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Abstract—The D2D (Device-to-Device) communication has
been very popular as it is a promising and low-cost solution to re-
duce the burden on the cellular network. However, there are rare
concerns about the distribution and pairing of DUEs(D2D user
equipments), which have a significant impact on QoS (Quality of
Service) of D2D communication. In this paper, we propose a novel
algorithm based on the coalitional game to optimally adjust the
distribution of DUEs. The proposed algorithm aims to form the
optimal coalition structure, which achieves a balance between the
throughput and power consumption of each coalition, obtaining
the enhanced QoS of D2D. We show that our algorithm is
superior to the benchmark models in terms of the throughput
and energy efficiency of the DUE coalition. To further improve
the QoS, we also propose a method to predict and maximize the
pairing probability of DUEs. The proposed prediction method
adopts the Logistic Regression to model the global pairing
probability according to the communication parameters of DUEs.
Experimental results show that the proposed prediction method
is significantly superior to the benchmark methods in terms
of prediction accuracy. In addition, the pairing probability
maximization algorithm proposed also significantly improves the
pairing probability.

Index Terms—D2D communication, coalition formation, DUE
pairing, quality of service

I. INTRODUCTION

One of the most engaging challenges for mobile operators

today is how to manage the exponential data traffic increase.

As one of the most important forms of mobile data offloading

[1], D2D communication has a positive prospect thanks to the

exponential data traffic increase of wireless communication

in many novel applications, such as crowdsensing [2-3] and

industrial IoT (Internet of Things) [4-5]. D2D communication

enables DUEs to exchange data directly without the relay of

the base station (BS) so as to lower the burden on the cellular

network [6]. In this paper, we consider a wireless cellular

network where all the DUEs colocated within a given area

covered by a BS are interested in offloading the same common

data in a cooperative manner. We address the cooperative

data offloading among DUEs by the coalition formation game

[7-8], in which the players adopt cooperative strategies to

form the coalitions for improving individual payoff. Coalition

formation game has recently been adopted for modeling the
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cooperative behaviors of communication nodes. For example,

[9] formulates the cooperative content dissemination problem

in D2D communication to optimize power and throughput with

constraints of coalition size and density of DUEs. However, the

proposed centralized approach requires global channel state

information, leading to high computational complexity. For

the dynamic heterogeneous network scenarios, e.g., cellular

networks, distributed approaches are more suitable. In [10],

the cooperative DUE distribution in the context of cellular

networks is investigated. It assumes that the fringe DUEs of

the cell cannot download the whole data from the BS due

to the limited radius of broadcasting. To tackle this problem,

authors allow the central DUEs to exchange the missing

chunks through a game theoretic approach without considering

power consumption during the cooperative coalition formation

procedure. [11] also adopts the coalitional game to investigate

DUE distribution, but it focuses on mobile ad-hoc networks,

where multiple DUEs compete for accessing the wireless

channels.

Meanwhile, in order to get interested data from another

DUEs, one DUE needs to pair with another DUE. The

probability of DUE pairing can directly influence the QoS of

D2D Communication such as the delay in data offloading. The

prediction of pairing probability requires a lot of data, which

is exactly generated by mobile networks every day. Therefore,

machine learning, driven by massive data, has attracted the

attention of analysts and researchers in D2D communication.

[12-13] study both independent and coordinate reinforcement

learning for power control in femtocell networks. [14] studies

the performance on the throughput of D2D by using different

types of Q-Learning based power control algorithms and

different reward functions. But the above work will suffer

from high time complexity and the curse of dimensions due

to lack of prior data. In [15], Decision-Tree-based D2D power

control algorithm is proposed. As a learning model with prior

data, Decision Tree takes a relatively short time to train data.

However, due to the low classification accuracy, the throughput

of the algorithm proposed in [15] is not very good.

In this paper, we solve the problem of DUE distribution

based on the coalitional game, Then we predict the probability

of DUE pairing on the basis of the stable coalition structure.
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Fig. 1. Cooperative communication scenario

Finally, we optimize the DUE pairing probability. The major

contributions of this paper are summarized as follows:

• A coalition formation algorithm of DUEs is proposed to

maintain the balance of throughput and power consump-

tion of DUE coalitions. Unlike most existing literature,

this paper uses the water-filling power allocation [18]

to each DUE in the coalition to improve the energy

efficiency D2D communication.

• Unlike most existing works, which use the data-free re-

inforcement learning to predict the DUE pairing proba-

bility, we propose a logistic-regression-based probability

prediction model to predict of DUE pairing probability

with historical data.

• A DUE pairing probability maximization algorithm

based on hill-climbing [16] is proposed to further im-

prove the DUE pairing probability.

The rest of this paper is organized as follows. Section

II describes the coalition formation of DUEs. Section III

proposes the probability prediction and optimization method

of DUE pairing. Section IV gives the experimental results and

analysis. Section V concludes this paper.

II. SYSTEM MODEL

The goal of coalition formation is to maximize the through-

put and reduce the power consumption of DUE coalition as

much as possible.

A. Communication scenario

As shown in Fig.1, we consider a single cell D2D commu-

nication scenario in the work mode of TDMA (Time Division

Multiple Access). Each DUE is regarded as the transmitter,

and BS is regarded as the receiver. The set of all DUEs in the

TABLE I
FREQUENTLY USED NOTATIONS

Notation Description
N set of DUEs
T number of the DUEs
S coalition
rS signal vector of coalition S
GS transmitting signal vector of each slot in coalition S
HS matrix of fast fading channel
zS signal sent by a DUE in coalition S
QS covariance matrix of transmitting signal zS
β channel fading index
κ channel fading coefficient
φi signal phase from DUE i to the BS
P̄S average transmitting power limitation of coalition S
I|S| information amount of all DUEs in coalition

CS channel capacity of coalition S in a time slot
TS system throughput of coalition S
B bandwidth
Pi power limitation of any DUE i
λi eigenvalue of transmitting signal matrix of DUE i
σ2 noise of the transmitting signal
v0 average signal-to-noise ratio (SNR) of the target
A coalition structure
N set of all the structures of N
CR set of coalitions want to combine Si

SR set of coalitions within search radius d
Twi waiting time
p̄i probability of each pairing attempts
pSR average probability of all pairing attempts
eN average energy efficiency of DUE coalition structure

picir circuit power consumption of the DUE
e energy efficiency of a single D2D
pBS BS transmitting power
HDB channel gain
pDUE transmitting power of DUE

cell are defined as N = {1, ..., T}, where T is the number of

the DUEs.

In the TDMA transmitting network, time is divided into a

number of equal slots. Each time slot is exclusively owned by

one user at the same time, and all users use the same frequency

in different time slots. In the non-cooperative scenario of

TDMA, a DUE takes up a time slot to transmit information

separately. While in the cooperative scenario studied in this

paper, the DUEs compose different disjoint coalitions. Each

coalition can be considered as a MIMO (multiple-input and

multiple-output) device [17]. In this case, all the DUEs of a

coalition take up a time slot to carry out one transmitting.

B. Throughput of the coalition

The communication system formed by any coalition S ⊆ N
with size |S| in the work mode of TDMA can be modeled as:

rS = GS +HSzS (1)

where HS is the matrix of fast fading channel and zS =
[z1, · · · , z|S|]

T
is the transmitting signal vector of each slot

in coalition S. Each element in zS represents the signal sent

by a DUE in the coalition S. The signal vector received by

the BS in each slot is defined as rS = [r1, · · · , r|S|]
T

. GS =

[G1, · · · , G|S|]
T

is the independent and identically distributed

additive complex Gauss white noise vector of the BS.



According to information theory, the best distribution of the

transmitting signal is also the Gauss signal for Gauss channel.

It is reasonable to make the elements of zS independent and

identically distributed Gauss variable with zero mean value.

The covariance matrix of the transmitting signal zS is:

QS = E
[
zS · zS

†] (2)

where zS
† is the conjugate transposed matrix of zS . For a

coalition S, we consider the path loss model between the DUE

and the BS. Each element of the fast fading channel matrix

HS represents the channel fading coefficient hi from any DUE

i to the BS:

hi = eiφi

√
κ/di

β (3)

where e is the value of the base of natural logarithms, β is a

channel fading index, and κ is the channel fading coefficient.

φi and di are the signal phase and distance from DUE i to

the BS, respectively.
For the TDMA system, a fixed transmitting power limitation

is defined for each time slot, i.e., regardless of the number

of DUEs in any coalitions, the average transmitting power

limitation is :

P̄S = tr(QS) = tr(E[zS · zS
†]) (4)

where tr(·) is the trace of a matrix, which can be obtained by

summing the diagonal elements of the matrix.
Then, we apply the average power limitation to all the DUEs

in the coalition. According to information theory, the channel

capacity of a coalition in a time slot with power limitation is:

CS = max
QS

I(zS ; rS) = max log (det (I|S| +HS ·QS ·HS
†))

s.t. tr[QS ] ≤ P̄S .
(5)

where I(zS ; rS) is the mutual information between zS and

zS ; det represents the value of the determinant of matrix;

I|S| is the information amount of all DUEs in the coalition;

HS
† is the conjugate transposed matrix of HS . According to

Hadamard Inequality, the optimal solution X of the problem

in Eq.(5) must be a diagonal matrix. Thus, the problem in

Eq.(5) can be simplified as follows:

CS = max
xi≥0

r∑
i=1

log(1 +
xi

ai
)

s.t.

r∑
i=1

xi ≤ P̄S .

(6)

where r denotes the rank of HS , xi and ai denote the diagonal

elements of X and HS , respectively. Finally, according to the

water-filling power allocation of each DUE in the coalition,

the system throughput of the coalition S can be defined as:

TS = B

|S|∑
i=1

log (1 +
Piλi

σ2
) (7)

where B is the bandwidth, Pi is the power limitation of any

DUE i, λi is the eigenvalue of the transmitting signal matrix

of DUE i, and σ2 is the noise of the transmitting signal.

C. Power consumption of the Coalition

The power consumption of the coalition is mainly caused

by the information exchange among the DUEs in the coali-

tion. In the TDMA system, the block fading channel has a

long correlation time. The channel state changes slowly, and

the exchange of channel state information (CSI) takes place

periodically. Thus, compared with the cost of data exchange

between DUEs, the cost of information exchange between

DUEs and BS is negligible. On the other hand, the power

consumption of the coalition is equal to the sum of the power

required by each DUE i to propagate its information to the

farthest DUE i′in the coalition S. This is because that when

any DUE transmits its information to the farthest DUE, other

DUEs in the coalition will receive such information at the

same time. The power consumption for DUE i to propagate

its information to the farthest DUE i′ is:

Pi,i′ = v0 · σ2/gi,i′
2 (8)

where v0 is the target average signal-to-noise ratio (SNR) for

information exchange between DUEs, σ2 is noise power, and

gi,i′ is the path fading between DUE i and the farthest DUE

i′ in the coalition:

gi,i′ =

√
κ/di,i′

β (9)

where di,i′ is the distance between DUEs i and i′. Thus, the

power consumption of coalition S is:

PS
c =

∑
i,i′∈S

Pi,i′ (10)

Then, the actual power limitation of the coalition S is:

PS = max(0, (P̄S − PS
c )) (11)

That is to say, the available power of the coalition S will

not be greater than the difference between the average power

limitation of the coalition and the power consumption used to

form the coalition.

D. Coalition Formation Algorithm

The payoff functions of DUEs in the coalition are different

because they are independent of each other. So we consider the

Non Transferable Utility game where each player can decide

its payoff independently.The frequently used notations of this

paper is shown in Table 1.

In this paper, we define Non Transferable Utility game

as (N ,A, v), in which N is the set of DUEs. A =
{S1, S2, ..., SK} is called a coalition structure, where each

element Sk(1 ≤ k ≤ K) is a coalition that satisfies⋃K
k=1 Sk = N . For any k and k′ ∈ {1, 2, · · · ,K}, k′ �= k,

Sk′
⋂
Sk = ∅. v(Sk) is the payoff function of the coalitional

game. We define the payoff function for each coalition Sk as:

v(Sk) = TSk
− PSk

c (12)

The payoff is positively correlated with the throughput

of the coalition and negatively correlated with the power



consumption of the coalition. We use the linear method to

transform it into a single objective payoff function:

v(A) = w1

∑
Sk∈A TSk

|A| − w2

∑
Sk∈A PSk

c

|A| (13)

Suppose that the set of all the structures of N is N, then

the optimal formation of a coalition N can be formalized as

the following optimization problem:

max
A∈N

v(A)

s.t. PSk
> 0, ∀Sk ∈ A

(14)

where w1 and w2 are not negative and satisfy w1 + w2 = 1.

They used to adjust the expectation of higher throughput and

lower power consumption. |A| is the number of coalitions in

coalition structure A.

The method proposed in this paper follows the

Combination-Separation (C-S) principle:

a) Combination principle: For any coalition set

{S1, · · · , SK′}, iff v({⋃K′

k=1 Sk}) >
∑K′

k=1 v(Sk), we

combine all coalitions in this set, i.e., {{S1}, ..., {SK′}} →
{⋃K′

k=1 Sk}.

b) Separation principle: For any coalition set

{S1, · · · , SK′}, iff
∑K′

k=1 v(Sk) > v({⋃K′

k=1 Sk}), we

separate all coalitions in this set, i.e., {⋃K′

k=1 Sk} →
{{S1}, ..., {SK′}}.

In short, if a combination (or separation) can bring extra

payoff based on Pareto Criterion, the coalitions will combine

or separate. With Pareto Criterion, each combination (or sep-

aration) will be conducted when it makes at least one DUE

increase payoff itself, and all related DUEs guarantee their

payoff.

We propose a Coalition Formation Algorithm of DUEs

(CFAD) based on Combination-Separation principle. In the

initial state, each DUE forms a coalition independently:

A′ = {S1, · · · , ST } (15)

where Si = {i} and i ∈ N .

Then, CFAD performs the combination and separation stage

iteratively in distribution. In the combination stage, each

coalition tries to combine itself with the neighbor, and verifies

whether it can form a better coalition. In the separation stage,

if there is a coalition that satisfies the separation principle,

the coalition separates. When the algorithm terminates, the

optimal coalition structure A is returned. The algorithm is

illuminated in Algorithm 1.

In the combination stage, the function Combine() is illu-

minated in Algorithm 2, where CR is the set of coalitions

which want to combine Si, SR is the set of coalitions within

the search radius d, Twi
is the current waiting time and Twmax

is the maximum waiting time of DUEs in their affiliated

coalition. First, the coalition broadcasts its information to other

nodes within the search radius. Then the coalition waits for the

combination request of other coalition in the waiting time and

store the request in CR. In CR, the coalition seeks another

coalition for combination that can maximize the payoff. If

Algorithm 1 CFAD

Input: A′ = {S1, · · · , ST }
1: for each Si ∈ A′ do
2: repeat
3: Combine(Si);

4: Separate(Si);

5: until Converged;

6: end for
7: return A;

there is no combination request from the neighbor coalition,

the coalition will send combination request to the coalitions

in SR that can maximize the payoff. If the request is refused,

the coalition will continue to try other coalitions in SR until

the SR is empty.

Algorithm 2 Function Combine() of CFAD

Input: d, Twmax
;

1: CR ← ∅;

2: SR ← Set of coalitions within d of Si;

3: Si broadcast the information of to the coalitions in SR;

4: while Twi
< Twmax

do
5: if any Sk ∈ SR requests Combination then
6: CR ← CR

⋃{Sk};

7: end if
8: end while
9: if CR �= ∅ then

10: S′
x ← argmaxSx∈CR v(Si

⋃
Sx);

11: Si ← Si

⋃
S′
x;

12: else
13: SR ← SR− CR;

14: if SR = ∅ then
15: return ;

16: else
17: S′

x ← argmaxSx∈SR v(Si

⋃
Sx);

18: Send combination request to S′
x;

19: if request accepted then
20: Si ← Si

⋃
S′
x;

21: Goto Step 4;

22: else
23: SR ← SR− { S′

x};

24: Goto Step 14;

25: end if
26: end if
27: end if

In the separation stage, each coalition seeks the coalition

partition with the maximum payoff after separation in all pos-

sible partitions. If the partition exists, the coalition separates.

The function Separate() is illustrated in Algorithm 3.

E. Analysis of CFAD

We demonstrate the stability of the coalition structure ob-

tained from CFAD algorithm, and then prove the convergence

of the algorithm.



Algorithm 3 Function Separate() of CFAD

1: P ← set of all partition of Si;

2: P ′
x ← ∅;

3: P ′
x ← argmaxPx∈P v(Px);

4: if Px′ �= ∅ then
5: Broadcast separation request to Si, ∀Si ∈ Px′ ;

6: end if

We define the stability of the coalition structure as Dhp-

stable. That is, no coalition will leave the current coalition

structure by both of the combination and/or separation opera-

tions.

Theorem 1. The final coalition structure obtained from CFAD
is Dhp-stable.

Proof. Assuming that the final structure A obtained after the

termination of CFAD is not Dhp − stable, there must exist

a structure A′, through the combination and/or separation

operations. This means that the C-S principle is satisfied,

and the CFAD algorithm will not terminate. A contradiction

arises.

Theorem 2. CFAD is convergent.

Proof. Consider the optimal payoff of the coalition structure

is v∗(A). According to the C-S principle, each round of

combination or separation can improve the payoff of the

coalition structure. This improvement is bounded by v∗(A),
thus CFAD can terminate.

F. Complexity analysis of Combine() and Separate()

CFAD algorithm is an iterative distributed algorithm. The

computation of coalition structure in each round of the al-

gorithm is mainly divided into two parts: (1) Combination

stage: In the initial case of the algorithm, each DUE forms a

coalition separately. For each DUE, there are at most T − 1
equipments in its CR or SR within time Twmax

, Thus there

are at most T-1 combination for each DUE. Therefore, the

computational complexity of Combination stage is O(T ). (2)

Separation stage: In each round, all possible partitions of the

coalition are Bell numbers. Obviously, when the size of the

coalition increases gradually, the complexity of the algorithm

will be quite high, so we can control the complexity of the

algorithm by limiting the size of the coalition.

III. PROBABILITY PREDICTION AND OPTIMIZATION OF

DUE PAIRING

In this section, we aim to predict the probability of DUE

pairing and optimize it to improve the QoS in D2D commu-

nication.

A. Probability prediction of DUE pairing

In order to get data from other DUEs, a DUE always has

the tendency to try to pair with other DUEs. We record the

behavior of one DUE trying to pair with another as a pairing

attempt. Let the binary variable y represent the result for each

pairing attempt: y = 0 if the attempt fails, y = 1 otherwise.

The probability pi of pairing attempt i is affected by many

factors of QoS, which constitute the eigenvector xi.

We choose Logistic Regression as the prediction model.

According to Sigmoid function, pi is equal to:

pi = p(y = 1|xi) =
1

1 + e−θTxi
(16)

where θ is the regression coefficient.

The logit function of xi is:

logit(xi) = ln(
p(y = 1|xi)

p(y = 0|xi)
) = ln(

p(y = 1|xi)

1− p(y = 1|xi)
) (17)

According to Eq.(16), it can be simplified to:

logit(xi) = θTxi (18)

So far, we have transformed Logical Regression into linear

regression. In this paper, the gradient descent method is used

to train data and determine the regression coefficients, i.e.,
θT . We use Maximum Likelihood as the learning method in

Logistic Regression. The probability of each sample (xi, yi)
in the training data is:

p(xi, yi) = p(y = 1|xi; θ)
yip(y = 0|xi; θ)

1−yi (19)

Then we can get the likelihood function of the data set

containing n independent paired samples:

L(θ) =

n∏
i=1

hθ(xi)
yi(1− hθ(xi))

1−yi (20)

where hθ(xi) = p(y = 1|xi; θ). Then the log-likelihood

function can be obtained by taking logarithms on both sides

of the equation:

l(θ) = logL(θ) =

n∑
i=1

yi log hθ(xi)+
n∑

i=1

(1−yi) log(1−hθ(xi))

(21)

According to Eq.(20), it can be reduced to:

l(θ) =
n∑

i=1

yi(θ
Txi)−

n∑
i=1

log(1 + eθ
Txi) (22)

The parameter of the prediction model is θT , which maxi-

mizes the likelihood function. The iteration equation based on

the gradient descent is:

θt+1 = θt − η
∂l(θ)

∂θ
= θt − η

1

n

n∑
i=1

(hθ(xi)− yi)xi (23)

where η is the learning rate of the gradient descent, i.e., the

step length of each descent. The probability prediction model

obtained after training is:

pi =
eθ

Txi

1 + eθTxi
(24)



B. Probability optimization of DUE pairing
If there are X pairing attempts and Y pairing DUEs in a

complete pairing process, the pairing result can be represented

as the following matrix c:⎛
⎝

c11 · · · c1Y
· · · cij · · ·
cX1 · · · cXY

⎞
⎠ , 1 ≤ i ≤ X, 1 ≤ j ≤ Y (25)

where cij = 1 when DUE j is one of the two DUEs of pairing

attempt i, cij = 0 otherwise. Since any DUE can send pairing

attempts to multiple DUEs but can only accept one pairing

attempt, the following constraints are satisfied:

∀j,
X∑
i=1

cij ≤ 1 (26)

Thus, the probability of each pairing attempts is:

p̄i = 1−
Y∏

j=1

(1− pij)
cij (27)

where pij = pi/Y . And the average probability pSR of all

pairing attempts is:

pSR =

∑X
i=1(1−

∏Y
j=1(1− pij)

cij )

X
(28)

Then the problem of probability maximization of DUE pairing

can be formalized as:

max pSR

s.t. ∀j,
X∑
i=1

cij ≤ 1, cij ∈ {0, 1} (29)

Considering the discreteness of pairing data, this is a typical

combinatorial optimization problem. We present the DUE

pairing algorithm based on hill-climbing to solve the problem.

The process of DUE pairing is illustrated in Algorithm 4.

Let E[i] be the pairing DUE of pairing attempt i. For each

unassigned DUE, if the pairing to attempt i can obtain higher

probability, we assign the DUE to the attempt i.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the proposed coalition formation

algorithm, the probability prediction model, and the pairing

probability maximization algorithm. For the coalition forma-

tion algorithm, we compare CFAD with other two methods

in terms of throughput and energy efficiency of DUEs. For

the probability prediction model, we compared the prediction

accuracy with another method based on ten test samples.

For the DUE pairing probability maximization algorithm, we

compare the pairing probability with the other benchmark

algorithms. We consider a single-cell scenario with simplified

interference. The cell radius is 300 meters, the maximum

D2D communication distance is 50 meters; the base station

transmitting power is 46dBm; the circuit power consumption

of DUEs is 23dBm. In addition, we consider that higher

throughput and lower power consumption are equally impor-

tant, i.e., w1 = w2 = 0.5.

Algorithm 4 DUE Pairing

Input: X , Y , c ← 0
1: for i ← 1 to X do
2: E[i] ← 0;

3: end for
4: for i ← 1 to X do
5: Ni ← set of DUEs unassigned to pairing attempt i;
6: for each j ∈ Ni do
7: if pi,j > pi,Ei then
8: replace j with E[i];
9: ci,j = 0; ci,E[i] = 1;

10: end if
11: end for
12: end for
13: return c;
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Fig. 2. Experimental results of the coalition structure.

A. Performance of coalition formation algorithm of DUEs

Fig. 2 plots a snapshot of a coalition structure of DUEs of

CFAD algorithm. The BS is located at position (0,0), and the

DUEs are distributed in a 300*300 square area. By applying

CFAD algorithm, the DUEs can self-organize into a stable

coalitional structure with the maximum payoff.

Fig. 3 shows the variation of average throughput versus the

number of DUEs. We choose two methods for comparison.

One is simple D2D, where DUEs don’t form coalitions. The

other one is the algorithm mentioned in [11], where the power

limitation is not taken into account. As can be seen from

Fig. 3, the average throughput of all the methods increases

when the number of DUEs increases. Specifically, we can also

see that the CFAD outperforms the other two methods in all

cases because we use water-filling power allocation to allocate

higher power to the channels with higher signal-to-noise ratio

(SNR).

Fig. 4 shows the variation of average energy efficiency ver-

sus the number of DUEs. Here, the average energy efficiency
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Fig. 4. Average energy efficiency versus the number of DUEs.

of DUE coalition structure is defined as:

eN =

∑
S∈A TS∑

S∈A PS
c +

∑
S∈A

∑
i∈S picir

(30)

where TS is the throughput of the DUE, which can be

calculated by Eq.(7); PS
c is the transmitting power of the DUE,

which can be calculated by Eq.(9); picir is the circuit power

consumption of the DUE. In simple D2D, the energy efficiency

of a single D2D is:

e =
log(1 + pBSHDB

σ2 )

pDUE + pcir
(31)

where pBS is the BS transmitting power, HDB is the channel

gain and pDUE is the transmitting power of DUE. It can

be seen from Fig. 4 that the average energy efficiency of

all the methods increases when the number of DUEs goes

up. Specifically, we can see that the performance of CFAD

outperforms the other two methods because the coalitions in

CFAD are always made up of DUEs close to each other in

order to reduce path loss.
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Fig. 5. Accuracy versus the number of DUEs

B. Performance of probability prediction and optimization of
DUE pairing

1) Probability prediction: Test samples are used to evaluate

the accuracy of the proposed prediction model. We input the

coalition structure obtained by CFAD proposed in section 2.

into the Network Simulator WINTERsim [19] to simulate the

DUE pairing and count pairing results as training data. In this

paper, we consider the influence factors of probability pi as

search radius, throughput, power consumption, power limita-

tion, and energy efficiency as they have a high correlation with

coalition formation, which affects the results of DUE pairing.

Thus, the eigenvector xi can be defined as:

xi = (x1, x2, x3, x4, x5)
T (32)

The elements of xi represent the factors mentioned above in

turn. After training, θT in Eq.(24) is:

θT = (0.2253,−0.00556, 0.00202,−0.00247, 0.00986, 0.00274)T

(33)

We use the regression functions in Eq.(24) to predict pairing

probability. The accuracy on the test samples versus the

number of DUEs is shown in Fig. 5. We observe that our

model outperforms the benchmark model mentioned in [20].

Specifically, our prediction model achieves a high accuracy

up to 93%, which is 7% higher than that of the benchmark

model. This is because that the model proposed in this paper

is based on prior data while the benchmark model based on

Q-learning is not.

2) Probability optimization: First, we introduce two bench-

mark algorithms:

Learning-to-rank algorithm: [21] propose a machine learn-

ing ranking method. This method obtains the matching score

of each DUE from the historical data of the base station for

the pairing attempt, and sends a message to the DUE with the

highest score.

Multi-agent algorithm: [22] uses a multi-agent DUE distri-

bution system that is superior to known systems for optimizing

the pairing probability.
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Fig. 6. Pairing probability versus the number of DUEs.

Fig.6 plots the pairing probability of the three algorithms

versus the number of DUEs. The results show that Learning-

to-rank algorithm and Multi-agent algorithm have almost the

same probability of pairing that gradually reduces with the

increasing number of DUEs. It is because that each DUE

of Learning-to-rank algorithm and Multi-agent algorithm can

only handle one pairing attempt at the same time. So when

the number of pairing attempts is greater than the number of

DUEs, the pairing probability of pairing will decrease.

V. CONCLUSION

In this paper, we have proposed a novel DUE distribution

method based on the coalitional game to form several disjoint

coalitions, which achieves the balance of the throughput and

the power consumption of the coalition structure. To further

enhance QoS of D2D communication, we have also proposed

a method to predict and optimize the pairing probability of

DUEs. The performance of the two methods proposed has

been evaluated by experiments. In the future, we will further

investigate some interesting problems in the distributed pairing

management method.
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