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Abstract
Bluetooth Low Energy (BLE) networks have shown great promise as the Internet of Things (IoT) takes center stage. BLE

devices featuring low-power are suitable for IoT applications. Meanwhile, the standard neighbor discovery protocol

provides a wide range settings of parameters, which chould meet the variety of IoT applications. Whereas the different

settings also have a great influence on neighbor discovery latency. This paper presents a theoretical model based on the

Chinese Remainder Theorem (CRT) for analyzing the neighbor discovery latency in BLE networks, where the scanner and

the advertiser are modeled in 3-distributed channels. The neighbor discovery latency in BLE is derived by applying the

CRT to each specific channel. According to the simulations of the proposed model, we found some interesting results,

which offers a better understanding of the relationship between parameters and latency performance. Meanwhile, the

results provide a valuable clue to optimize the neighbor discovery latency.

Keywords Internet of Things � Bluetooth Low Energy � Neighbor discovery � Performance � Latency

1 Introduction

Bluetooth Low Energy (BLE) is incorporated into Version

4.0 of the Bluetooth Core Specification [1]. In contrast to

regular Bluetooth, BLE is designed to be a low-power,

low-cost short-range radio capability for devices in Internet

of Things (IoT) systems. According to the statistics, BLE

technology will be used in one-third of IoT devices in the

future [2], which has attracted academic attention.

BLE operates in the 2.4 GHz ISM band using 40 radio

channels, in which three advertising channels (CH37,

CH38 and CH39) are used for neighbor discovery, and the

others for data transmission. The Neighbor Discovery

Process (NDP) is the first step for BLE devices to set up a

connection or to exchange information with each other.

The BLE NDP standard provides a wide range of param-

eter options to balance energy consumption and latency to

support different applications. Improper parameter settings

could seriously impact the performance of NDP, which

motivates our study on modeling the BLE NDP to analyze

the relationship between NDP performance and the

parameter settings.

In recent years, several analytical models have been

proposed to optimize the BLE neighbor discovery process.

In [3], Liu et al. developed a 3-channel-based analytical

model to determine performance metrics and further

enhanced the model in [4] by using the CC2540 Mini-

Development Kit to analyze the energy performance met-

ric. Following [3, 4], an adaptive device discovery mech-

anism was proposed in [5]; this mechanism enabled BLE

scanner/initiator to learn the network contention and

adjusted parameters accordingly, so as to achieve lower

latency.

In [2, 6], Cho et al. suggested an analytical model to

investigate discovery probability and discovery latency,

where multiple BLE pairs (advertisers and scanners) are

considered. Based on the work in [2, 6], an adaptive

parameter-setting algorithm was proposed in [7] to
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improve the performance of neighbor discovery in crowded

BLE networks [8].

The analytical model in [9] considered that the addi-

tional scanning gaps in the scanning process reduced the

discovery capabilities, and a model was suggested to obtain

an upper bound for the discovery capacity and to select the

desired parameters values according to a particular BLE

application.

Literature [10] introduced a mapping mechanism

between the Chinese Remainder Theorem (CRT) and the

asynchronous neighbor discovery protocol and proposed

Disco, a protocol that ensured that two nodes would have

some overlapping radio on-time within a bounded number

of periods, even if nodes independently set their own duty

cycle. Then, the BLE neighbor discovery process is exactly

an asynchronous discovery problem. In [11], Kandhalu

et al. suggested a model to ensure bounded latency of BLE

NDP using CRT. However, the model ignored the possi-

bility that the scanner and the advertiser were in different

channels. The model also had a strong constraint: the

length of scan window should be longer than the adver-

tising event. As a result, this model has some limitations in

accuracy. The most recent work in [12] improved the

model in [11] also using CRT. This work proposed a dis-

crete analysis model of BLE NDP and analyzed the best

tradeoff between discovery latency and energy consump-

tion. In [12], the time slot length is set to a fixed value, but

in practice, slots will rarely be aligned since nodes are run

independently and do not adjust clock skews or set up a

global time reference.

In [13], Philipp et al. suggested a mathematical theory to

compute the neighbor discovery latency in slotless proto-

cols such as BLE. However, it considers a one-channel

discovery procedure, rather than three channels as used in

the BLE discovery procedure.

This paper proposed a theoretical model based on CRT

to analyze the latency performance of neighbor discovery

in BLE networks, where the scanner and the advertiser are

modeled in 3-distributed channels. We use CRT to com-

pute the discovery latency in each channel, and the overall

discovery latency is derived, assuming that the advertiser

and the scanner initially start at any time with the same

probability. The modeling results are important to provide

guidance for the configuration of the parameters in BLE

neighbor discovery process.

The remainder of the paper is organized as follows:

Sect. 2 briefly reviews the standard BLE neighbor dis-

covery process [14]. In Sect. 3, we propose a simple ana-

lytical model based on Chinese Remainder Theorem and

derive the average latency of neighbor discovery in BLE.

Numerical results from the mathematical model and sim-

ulation results are presented and discussed in Sect. 4.

Finally, the paper concludes with Sect. 5.

2 Background

According to the Bluetooth Core Spec. V4.2 [14], a BLE

device normally operates in three different modes in the

discovery state, i.e. advertising, scanning and initiating

states. An advertiser is a device in advertising mode, which

periodically transmits advertising information in three

advertising channels (CH37, CH38, CH39), and then lis-

tens for responses from other devices. A scanner or initiator

is a device in scanning or initiating mode, respectively,

which periodically scans the advertising channels with the

same channel order and listens to advertising information

of others. Since the scanner and initiator have similar basic

discovery functionalities in the discovery state, both will be

called scanners in this paper.

As shown in Fig. 1, AdvInterval TADV is the time

between the start of two consecutive advertising events,

which is composed of a fixed interval xAI and a pseudo

random delay l. At each advertising event, the advertiser

broadcasts Adv_PDUs in each of the predefined advertising

channels. The time the advertiser spends in each channel is

denoted by swa.
In the scanning state, the time between the start of two

scanning events is called ScanInterval TSIN , and the time lis-

tening to the advertising message for a fixed duration of length

xSW is called ScanWindow. It is noteworthy that the advertiser

broadcasts in all three channels during one TADV , while the

scanner listens in one specific channel during each TSIN .

According to the standard [14], there are two kinds of

advertising events for BLE: undirected and directed. The

Undirected Advertising Event is used for detecting

unknown devices, while the Directed Advertising Event is

used for establishing connections with already-known

devices. Since the directed advertising event is simpler

than the undirected advertising event, we only discuss

undirected advertising events in this paper.

Fig. 1 The standard process of BLE neighbor discovery
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The BLE standard specifies a wide range of feasible

parameter values for NDP, such as AdvInterval, advertising

cycle, Scan Window and ScanInterval. Based on the stan-

dard [14], the AdvInterval should be an integer multiple of

0.625 ms in the range of 20 ms to 10.24 s, and the

AdvDelay should be within the range of 0–10 ms. For

scanners, the Scan Window should be less than ScanIn-

terval within the range of 0 ms to 10.24 s. The advertising

time swa depends on the size of an Adv_PDU and the

tolerable time for the advertiser to wait for the response.

Table 1 shows the list of major timing parameters for

undirected advertising event specified in BLE standard.

Low-cost, low-power BLE devices could support a

variety of applications with such wide-ranging parameters.

In the meantime, the initial appropriate parameter setting

should meet practical needs for low latency while avoiding

unnecessary energy usage. This motivates our study for

modeling the neighbor discovery process of BLE and dis-

cussing its performance.

3 Modeling the neighbor discovery process

In this section, we inspect the discovery latency perfor-

mance of BLE devices from the perspective of a theoretical

model based on CRT.

CRT [10] states that for any two coprime numbers ni
and nj, there exists an integer X satisfying the pair of

simultaneous congruences:

X � miðmodniÞ

X � mjðmodnjÞ
ð1Þ

For example, the pair of simultaneous congruences, X �
1ðmod3Þ and X � 2ðmod7Þ has the solution

X ¼ 16þ 21k; k 2 Zþ.
In BLE neighbor discovery process, two nodes, the

advertiser and the scanner, pick two numbers ni and nj such

that the nodes wake up and beacon at ni and nj time

intervals. Then, mi and mj will be the phase offsets that the

advertiser and the scanner enter the advertising mode and

the scanning mode, respectively. Therefore, there will be

an X satisfying the pair of simultaneous congruences 1 if ni
and nj are relatively prime. We can express X as

X ¼ x0 þ kninj; k 2 Zþ ð2Þ

when X ¼ x0, the advertiser and the scanner are turned on

and can discover each other. Therefore, according to the

Eq. 2, x0 will be the minimum slot time that the two nodes

meet. It is easy to see that there is exactly one such over-

lapping period for every ninj periods.

However, the BLE discovery process is different from

regular asynchronous neighbor discovery. The BLE

advertiser will broadcast on three channels in order during

each duty cycle, while the scanner only listens on a specific

channel in a duty cycle. Therefore, when X ¼ x0, both

nodes are turned on, but there is a possibility that the two

nodes are in different channels, which makes it impossible

to directly apply CRT to BLE NDP.

3.1 The distributed neighbor discovery model

To solve the above problem, we proposed a distributed

neighbor discovery model for BLE networks. As shown in

Fig. 2, according to the same timeline, the neighbor dis-

covery process in a cycle is separated into three compo-

nents based on different channels. Then, we can apply CRT

to the BLE neighbor discovery process in one specific

channel, and the minimum solution of all the three pairs of

simultaneous congruences is the beacon time when two

nodes find each other.

In Fig. 2, we assume that the advertiser entered adver-

tising mode at time t0, and the scanner entered scanning

mode at time t1. According to CRT, the enter times of the

two nodes determine the phase offset of the solution X.

Therefore, to apply CRT to the distributed model, it is

necessary to address the nodes enter time in each dis-

tributed channel. Consistent with the advertising order, for

channel 37, the enter times of advertising and scanning are

t0 and t1, respectively; for channel 38, t0 þ swa and

t1 þ TSIN ; for channel 39, t0 þ 2swa and t1 þ 2TSIN .

Another key parameter for CRT is the duty cycle. As

shown in Fig. 2, for all channels, the advertiser has the

same period TADV and the same duty time swa. It is easy to

see that the duty cycle of the advertiser is swa
TADV

in each of the

three channels. Similarly, for all channels, the scanner has

the same period TSCAN and the same duty time xSW . The

duty cycle of the scanner in each channel is xSW

3TSIN

(TSCAN ¼ 3TSIN ).

In [10], to apply CRT, time is quantized into a discrete

component, called a slot time. The nodes wake up and

beacon every nth slot, so the duty cycle is 1
ni
. In our con-

tinuous model, with the purpose of correlating the model

parameters to the CRT, we can express the duty cycle as a
b .

Table 1 BLE major parameters and recommended values

Item Notation Value

Fixed interval xAI 20ms�xAI � 10:24 s

AdvDelay l 0� l� lMAX � 10ms

AdvInterval TADV xAI þ l

Advertising period per channel swa 0� swa � 10ms

ScanWindow xSW 0�xSW � TSIN

ScanInterval TSIN 0� TSIN � 10:24 s
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For example, the advertiser’s duty time is denoted by a ¼
swa
tslot

and the period is denoted by b ¼ TADV
tslot

, so the discrete

duty cycle is also swa
TADV

. The phase offset to the solution X

can then be expressed as tentertime
tslot

. For an advertiser in channel

37, the discrete phase offset is t0
tslot

; for channel 38 is t0þswa
tslot

;

for channel 39 is t0þ2swa
tslot

. Table 2 shows the key parameters

of the distributed neighbor discovery model based on CRT.

3.2 The value of slot time

The slot time is a discrete component denoted by tslot with a

fixed length. In [10], it has been explained that the slots

could not be aligned because of the asynchronization for

BLE nodes. Even if slots are generally non-aligned, nodes

that are in phase may come into contact with each other

from time to time. If the slot time is small enough, the

effort skewed by the clock is reduced.

In our model, the advertiser and the scanner would be

turned on at the time, and the handshaking process should

be finished during a slot time. Theoretically, an advertising

PDU and a consequent response can be transmitted suc-

cessfully, if only an interval is provided with at least length

of

Fig. 2 Distributed neighbor discovery model in BLE

Table 2 Key parameters of distributed neighbor discovery model

Item CH37 CH38 CH39

1
ni
(advertiser duty cycle)

swa
TADV

swa
TADV

swa
TADV

1
nj
(scan duty cycle)

xSW

3TSIN

xSW

3TSIN

xSW

3TSIN

mi (advertiser phase offset) t0
tslot

t0þswa
tslot

t0þ2swa
tslot

mj (scanner phase offset) t1
tslot

t1þTSIN
tslot

t1þ2TSIN
tslot
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Ts ¼ Tadv ind þ Tscan req þ Tscan rsp þ 3TIFS ð3Þ

During which there are zero transmission-attempts.

Here, TIFS denotes the inter-packet guard time, Tadv ind

denotes the time for sending ADV_IND packet,Tscan rep

denotes the time for sending SCAN_REQ message, and

Tscan rsp denotes the time for sending SCAN_RSP message

[7].

The transmission time of these kinds of PDUs is related

to the length of PDUs. Based on Bluetooth Specification

v4.2 [14], the PDUs of undirected advertising event are of

maximal payload in length, i.e. the largest is 37 octets.

Hence, the maximum length packets containing these

PDUs are 47 octets [5]. Then, it could be derived by 47

octets over 1 Mbps bit rate that the minimum handshaking

time is 1.578 ms. That means the minimum slot time tslot is

1.578 ms.

3.3 Discovery latency

The discovery latency is defined as the interval from the

initiation time of the advertiser to the time when the

advertising information being received by a scanner. As

shown in Fig. 3, X ¼ x0 is the beacon time for the adver-

tiser and the scanner, and t0 is the entering time when

advertiser initially starts advertising.

As shown in Fig. 3, advertiser starts advertising at time

t0 and turn on every six slots, and the scanner is waked

every five slots after time t1. The x0 slot is their beacon

time, and the latency L could be expressed as

L ¼ x0 � tslot � t0 ð4Þ

From this point, we can develop the discovery latency

described by our model. According to Table 2, we have

X37
on ¼ C

t0

tslot
;
t1

tslot
;
TADV

swa
;
3TSIN

xSW

� �

X38
on ¼ C

t0 þ swa
tslot

;
t1 þ TSIN

tslot
;
TADV

swa
;
3TSIN

xSW

� �

X39
on ¼ C

t0 þ 2swa
tslot

;
t1 þ 2TSIN

tslot
;
TADV

swa
;
3TSIN

xSW

� �
ð5Þ

Thus, x0 ¼ minðX37
on ;X

38
on ;X

39
onÞ. Let hðt0; t1Þ denotes the

smallest slot among all matching slots. Therefore,

Lðt0; t1Þ ¼ hðt0; t1Þ � tslot � t0 ð6Þ

Finally, we assume the advertiser and scanner initially start

at any slot within ½0;TADV � and ½0; 3TSIN � respectively,

independently with the same probability. We can calculate

the average discovery latency using Eq. 5 as

�L ¼ 1

3TADVTSIN

XTADV
t0¼0

X3TSIN
t1¼0

Lðt0:t1Þ ð7Þ

3.4 Energy consumption

In this section, we present the energy consumption wave-

form during an advertising event. As the measurement in

[4], an energy consumption waveform could be presented

as shown in Fig. 4.

For an advertising event, it is noticed that Tx, Rx and Tx

to Rx are repeated on Channels(37,38,39), which reflects

the advertiser periodically transmits ADV-PDU and listens

for responses with the channel order 37–38–39. The other

peaks contains the changes before and after the advertising.

With the peaks described, the energy consumption

within a period EADV�P could be computed as

EADV�P ¼ Ewake þ Epre þ Epre�Tx þ 3ETx þ 3ERx

þ 3ETx�Rx þ Epost

ð8Þ

And if the beacon happens on one specific channel, the

energy consumption within the period could be expressed

as

EADV�37 ¼ Ewake þ Epre þ Epre�Tx þ ETx þ ERx

þ ETx�Rx þ Epost

EADV�38 ¼ Ewake þ Epre þ Epre�Tx þ 2ETx þ 2ERx

þ 2ETx�Rx þ Epost

EADV�39 ¼ Ewake þ Epre þ Epre�Tx þ 3ETx þ 3ERx

þ 3ETx�Rx þ Epost

ð9Þ

As discussed in formal section, the energy consumption for

advertisers could be expressed as

Fig. 3 Example of the beacon process Fig. 4 The energy consumption in BLE NDP for an advertising event
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EX
ADV ¼ Lðt0; t1Þ � swa

TADV � 1

� �
� EADV�P þ EADV�X

X ¼ 37; 38; 39

ð10Þ

Therefore, the average energy consumption for adversers is

EADV ¼ 1

TADV

XTADV
t0¼0

EX
ADV ð11Þ

4 Simulation results

In this section, we demonstrate the latency performance of

neighbor discovery in BLE and then reveal its setting

principle of related parameters.

We conduct realistic simulations of neighbor discovery

with 10,000 repetitions. To analyze the relationship

between latency and related parameters, we set AdvInter-

val, ScanWindow and ScanInterval to the values recom-

mended by the Bluetooth Special Interest Group(SIG) [15]

and calculate the average latency based on the every

specific parameter setting. In the simulation, the starting

times of the scanner and of the advertiser are all randomly

chosen from the intervals ½0; TSIN � and ½0; 3TADV �, respec-
tively. As derived before, the slot time tslot is set as its

minimum value 1.578 ms. The other default parameter

setting is swa ¼ 7:46ms.The detailed parameter settings in

simulation are listed in Table 3.

Figure 5 illustrates that the average of neighbor dis-

covery delay has a regular variation with the increase of the

AdvInterval. In contrast to the intuition that neighbor dis-

covery latency should simply and steadily increase with

AdvInterval,C the discovery delay has many local minima

and maxima, whose values grow linearly. This result very

closely matches the simulation results in [16], which first

reported the performance anomaly of neighbor discovery in

BLE by capturing BLE’s essential procedures and features.

However, this paper first validates the performance pattern

according to the performance analysis model. Meanwhile,

there are further complexities that could not be revealed by

the analysis in [16]: (1) The local minima and maxima

recur with a certain period, where each period contains

several minima and several maxima. (2) There are inter-

mediate values that recur with the same period and growth

rate as the local minima and maxima. (3) The local minima

occur more frequently than the intermediate values or the

local maxima.

Furthermore, by comparing these results with those of

the models in [3, 12], we can observe the overall perfor-

mance trend. The model in [3] showed a linear trend

between the AdvInterval and the average latency, which

failed to predict any latency peaks. And from the simula-

tion results, some latency peaks were shown in [12], while

the accuracy of the model was low.

According to the above discuss, we simulated the energy

consumption model respect to different ScanInterval set-

tings. Figure 6 shows the average energy consumption

fluctuates with the rise of AdvInterval. However, it is

obvious that the average energy consumption for adver-

tisers during the neighbor discovery process shows a

upward trend when the ScanInterval declines. When we set

the ScanInterval 1.28 s, the energy consumption fluctuates

from 3mA*ms to 5mA*ms. While when the ScanInterval is

10.24 s or 5.12 s, the average energy consumption is below

1mA*ms. That means ScanInterval is the key parameter to

Table 3 Simulation parameters and their values

Notation Meaning Value

TADV AdvInterval 20ms� TADV � 10:24 s

TSIN ScanInterval 0� TSIN � 10:24 s

swa Advertising period per channel 7.46 ms

xSW ScanWindow 0�xSW � TSIN

tslot Slottime 1.578 ms

t0 Start time of advertisers [0,3TADV ]

t1 Start time of scanners [0,TSIN ]
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Fig. 5 Average discovery latency according to advInterval

(TSIN ¼ 10:24 s;xSW ¼ 1:28 s)
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Fig. 6 Average discovery energy with respect to scanning interval

(TSIN ¼ 10:24 s,xSW ¼ 4:28 s),(TSIN ¼ 5:12 s,xSW ¼ 1:28 s), (TSIN ¼
2:56 s,xSW ¼ 1:28 s),(TSIN ¼ 1:28 s,xSW ¼ 1:28 s)
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the average energy consumption. Since the longer

ScanInterval, the discovery latency is lower, and the energy

consumption for advertisers is lower.

Figure 7 shows the average latency according to the

ScanInterval with three different parameter settings. It is

obvious that the average latency steadily increases when

the ScanInterval grows. While an interesting found is that

under a fixed ScanInterval, the average delay is higher

when TADV [xSW ; the average delay is lower when

TADV\xSW .

From the model of neighbor discovery process, the

longer ScanWindow means the scanner have a longer time

to find the advertiser, which increases the chance to have a

success pairing on one specific channel theoretically. So

under a fixed ScanInterval and AdvInterval, the larger

ScanWindow leads a lower average latency. Particularly,

as illustrated in Fig. 6, when the value of AdvInterval is

lower than the ScanWindow, the average latency is better

than others. Finally, it is apparent that the lower average

latency could be achieved with a fixed ScanInterval, if we

set a longer ScanWindow than AdvInterval.

Figure 8 shows the effect of ScanWindow on NDP

performance. The average latency of neighbor discovery in

BLE consistently shows a decline with the longer

ScanWindow under a fixed ScanInterval (TSIN ¼ 2:56 s). In

particular, for ScanWindow values greater than 0.1 s, the

decrease of average latency is slight. The similar results

could been seen in [3, 12]. The reason is that ScanWindow

mainly affect the rendezvous chance of the advertiser and

the scanner on one of the three advertising channels, but

have a simple impact on the discovery latency [2].

In summary, Fig. 5, 6, 7 and 8 show that neighbor dis-

covery in BLE can achieve good performance when the

parameters are set properly. From the figures, it is easy to

observe that AdvInterval and ScanInterval have a great

influence on the average latency, but the influence of

ScanInterval is simpler than that of AdvInterval.

For this reason, a parameter-setting strategy is recom-

mended. A scanning interval could be chosen as the first

control parameter; then, according to the scanning interval,

an appropriate ScanWindow can be set that is larger than

advInterval. Based on the range of advInterval, the NDP

performance could be evaluated based on the model pro-

posed in this paper. Using the model results, the AdvIn-

terval value is easy to choose.

5 Conclusions

We have proposed a theoretical model based on CRT to

analyze the latency performance of neighbor discovery in

BLE networks, where the scanner and the advertiser are

modeled in 3 distributed channels. According to compute

the discovery latency in each channel based on CRT, the

discovery latency is derived, assuming the advertiser and

the scanner initially starts at any time and with the same

probability. The modeling results reveal the variation of

latency performance with different parameter settings. In

particular, the parameter induces a complex but regular

pattern in the average latency, which is unexpected in

contrast to intuition. In addition, our model is applicable

for any feasible parameter values and could provide prac-

tical guidance to improve the efficiency of BLE

advertising.
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