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Crowdsourcing with Mobile Phone
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Incentive Mechanisms for Mobile Crowdsourcing
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compensate users’ cost

help to achieve good service quality




Insufficient Participants
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Two-tiered Social Crowdsourcing Architecture
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Objective

Designing truthful incentive mechanisms to maximize the total value for
platform under the budget constraint online setting

Challenges

Practical system model for the two-tiered social crowdsourcing system
Make decision before users depart

How to select the agents? or

Strategic behavior by submitting dishonest bid price or arrival/departure time



Agent Selection

The cumulative online durations of the
selected agents are desirable to cover the tasks as many
as possible.

The unit Influence of any agent is larger
than the constant 6




Coverage
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Unit Influence

Measure the matching of interests

1T/ N ]
T/ U [

Jac(I7,i) =

Influence function

I(Z» Imax) = (Imax _ 1)\/1 _ (1 _ Z)Z +1

Unit influence

%oy 1Uac(,0) max)
|3 |




Online Reverse Auction
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Online Reverse Auction
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Online Reverse Auction

Stepl:

Winner Selection

& Payment
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A Walk-through Example
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Each social neighbor has the same marginal value 1/2. p = 1/2.
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A Walk-through Example
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A Walk-through Example
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Theoretical Analysis

Lemma 1. MTSC is computationally efficient.

Agent Selection: 0(max{max;c;|SN/|nm? n?}) Online Reverse Auction: 0(|SN|m?)

Lemma 2. MTSC is individually rational.

Each user will have a non-negative utility

Lemma 3. MTSC is budget feasible.

The total payment to the users is smaller or equal to the total budget

Lemma 4. MTSC is truthful (cost-truthful and time-truthful).

No user can improve its utility by submitting false cost, arrival/departure time,
no matter what others submit.




Performance Evaluation

Three Benchmark algorithms:

untruthful, with full knowledge, (1 — 1/e) approximation

truthful, using the proportional share rule

truthful, selecting the agents randomly

Dataset: social circle data from Facebook



Value

Value

2704
225 -
180-.
135-.

90 -

210-.
180-.
150-.
120-.

90 -

604

Approximate optimal (offline

Random (online)
MTSC (online)
Proportional share (offline)

20

30 40 50
Number of tasks

Random (online)

MTSC (online)

Proportional share (offline)
Approximate optimal (offline

4 5

Number of agents

60

6

Value

Value

210+

175+

1404

1054

150

904

60 -

30 -

Random (online)
MTSC (online)
Proportional share (offline)

Approximate optimal (offline

The MSTC always
achieves better
performance than

T Random(online)
] MTSC(online)
Proportional share(offline)

120 1

random mechanism.

320 340 360 380 400
Budget

between
and
Share

The
MSTC

gap

Approximate optimal(offline

Proportional
(the best in truthful
offline  mechanisms)

1 2 3 4 5
Initial density threshold

IS very small.



B. Truthfulness
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Conclusion

We present a two-tiered social crowdsourcing architecture to solve the insufficient
participation problem using the social network in online scenario.

We propose the Agent Selection algorithm based on the historical information to
optimize the online duration coverage and the unit influence simultaneously.

We design the Online Reverse Auction for selecting the social neighbors and
calculating payments. We show that the designed auction satisfies the desirable
properties of computational efficiency, individual rationality, budget feasibility, and
truthfulness.







