
0
= 0, the NE of payment strategy is

given by p
∗
= [0, p∗

1
, p∗

2
].

Proposition 1. Participant i submits a low-PPL sensing data

with ε∗
i
= a2, if

p∗2 = max
(

a2ca2
+ ci, p

∗
1 + a2ca2

− a1ca1

)

(25)

Proof. If p∗
2
> a2ca2

+ ci, from Eq. (22) we have

ui
(

a2, p
∗)
= p∗2 − a2ca2

− ci ≥ 0 = p∗0 = ui
(

a0, p
∗) (26)

If p∗
2
> p∗

1
+ a2ca2

− a1ca1
, we have

ui
(

a2, p
∗)
= p∗2 − a2ca2

− ci ≥ p∗1 − a1ca1
− ci = ui

(

a1, p
∗)

(27)

Combining Eqs. (26) and (27), we have ε∗
i
= a2,

if p∗
2
≥ max

(

a2ca2
+ ci, p

∗
1
+ a2ca2

− a1ca1

)

, As us
decreases with payment, if 0 ≤ p∗

1
≤ a1ca1

+ ci , we have

p∗
2
= a2ca2

+ ci; otherwise, if p∗
1
> a1ca1

+ ci, we have

p∗
2
= p∗

1
+ a2ca2

− a1ca1
. �

Proposition 2. Participant i submits high-PPL sensing data

with ε∗
i
= a1, if

p∗1 = max
(

a1ca1
+ ci, p

∗
2 − a2ca2

+ a1ca1

)

(28)

Proof. The proof is similar to that of Proposition 1. �

Proposition 3. Participant i does not submit sensing data, i.e.,

ε∗
i
= a0, if

p∗1 < a1ca1
+ ci and p∗2 < a2ca2

+ ci (29)

Proof. The proof is similar to that of Proposition 1. �

Theorem 6. If
R
√

1−ηa2√
2Ml

> max1≤i≤M a2ca2
+ ci, we have

u ([a2, . . . , a2], p
∗) > 0, then NE of the static payment-PPL

game G for the sensing tasks with J = 2 is as follows

ε∗i = a2, 1 ≤ i ≤ M

p
∗
=

[
0, 0, max

1≤i≤M
a2ca2

+ ci

]
.

(30)

Proof. If p∗
2
≥ max

(

a2ca2
+ ci, p

∗
1
+ a2ca2

− a1ca1

)

,

we have ε∗
i
= a2, ∀1 ≤ i ≤ M. By Eq. (21),

us monotonically decreases with p2, yielding

us
(

[a2, · · · , a2],
[

0, p1, p2

] )

=
R
√

M (1−η)a2√
2l

− Mp2 <

R
√

M (1−η)a2√
2l

− Mp∗
2
= us

(

[a2, · · · , a2],
[
0, p1, p

∗
2

])
,∀p2 > p∗

2
.

Therefore, from Eq. (23), we have p∗
2
= max1≤i≤M a2ca2

+ ci

and p∗
1
= 0 in this case. If

R
√

1−ηa2√
2Ml

> max1≤i≤M a2ca2
+ ci,

we have us ([a2, . . . , a2], p
∗) > 0. Thus, Eq. (23) holds for

Eq. (24), which is an NE of the game. �

Theorem 7. If
R
√

1−ηa1√
2Ml

> max1≤i≤M a2ca2
+ ci, then the NE

of the static payment-PPL game G with ε = [a−1, a0, a1] is as

follows
ε∗i = a1, 1 ≤ i ≤ M

p∗ =
[
0, 0, max

1≤i≤M
a2ca2

+ ci

]
.

(31)

Proof. If p∗
1
> a2ca2

+ ci, we have ui (a1, p
∗) = p∗

1
−

a1ca1
− ci ≥ 0 = p∗

0
= ui (a0, p

∗) and ui (a1, p
∗) = p∗

1
−

a1ca1
− ci ≥ p∗−1

− a−1ca−1
− ci = ui (a−1, p

∗). Thus, if

p∗
1
> max1≤i≤M a2ca2

, Definition 3 holds for ε∗
i
= a1,∀1 ≤

i ≤ M. From Eq. (21), us monotonically decreases with p1,
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(a) PPL ranges are 0-1, 1-10, 10-20, 20-30, 30-
40, the number of intervals is 10, and confidence
level η = 0.95.
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Fig. 6: Performance of the static payment-privacy game.

yielding us
(

[a1, · · · , a1],
[

0, 0, p1

])

=
R
√

M (1−η)a1√
2l

− Mp1 <

R
√

M (1−η)a1√
2l

− Mp∗
1
= us

(

[a1, · · · , a1],
[
0, 0, p∗

1

] )
,∀p1 > p∗

1
.

Therefore, from Eq. (23), we have p∗
1
= max1≤i≤M a2ca2

+ci. If
R
√

1−ηa1√
2Ml

> max1≤i≤M a2ca2
+ ci , we have us ([a1, · · · , a1]) >

0. Thus, Eq. (22) holds for Eq. (31), which is an NE of the

game. �

In summary, we have discussed the scenarios with J = 1

and J = 2, i.e., participant i selects to send data with low PPL

with εi = a2, high PPL with εi = a1, does not join in the task

with εi = a0, or submit over-noise data with εi = a−1. The

NEs of the static payment-PPL game in these scenarios show

the impacts of privacy cost and other cost.

V. DYNAMIC LEARNING IN PRIVACY-PRESERVING DATA

AGGREGATION GAME

In this section, the interactions between platform and M

participants can be formulated as a dynamic game. On the

platform side, on the one hand, a higher payment for accurate

sensing data will reduce the utility of platform, but will

stimulate more participants to participate in sensing tasks

in the future. On the other hand, over-payment may cause

some illegal participants to join, thus reducing the long-

term utility of platform. On the participant side, participants

usually choose PPLs and upload sensing data according to

the payment history of platform. Long-term low payment will

inhibit participants’ participation. In view of the inability to

timely and accurately evaluate system parameters between the

two sides of the system, we apply reinforcement learning

which is a trial error method and does not need to know the

specific parameters of the overall system model, such as Q-

learning, (DQN) and so on, to obtain the optimal strategies of

both sides.

A. Payment Based on Q-Learning

A finite Markov Decision Process (MDP) can formulate the

payment decision process of platform. Therefore, the platform

can dynamically adjust the payment strategy. In each time

slot, the state of platform is composed of each participant’s

PPL. According to the current state, the platform selects the

corresponding payment strategy by using ξ-greedy strategy.

We assume that the privacy evaluation algorithm is valid for

all the sensing data, as shown in Section III. In time slot t,

the platform state s
(t ) is composed of the number of different

PPLs of M participants. The number of sensing data with PPLs

received by the platform in time slot t is:

N̂
(t )
j
=

M
∑

i=1

I (β(x)), 0 ≤ j ≤ J (32)

Taking into account the different natures of two tasks,

for the type of time-invariant tasks τ1, participant i’s PPL

εi =
∑N̂

j=1 ε j,i where ε j,i means the PPL of participant i’s

j-th sensing data, and for the type of time-varying tasks τ2,

participant i’s PPL εi = max ε
(t )
j,i

where ε j,i means participant

i’s PPL at location j. Under these conditions, the benefit of

platform can be written as:

Bene f it(ε, p) =



R√
2l

M
√

1−δ

√

∑M
i=1

1

(
∑

ε j, i )
2

, τ1 ∈ τ, 1 ≤ i ≤ M

R
√

2l

M
√

1−δ

√

∑M
i=1

1
(

max ε
(t )
j, i

)2

, τ2 ∈ τ, 1 ≤ i ≤ M

(33)

Note that for the tasks of the above two types, when participant

i submits sensing data in each time slot, the platform provides

payment to the participant.

The platform payment strategy is based on Q-learning,

where Q(s, p) is set as the Q function of the platform under

the action p of state s. According to ξ-greedy strategy, with

0 < ξ ≤ 1, the platform selects the action with the highest

Q value with the probability of 1 − ξ, and randomly selects

the other actions with probability ξ. Payment strategy p(t ) is

expressed by the following formula:

Pr
(

p
(t )
= p

∗
)

=



1 − ξ, p∗ = arg max
p

(t )
j
∈p Q(s, p)

ξ

J j−1
, otherwise

(34)

However, we consider to make the largest cumulative re-

ward. In the initial stage of learning, increasing the number of
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“exploration” can understand the environment better so that

greater reward can be achieved, while in the later stage, in

order to keep previous reward, we need to increase the number

of “exploitation” so as to better fit our model. In this way, we

can also achieve a better balance between “exploration” and

“exploitation”, so ξ varies according to the following equation:

ξ = ξstart −
(ηstart − ηend ) ∗ learning step

annealing step
(35)

where ξstart , ξend and annealing step are constants, and

learning step changes with the number of iterations. When

ξstart reduces to ξend , ξ does not change.

The platform observes ε(t ) of sensing data calculated by Eq.

(32), and obtains the next platform state s
(t+1) . The value of

s is represented by the highest V (s) in the state. The platform

updates its Q function by:

Q(s(t ), p(t ) ) ← (1 − α)Q(s(t ),p (t ) )

+ α
(

u(ε (t ), p(t ) ) + δV (s(t+1) )
)

,
(36)

V
(

s
(t )

)

← max
p(t ) ∈pJ

Q
(

s
(t ), p(t )

)

, (37)

where δ ∈ (0, 1] represents the weight of future payment that

exceeds the current payment. Fig. 7 shows the state transition

of the platform. And Algorithm 1 presents this process.

 (!) "(!) = #$0%&%'
(!*1), +(!*1)- "(!.1) = #$0%&%'

(!) , +(!)- 

Fig. 7: State transition of Q-learning for platform pay-

ment.

Algorithm 1 Payment Based on Q-Learning (PQ)

1: Initialize α, δ, ξstart , ξend , annealing step,

learning step, s0=0, Q(s, p)=0, and V (s)=0, ∀p, s;
2: for t = 1, 2, 3, . . . do

3: Choose p
(t ) via Eq. (34);

4: Update ξ via Eq. (35);

5: for i = 1, 2, . . . ,M do

6: Evaluate xi via Definition 3;

7: end for

8: Receive us (s, p) via Eq. (21);

9: Observe s
(t+1);

10: Update Q
(

s
(t ), p(t )

)

via Eq. (36);

11: Update V
(

s
(t )

)

via Eq. (37);

12: end for

When storing the state-action values of platform, we use

Q-table which is a two-dimensional matrix. In this way, it is

necessary to maintain Q-table at all time in order to obtain the

optimal action-state pairs.

Lemma 1. As the number of participants increases, the size

of Q-table increases exponentially.

Proof. See Appendix D. �

B. PPL Based on Q-Learning

An MDP can also formulate the participants’ PPLs decision

process. Therefore, the participants can also use Q-learning to

execute decision. For participant i, the state observed by the

participant in time slot t is composed of his PPL and platform

payment in the previous state, i.e., s
(t )
i
= [ε

(t−1)
i
, p

(t−1)
i

] ∈ si ,

where si is the state space of participant i. Fig.8 shows the

state transition for participant i’s PPL.

 !
(")

 #!
(") = $ !

("%1), &("%1)' #!
("+1) = $ !

("), &(")' 

Fig. 8: State transition of Q-learning based participant

i’s PPL.

Let Qi (si, εi) denote the value function of participant i, and

Vi (si ) be the state-action function. The Q-function is updated

by:

Qi (s
(t )
i
, ε

(t )
i

) ← (1 − α)Qi (s
(t )
i
, ε

(t )
i

)

+ α
(

ui (s
(t )
i
, ε

(t )
i

) + δV (s
(t+1)
i

)
)

,
(38)

V
(

s
(t+1)
i

)

← max
εi

Qi

(

s
(t )
i
, ε

(t )
i

)

. (39)

Participant i uses ξ-greedy policy to choose his PPL as

Pr
(

ε
(t )
i
= ε∗

)

=


1 − ξ, ε∗ = arg maxpj ∈P Qi

(

s
(t )
i
, ε

(t )
i

)

ξ

J j−1
, otherwise

(40)

And ξ changes as well as via Eq. (35), participant i’s PPL

strategy with Q-learning is written by Algorithm 2.

Algorithm 2 PPL Based on Q-Learning (PPQ)

1: Initialize α, δ, ηstart , ηend, annealing step,

learning step, s
0
i
=0, Qi (si, εi )=0, and Vi (si )=0,

∀si, εi;
2: for t = 1, 2, 3, . . . do

3: Choose ε
(t )
i

via Eq. (40);

4: Update ξ via Eq. (35);

5: Upload data xi and PPL εi to platform;

6: Evaluate xi via Definition 3;

7: Receive ui (εi, pεi ) via Eq. (19);

8: Observe s
(t+1)
i

;

9: Update Qi

(

s
(t )
i
, ε

(t )
i

)

via Eq. (38);

10: Update Vi

(

s
(t )
i

)

via Eq. (39);

11: end for

C. Payment Based on DQN

According to Lemma 1, when the number of participants

increases to a certain level, it is difficult to simply rely on Q-

table because the size of Q-table increases exponentially, so

we adopt DQN to reduce the size of Q-table and obtain more

comprehensive global information. More specifically, DQN
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uses a convolution neural network (CNN) to approximate Q-

function, i.e., Q(s, p; θ) ≈ Q(s, p). And the Q-function is

updated as follows:

Q(s, p) = Es′∈s

[
u′ + γmax

p′∈p
Q

(

s
′, p′

)

]
, (41)

where γ is the discount factor.

We use ϕ(t ) to denote the state sequence in time slot

t which includes the recent W+1 states and W payment

actions, i.e., ϕ(t )
=

{
s

(t−W ), p(t−W ), · · · , s(t−1), p(t−1), s(t )
}
.

The platform experience in time slot t is denoted by e
(t )
={

ϕ(t ), p(t ), u(t ), ϕ(t+1)
}
. The experiences are stored in memory

pool. In our dynamic payment-PPL game, the memory pool

only stores the latest related experiences to save memory

space, i.e., D =
{
e

(d)
}

1≤d≤D
.

In our proposed DQN-base payment-PPL game system as

shown in Fig. 9, our proposed CNN includes 2 convolution

(Conv) layers, 2 Batch Normalization (BN) layers, and 2

full connected (FC) layers. Both of the Conv layers use

rectified linear units (ReLUs) as the activation functions. The

parameters of the layers are summarized in TABLE II. The

state sequence ϕ(t ) is input to the CNN with a 12×10 matrix.

In time slot t, the platform obtains θ(t ) by minimizing the

mean-squared error with learning rate ξ, and uses the loss

function as follows:

L
(

θ(t )
)

= Eϕ,p,us,ϕ′

[
(

u(t )
s + γ max

p′∈pN

Q(ϕ′, p′; θ(t−1) )

−Q(ϕ, p; θ(t ) )
)2
]
.

(42)

Thus

∇θ (t ) L
(

θ(t )
)

= −Eϕ,p,us,ϕ′
[
(

u(t )
s + γ max

p′∈pN
Q(st+1, p′; θ(t−1) )

−Q(s, p; θ(t ) )
)

∇θ (t ) Q(s, p; θ(t ) )

]
.

(43)

The platform repeats stochastic gradient descent (SGD) al-

gorithm in each time slot to update the CNN parameters by

randomly selecting an experience from memory pool. The

payment decision algorithm based on DQN is summarized

in Algorithm 3. And our proposed privacy-preserving data

aggregation Game is presented in Algorithm 4.

VI. PERFORMANCE EVALUATION

Simulations have been carried out to evaluate the perfor-

mance of our privacy-preserving data aggregation game in

crowdsensing.

A. Parameter Settings

System parameter setting: We set the number of partici-

pants M to [60, 120, 180, 240, 300], J = 10, i.e., εi ∈ ε =

{−1, 0, 1, · · · , 10}, and the corresponding participants’ cost

is [1.0, 0, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1], N = 24,

y11 = 1.0, yN1 = 5.6, confidence level δ = 0.95, R=1e5.

Algorithm parameter setting: The learning rate of Q-

learning is 0.2. The learning rate of CNN is derived when

the loss value is minimal after convergence, as shown in Fig.

Algorithm 3 Payment Based on DQN (PDQN)

1: Initialize α, γ, p, D = 36, W = 10, D = ∅, ξstart , ξend ,

annealing step, N̂i = 0;

2: Initialize DQN with random weight θ and structure with

Table II;

3: for t = 1, 2, 3, . . . do

4: s
(t )
= [N̂

(t−1)

0≤i≤J, p
(t−1)];

5: if t ≤ W then

6: Select p
(t ) ∈ p0≤p (t ) ≤N at random;

7: else

8: Obtain ϕ(t )
=

{
s

(t−W ), p(t−W ), · · · , s(t−1), p(t−1), s(t )
}

with weight θ(t ) ;

9: Obtain Q(p);

10: Select p
(t ) via the ξ-greedy algorithm;

11: Update ξ via Eq. (35);

12: end if

13: Calculate payment list p
(t ) with p(t );

14: Broadcast the recruit message with p
(t );

15: while Receiving sensing data and PPL from participant

i do

16: Evaluate xi via Definition 3 and pay participant i with

p
(t ) (ε

(t )
i

);

17: end while

18: Obtain u
(t )
s (s, p(t−1) );

19: for 0 ≤ i ≤ J do

20: Calculate N̂
(t )
i

via Eq. (32);

21: end for

22: D ← D⋃

e
(t );

23: for d = 1, 2, · · · , D do

24: Randomly select e(d) from D;

25: Q(d) ← u(d)
+ γmaxp′ Q

(

s
(d+1), p′; θ(t )

)

;

26: end for

27: Calculate θ(t ) via Eq. (42);

28: Update the CNN weight with θ(t ) using SGD algorithm;

29: end for

10. We can find that the learning rate is between 0.2 and

0.6, in our simulations, we set the learning rate to 0.3, and

ξstart=0.3, ξend = 0.1, anneal step=1000. The unit cost of

privacy is randomly selected from 1 to 2. Each simulation is

carried out 500 times, and the average result is obtained.

B. Participants’ Performance

We compare DQN where the platform uses DQN algorithm

and the participants use Q-learning algorithm due to insuffi-

cient computation resource of smart devices, Q-learning where

both platform and participants use Q-learning algorithm, and

Random where the platform pays to the participants randomly

without considering their PPLs.

As shown in Fig. 11(a), we can see that the average utility

of participants using DQN is 3.17% more than that of Q-

learning, and 24.33% more than that of Random. We can also

observe the DQN converges much quickly than Q-learning.

It is because DQN applies CNN to map state-action pairs in

order to accelerate learning speed.

Fig. 11(b) uses boxplot to represent the PPL distribution of

participants, we can see that the PPLs using both DQN and
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Fig. 9: Illustration of DQN-based Payment-PPL game.

TABLE II: CNN parameters in Algorithm 3.

Layer Conv 1 BN 1 Conv 2 BN 2 FC 1 FC 2

Input 12 × 10 10 × 8 × 20 10 × 8 × 20 5 × 4 × 30 600 300

Filter size 5 × 5 / 3 × 3 / / /

Stride 2 / / 1 / /

Padding 1 / 1 / / /

Number of filters 20 / 30 / 300 N

Activation ReLU / ReLU / ReLU /

Output 10 × 8 × 20 10 × 8 × 20 5 × 4 × 30 5 × 4 × 30 300 N

Q-learning are higher than those using Random, due to the

fact that both DQN and Q-learning adopt learning strategies to

make decisions, leading to that participants are more inclined

to decrease their PPLs in order to obtain more payment.

We can also observe that with the increase of the number

of participants, the range using DQN is narrower than that

using Q-learning. It is because as the number of participants

increases, the state and action set is large, the learning speed

of Q-learning reduces, resulting in inaccurate PPL estimation

compared with DQN.

Fig. 11(c) shows that with the increase of the number

of participants, the average utility of participants using Q-

learning and Random keeps stable, the stable utility of Random

is because the payment is randomly selected based on the

participants’ PPLs, while the stable utility of Q-learning is

because the payment is chosen based on the participants’

PPLs, and the number of participants does not affects the

payment selection. We observe that the average utility of

participants using DQN increases as the number of participants

increases, it is because as the number of participants increases,

the size of state-action set increases, DQN uses CNN to

accelerate learning speed and improves payment matching

accuracy, resulting in higher average utility. More specifically,

the average utility of participants using DQN increases 1.37%

than that of Q-learning and 21.46% than that of Random.
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Algorithm 4 Privacy-Preserving Data Aggregation Game in

Crowdsensing

Input: Task type τ;

Output: Sensing data x;

1: Recruit users to participate in sensing tasks;

2: Get p via Algorithm 1 or Algorithm 3;

3: if τ == τ1 then

4: for i = 1 to V do

5: Participant i chooses PPL εi via Algorithm 2;

6: Obtain the number of valid data via Eq. (16);

7: end for

8: Obtain participant i’s sensing data xi via Eq. (17);

9: return xi;

10: else

11: At time slot t ∈ T ;

12: for i = 1 to U do

13: Participant i chooses PPL εi via Algorithm 2;

14: Obtain the number of valid data via Eq. (16);

15: end for

16: Obtain time i’s sensing data xt via Eq. (18);

17: return xt ;

18: end if
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Fig. 10: The CNN loss value and learning rate.

C. Platform Performance

As shown in Fig. 12(a), the average aggregated error us-

ing DQN reduces by 4.31% compared with Q-learning and

12.88% compared with Random. We also observe that the

average aggregated error using DQN converges faster than

using Q-learning due to the employment of CNN to accelerate

learning speed. Similarly, Fig 12(b) depicts that, the average

utility of platform is the largest when DQN is used, with

4.58% more than Q-learning and 15.39% more than Random.

And the convergence of DQN is faster than that of Q-learning.

Fig. 12(c) shows that as the number of participants in-

creases, the average aggregated error decreases according

to Eq. (15). More specifically, the average aggregated error

using DQN decreases by 2.67% compared with that using Q-

learning, and the average aggregated error using Q-learning

decreases by 12.40% compared with that using Random.

We observe in Fig. 12(d) that with the increase of the num-

ber of participants, the average utility of platform increases.

It is because the aggregated error decreases as the number

of participants increases, resulting in the benefit of platform

increases, while the average payment to the participants does

not change much as shown in Fig. 11(c). More specifically, the

average utility of platform using DQN is 2.70% more than that

using Q-learning and 12.84% more than that using Random.

Fig. 12(e) shows the change of loss value in the CNN

learning process. It can be seen that the loss value increases

with the increase of the number of participants, it is because

the utility of platform increases as the number of participants,

according to Eq. (42), the loss value increases. However, with

the increase of the number of iterations, the loss value is stable,

leading to stable payment.

Fig. 12(f) shows the payment distribution of platform. Being

consistent with PPL distribution of participants in Fig. 11(b),

with the increase of the number of participants, the range using

DQN is narrower than that using Q-learning. It is because as

the number of participants increases, the state and action set

is large, DQN improves the learning speed, resulting in more

accurate payment estimation compared with Q-learning.

VII. CONCLUSION

In this paper, we have formulated a payment-PPL game and

derived the NE of the static game, where the platform chooses

a specified payment according to each participant’s PPL. In

the dynamic payment-PPL game, a Q-learning algorithm is

used to derive the payment-PPL strategy without knowing

system model. We then employ a deep reinforcement learning

technique, i.e., DQN to accelerate learning speed especially

when the size of state-action pairs is large. We have carried

out extensive simulations to demonstrate that compared with

Q-learning algorithm, our proposed DQN based algorithm has

greater utilities of both platform and participants and less data

aggregation error.
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APPENDIX A

PROOF OF THEOREM 1

Proof. Given two adjacent data set D1 and D2 with only one

different element, let xi ∈ D1 and x
′
i
∈ D2. And, known by

Eq. (1)
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Fig. 11: Performance of participants.
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(44)

where the elements in x are all the same, inequality a holds

because of triangle-inequality. Further, we can get

Pr (xi = x)

Pr
(

x
′
i
= x

)

c
≤ e

∑V
i=1

l
b = e

∑V
i=1

εi , (45)

where inequality c holds because of Definition 1. Accord-

ing to Definition 2, the time-invariant task satisfies
∑V

i=1
εi-

differential privacy. Therefore, Theorem 1 is proved. �

APPENDIX B

PROOF OF THEOREM 2

Proof. Given two data sets D1 and D2 where k-th element is

different, x
(t )
i
∈ D1 and x

′
i
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Inequality d holds because of Definition 1 and triangle-

inequality. Due to 1 ≤ k ≤ U,

Pr
(

x
(t )
i
= x

)

Pr
(

x
(t )
i

′
= x

) ≤ e
min

{

ε
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i
|ε(t )

i
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1≤k≤U
ε
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k

}

≤ e
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(t )
i
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(47)

According to Definition 2, the time-invariant task satis-

fies
∑V

i=1
εi-differential privacy. Therefore, Theorem 2 is

proved. �

APPENDIX C

PROOF OF THEOREM 3

Proof. Given two data sets D1 and D2 where m-th element is

different, x
(t )
i
∈ D1 and x

(t )
i

′ ∈ D2. Then, we have
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k
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Furthermore, we consider a sensing task in period T , given two

dat sets D3 and D4 which j-th element is different, x
(T )
i
∈ D3

and x
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i

′ ∈ D4. Thus, we have
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Inequality g holds because of Definition 1 and triangle-

inequality. Due to 1 ≤ n ≤ T ,

Pr
(

x
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2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2957400, IEEE Internet of
Things Journal

14 IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, DECEMBER 2019

0 1000 2000 3000 4000 5000
11

12

13

14

15

16

Q-learning

Random

DQN

Time slot

0 1000 2000 3000 4000 5000

A
v
e
ra

g
e
 a

g
g
re

g
a
ti
o
n
 e

rr
o
r 

o
f 
p
la

tf
o
rm

11

12

13

14

15

16

(a) The average aggregated error of platform.

Time slot

0 1000 2000 3000 4000 5000

A
v
e
ra

g
e
 u

ti
lit

y
 o

f 
p
la

tf
o
rm

×104

6

6.5

7

7.5

8

Q-learning

Random

DQN

(b) The average utility of platform.

60 120 180 240 300
5

10

15

20

25

30

Random

Q-learning

DQN

Number of participants

60 120 180 240 300

A
v
e
ra

g
e
 a

g
g
re

g
a
ti
o
n
 e

rr
o
r 

o
f 
p
la

tf
o
rm

5

10

15

20

25

30

(c) The average aggregated error with the increase
of the number of participants.

Number of participants

60 120 180 240 300

A
v
e
ra

g
e
 u

ti
lit

y
 o

f 
p
la

tf
o
rm

×104

3

4

5

6

7

8

Random

Q-learning

DQN

(d) The average utility of platform with the increase
of the number of participants.

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

80

60 participants

120 participants

180 participants

240 participants

300 participants

Time slot

0 1000 2000 3000 4000 5000

L
o

s
s
 v

a
lu

e
 o

f 
C

N
N

0

10

20

30

40

50

60

70

80

(e) CNN loss value with the increase of the number
of participants.

     

P
a
y
m

e
n
t 
le

v
e
l 
o
f 
p
la

tf
o
rm

0

5

10

15

20

25

30

35

Number of participants

DQN

Q-learning

Random

60 120 180 240 300

(f) The payment distribution of platform.

Fig. 12: Performance of platform.

According to inequality (47), we can further derive

Pr
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According to Definition 2, the time-invariant task satis-

fies
∑V

i=1
εi-differential privacy. Therefore, Theorem 3 is

proved. �

APPENDIX D

PROOF OF LEMMA 1

Proof. In a crowdsensing task, it is assumed that there are M

participants, N payment levels of the platform, and J PPLs.

For the platform, a payment is selected through Q-table, and a

record is required for each payment. For the participants, we

first consider that each participant will randomly select a PPL,

and then each participant will have J choices, among which

M participants have JM choices, that is the number of N̂j ,

the size of Q-table is at most N × JM . This proves that, as M

increases, the size of Q-table size increases exponentially. �
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