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Abstract Mobile crowd sensing has become an effective

approach to meet the demand in large scale sensing

applications. In mobile crowd sensing applications, incen-

tive mechanisms are necessary to compensate the resource

consumptions and manual efforts of smartphone users. In

this paper, we focus on exploring budget feasible frame-

works for a novel and practical mobile crowd sensing

scenario, where the platform expects to maximize the

continuous time interval coverage under budget constraint.

We present the system model and formulate the budget

feasible maximum continuous time duration problem for

this scenario. We design two budget feasible frameworks:

BFF-STI and BFF-BTI, and integrate MST as the truthful

mechanism to maximize the social efficiency. Then we

extend the budget feasible frameworks to the general case,

in which each user can bid multiple time intervals simul-

taneously. We show the proposed budget feasible frame-

works are computationally efficient, individually rational,

truthful and budget feasible. Through extensive simula-

tions, we demonstrate that our budget feasible frameworks

are efficient with different parameter settings. The simu-

lation results also show that BFF-STI has superiority in

large scale mobile crowd sensing applications, while BFF-

STI is more suitable for long-term sensing applications.

Keywords Mobile crowd sensing � Incentive
mechanism � Auction � Budget feasible

1 Introduction

The smartphone has been developed as a powerful pro-

grammable mobile data collection device since it is inte-

grated with many sensors such as camera, light sensor,

GPS, accelerometer, digital compass, gyroscope, micro-

phone, and proximity sensor. Other types of sensors, such

as sleep sensor, EEG earphone, barometer, heart rate

monitoring sensor, chemical sensor are expected to be

available in smartphones in the near future [1]. The mobile

crowd sensing has a huge potential due to the prominent

advantages, such as wide spatiotemporal coverage, low

cost, good scalability, pervasive application scenario, etc.

As a novel sensing mode, mobile crowd sensing can enable

attractive sensing applications in different domains, such as

healthcare [2], social networking [3], environmental mon-

itoring [4] and transportation [5, 6].

There are many applications and systems on mobile

crowd sensing such as Co-evolution model for behavior

and relationship discovery [7], SignalGuru [8] for pro-

viding traffic information, SmartTrace [9] for 3G/WiFi

discovery, Frequent Trajectory Pattern Mining [10] for

activity monitoring, LiFS [11] for indoor localization, etc.

However, most of them are based on voluntary partici-

pation. In fact, incentivizing smartphone users is crucial

to mobile crowd sensing system while smartphone users

incure some cost (e.g., time and power consumption,

memory, and data traffic for transmitting the data).
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Moreover, there are potential privacy threats to smart-

phone users by sharing their sensed data with location

tags, interests or identities. Incentive mechanisms also

help to achieve good service quality since sensing ser-

vices are dependent on quantity of users and quality of

sensed data.

The problem of stimulating smartphone users in mobile

crowd sensing is very difficult because strategic behaviors

of smartphone users can seriously hinder the potential

collaboration of smartphone users. There have been some

research efforts on developing incentive mechanisms for

mobile crowd sensing [12–21]. However, most of existing

mechanisms cannot deal with the continuous time interval

coverage tasks which require completing sensing data in

the whole time interval publicized by the platform. For

example, the tasks described in [12] and [13] are location

dependent, and it may not necessary to make sure that all

tasks are accomplished. There are some realistic examples

of existing projects that fall into the continuous time

interval coverage scenario: Bus Arrival Time Prediction

System [22], Ear-Phone [23] and Haze Watch [24]. In

aforementioned projects, the platform wants to collect

sensing data over short time durations sent by participants,

and then assembles pieces of incomplete information to

reconstruct and represent the data over a long time interval.

Obviously, the discontinuous sensing data is difficult to be

assembled and is unvalued to the platform. However, most

existing mechanisms consider there is no sequence

between tasks, and the platform is indifferent to which task

has been performed.

In this work, we focus on exploring truthful incentive

mechanisms satisfying the desirable properties for maxi-

mum continuous time interval coverage under budget

constraint in mobile crowd sensing. We present a universal

system model for this novel mobile crowd sensing sce-

nario. To stimulate smartphone users, the interactions

between the platform and the smartphone users are mod-

eled as a reverse auction mechanism. We propose two

budget feasible frameworks: Sensing Time Interval based

Budget Feasible Framework (BFF-STI) and Bidding Time

Interval based Budget Feasible Framework (BFF-BTI). In

proposed frameworks, the truthful mechanism MST [25] is

introduced to maximize the social efficiency. Then we

extend the budget feasible frameworks to the more general

case, and a greedy approach based mechanism MMT [25]

is applied in this case. We show that the designed incentive

mechanisms satisfy the desirable properties in both cases.

The key contributions of our work are summarized in

the following:

• We focus on dealing with a category of time interval

coverage task mobile crowd sensing, which is a novel

and practical scenario. We present the universal system

model and formulate the budget feasible maximum

continuous time interval problem for this scenario.

• We design two budget feasible frameworks: BFF-STI

and BFF-BTI. BFF-STI traverses all possible continu-

ous time intervals in STI and chooses the best budget

feasible outcome calculated by the truthful mechanism,

while BFF-BTI traverses all possible continuous time

intervals based on BTIs.

• We integrate MST as the truthful mechanism to

maximize the social efficiency. Then we extend the

proposed budget feasible frameworks to the general

case, in which each user can bid multiple time intervals

simultaneously and MMT is applied. We show the

proposed budget feasible frameworks with MST or

MMT are computationally efficient, individually

rational, truthful and budget feasible.

The rest of the paper is organized as follows. Section 2

formulates the system model and problem. We present the

budget feasible frameworks in Sect. 3. Section 4 integrates

the MST into our frameworks, and analyzes the properties

of budget feasible frameworks with MST. Section 5

extends the budget feasible frameworks to the multiple BTI

case, and analyzes the properties of budget feasible

frameworks with MMT. Performance evaluation is pre-

sented in Sect. 6. We review the related work in Sect. 7,

and conclude this paper in Sect. 8.

2 System model and problem formulation

The system model can be briefly illustrated in Fig. 1. We

consider a mobile crowd sensing system consisting of a

platform and many smartphone users. The platform resides

in the cloud and wants to collect the time continuous

sensing data within a specific time interval. In detail, we

consider the platform publicizes a Sensing Time Interval

(STI)W ¼ TS; TE½ �, where TS and TE are the start time and

end time of STI, respectively. The platform has a strict

budget constraint B for the time interval dependent tasks.

We denote the length of W, i.e., the number of time units

of STI, as Wj j. The time unit, which is closely bound up

with the application scenarios, is determined by the sam-

pling frequency of sensing data in practice. It is reasonable

that the sensing data is valid if a user submits it in arbitrary

point-in-time within the time unit.
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Assume that a crowd of smartphone users U ¼
1; 2; . . .; nf g are interested in participating sensing tasks.

Each user i responds with a bid Ai ¼ si; ei½ �; bið Þ, in which

si; ei½ � is a Bidding Time Interval (BTI) the user i can

perform. Each BTI is associated with the cost ci. si and ei
are start time unit and end time unit of BTI, respectively,

8i 2 U. We also assume si � TS and ei � TE since the users

are rational and know that any si\TS or ei [ TE cannot

bring extra benefit in our mechanisms. bi is the claimed

cost which is the bidding price that user i wants to charge

for performing time continuous sensing from si to ei. Note

that the sensing data is processed by trusted time stamping

such as Public Key Infrastructure Time-Stamp Protocol

(TSP) [26] to prevent the users reporting the BTIs that are

not real.

The platform selects a subset of users S � U, and noti-

fies winners of the determination. The winners perform the

sensing in their BTIs and send data back to the platform.

Each user i is paid pi, which is computed by the platform.

The above interactive process of our mobile crowd

sensing system can be modeled as a reverse auction, which

is illustrated by Fig. 2.

Table 1 lists frequently used notations.

We define the utility of user i as the difference between

the payment and its real cost

Fig. 1 Illustration of the time interval coverage mobile crowd sensing system

Fig. 2 Illustration of a mobile

crowd sensing system as a

reverse auction framework

Table 1 Frequently used notations

Notation Description

U, n Set of users and number of users

W, Wj j Sensing time interval (STI) and the length of STI

TS;TE Start time unit and end time unit of STI

ti Time unit in STI

BTI Bidding time interval

si; ei Start time unit and end time unit of BTI

A;Ai Set of bids and bid of user i

B Budget constraint

bi, ci Claimed cost and real cost of user i

S Set of winners

ui Utility of user i

v Sð Þ; vmax Total value over S and the maximum of value so far

P, pi Payment to users and payment to user i
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ui ¼ pi � ci ð1Þ

Specially, the utility of the losers would be zero because

they are paid nothing in our designed mechanisms and

there is no cost for sensing.

Note that bi can be different from the real cost ci of

performing BTI since we consider users are selfish and

rational, and the real cost is private and unknown to

other users and the platform. So the users may take a

strategic behavior by claiming cost to maximize their

own utility.

We define the value function of the platform over the

winners as the maximum continuous time duration the

users in the winner set S can perform

v Sð Þ ¼ maxi;j2S;ej � si si; ej
� ��� �� ð2Þ

where si; ej
� �

is the continuous time duration which can be

covered by the users in the winner set S.

The platform expects to obtain the maximum value from

the winners under the budget constraint, i.e.,

Maximizev Sð Þ s:t:
X

i2S
pi �B ð3Þ

To prevent the monopoly, we exclude the situation

where only one bid hits the arbitrary time unit in STI.

Our objective is to design the incentive mechanisms

satisfying the following four desirable properties:

1. Computational Efficiency

A mechanism is computationally efficient if the

outcome can be computed in polynomial time.

2. Individual Rationality

Each user will have a non-negative utility, i.e.,

pi � ci; 8i 2 U.

3. Truthfulness

A mechanism is truthful if no user can improve its

utility by submitting a bid different from its real cost,

no matter what others submit. In other words, reporting

the real cost is a dominant strategy [27] for all users.

4. Budget Feasibility

The total payment to winners is less than or equal to

the budget, i.e.,
P

i2S
pi �B.

The importance of the first two properties is obvious,

because they together assure the feasibility of the incen-

tive mechanism. The third property is indispensable for

guaranteeing the compatibility. Being truthful, the

incentive mechanism can eliminate the fear of market

manipulation and the overhead of strategizing over others

for the participating users. Budget feasibility guarantees

that the mechanism is practical and satisfies the basic

requirement.

3 Budget feasible framework design

In this section, we present the budget feasible frameworks

for maximum continuous time interval coverage.

3.1 Design rationale

It is well known that the proportional share allocation rule

[18] can be applied to design the budget feasible mecha-

nism if the value function is submodular, monotone and

non-negative. Unfortunately, the value function defined in

formula (2) is not a submodular function. Another chal-

lenge is that the users can take a strategic behavior by

reporting the bidding prices that are not real. A truthful

mechanism is necessary for incentivizing the users to bid

their real costs.

However, in our system model, traversing all possible

continuous time intervals can be solved within polynomial

time for arbitrary given finite STI or BTIs. Based on the

observation, we develop the budget feasible frameworks

which follow the exhaustive method. The basic idea is: run

the truthful mechanism M W0;Að Þ for each possible con-

tinuous time interval W0 iteratively. In each iteration,

M W0;Að Þ returns the set of winners and the payment to

the users. The budget feasible outcome with maximum

continuous time interval is selected ultimately in our

frameworks.

3.2 STI based budget feasible framework

In this subsection, we present a budget feasible

framework by traversing all possible continuous time

intervals in STI. We denote the maximum of value of

the platform in current state as vmax. For each possible

continuous time interval ti; tj
� �

in STI, if the length of

the interval is greater than vmax, the mechanism

M ti; tj
� �

;A
� �

, which returns a subset of users S0 � U

and a vector P0 of payments to all the users, is carried

out. Based on the outcome of the mechanism

M ti; tj
� �

;A
� �

, if the summation of payments does not

exceed the budget, we update the outcome of BFF-STI

as that of M ti; tj
� �

;A
� �

. The whole process is illustrated

in Algorithm 1.
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It is not difficult to analyze the computational efficiency

of BFF-STI. We define O Mð Þ as the time complexity of

M ti; tj
� �

;A
� �

. The running time of BFF-STI is given in

Lemma 1.

Lemma 1 The running time of BFF-STI is

O Wj j2�max O Mð Þ; nð Þ
� �

.

Since we set the budget feasible outcome of mechanism

M ti; tj
� �

;A
� �

as the outcome of BFF-STI, we can obtain

the following Lemma.

Lemma 2 BFF-STI is budget feasible.

3.3 BTI based budget feasible framework

Since BFF-STI traverses all possible continuous time

intervals in STI, it may take long time to compute the

outcome if the length of STI is very long. In this subsec-

tion, we present a budget feasible framework by traversing

all possible continuous time intervals based on BTIs.

In BFF-BTI, the BTIs are placed in the sequence Q and

Q0; respectively according to the left point of their time

intervals such as s1 B s2 B …Bsn and the right point of

their time intervals such as e1 C e2 C …Cen. We scan Q

and Q0 respectively to find all possible continuous time

intervals si; ej
� �

, i 2 Q, j 2 Q0: We denote the left point of

the continuous time interval in current state as s0. In the ith

iteration of Q, if si 6¼ s0 and the length of interval si; eq
� �

,

where eq is the greatest right point among all BTIs, is no

more than vmax, BFF-BTI returns the current outcome as

the ultimate outcome because the length of arbitrary time

interval si; ej
� �

, j 2 Q0; j 6¼ q, is less than the length of

interval si; eq
� �

. Moreover, the BTI j, which leads to ej � si,

is removed from Q0. For each possible continuous time

interval si; ej
� �

, if the length of the interval is greater than

vmax, the mechanism M si; ej
� �

;A
� �

is carried out. If the

summation of payments does not exceed the budget, we

update the outcome of BFF-BTI as that of M si; ej
� �

;A
� �

.

The whole process is illustrated in Algorithm 2.
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The properties of time complexity and budget feasibility

of BFF-BTI are given in Lemma 3 and Lemma 4,

respectively.

Lemma 3. The running time of BFF-BTI is

O n2 � max O Mð Þ; nð Þð Þ.
Proof The running time of the whole BFF-BTI is

dominated by this for-loop (lines 4–25). Moreover, the

running time of the for-loop (lines 4–25) is dominated by

the for-loop (lines 16–23), which runs n2 times. In each

iteration of the for-loop (lines 16–23), the mechanism

M si; ej
� �

;A
� �

(line18) takes O Mð Þ time, and summating

the payments (line19) takes O nð Þ time. Hence the running

time of BFF-BTI is bounded by O n2 � max O Mð Þ; nð Þð Þ �.

Since we set the budget feasible outcome of the mech-

anism M si; ej
� �

;A
� �

as the outcome of BFF-BTI, we can

obtain the following Lemma.

Lemma 4. BFF-BTI is budget feasible.

4 Definition and integration of truthful
mechanism

In this section, we aim to define and integrate the mecha-

nism M W0;Að Þ, which selects the winners to cover given

continuous time interval W0 and computes the payment for

each user. The mechanism M W0;Að Þ is expected to satisfy

the desirable properties of computational efficiency, indi-

vidual rationality and truthfulness.

For the outcome S0;P0ð Þ of M W0;Að Þ, the utility of the

platform is

u0 ¼ v S0ð Þ �
X

l2S0
pl ð4Þ

The objective function of M W0;Að Þ is maximizing the

social efficiency, which is the total utility of all the par-

ticipants. Hence, based on formula (1) and formula (4), the
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social efficiency is v S0ð Þ �
P

l2S0
cl. The value of v S0ð Þ is

constant since the winners can cover the given continuous

time interval W0. Thus we can maximize the social effi-

ciency through minimizing the social cost, i.e.
P

l2S0
cl.

The problem can be formulated as follows:

min
X

l2S0
cl ð5Þ

s:t:W0 � [l2S0 sl; el½ � ð6Þ

This problem is minimum weighted interval cover

problem in essence, and can be solved in polynomial time.

We can adopt the truthful mechanism MST [25], which

uses dynamic programming to select the winners and

computes payment based on the VCG payment rule.

We define the start time and the end time of W0 as T 0
S

and T 0
E, respectively. For applying MST, we remove the

users who cannot sensing for W0 (i.e., si [ T 0
E or ei\T 0

S,

8i 2 U), and sort the rest of the users U0 according to the

right point of their BTIs such as e1 B e2 B …Ben. Then

we compute F(i) for U0 in sequence with recurrence

F ið Þ¼ minej � siF jð Þ þ bi if T
0
S 62 si; ei½ �

bi if T
0

S 2 si; ei½ �

	
ð7Þ

Then we get the minimum social cost

Cost U0ð Þ ¼ mini2U0 F ið ÞjT 0

E 2 si; ei½ �
n o

ð8Þ

Finally, VCG based payment rule is applied to determine

the payment for the users

pi¼
Cost U0n if gð Þ � Cost U0ð Þ � bið Þ if i 2 U0

0 if i 62 U0

	
ð9Þ

We review the important and useful properties of MST

here.

Lemma 5. ([25, Lemma 1]) The running time of MST is

O n2lognð Þ.
Lemma 6. ([25, Theorem 1]) MST is individually

rational and truthful.

For convenience, we named the mechanism using BFF-

STI and MST as BFF-STI-MST. Accordingly, the mecha-

nism using BFF-BTI and MST is denoted as BFF-BTI-

MST.

The above six lemmas together prove the following

theorems.

Theorem 1 The running time of BFF-STI-MST is

O Wj j2n2logn
� �

. Furthermore, BFF-STI-MST is individu-

ally rational, truthful and budget feasible.

Theorem 2 The running time of BFF-BTI-MST is

O n4lognð Þ. Furthermore, BFF-BTI-MST is individually

rational, truthful and budget feasible.

5 Extension to multiple bti case

In the previous section, we proposed the budget feasible

frameworks for continuous time interval coverage tasks, in

which the bid of each user only contain one BTI. As

illustrated in Fig. 3, we extend them to a more practical

scenario, in which the bid of each user can contain more

than one BTI. In this case, the users can decide the set of

time intervals by several ways in practice, such as future

schedules, daily behaviors, habits or preferences. The users

can predict the time intervals, within which they are in the

specific locations to perform the sensing tasks based on

their future schedules. Moreover, the users can decide time

intervals according to their daily behaviors, habits or

preferences with little effect on their daily life. The

extended budget feasible frameworks are expected to

achieve computational efficiency, individual rationality,

truthfulness and budget feasibility.

Without loss of generality, we assume that each user i

responds with a bid Ai ¼ Ci; bið Þ, in which Ci ¼
s1i ; e

1
i ; . . .;� ½skii ; e

ki
i

� �
 �
is a set of ki time intervals the user i

can perform. Each Ci is associated with the cost ci.

Hence the value function of the platform in the multiple

BTI case can be formulated as follows

v Sð Þ ¼ max
i;j2S;1� f � ki;1� g� kj;e

g

j
� s

f

i
s
f
i ; e

g
j

h i���
��� ð10Þ

Obviously, BFF-TSI illustrated in Algorithm 1 is also

effective for the multiple BTI case. For BFF-BTI, we can

index all BTIs as s1; e1½ �, s2; e2½ �,…, sm; em½ �, where

m ¼
P

i2U ki, then we run Algorithm 2 to obtain the budget

feasible outcome.

The objective function of M W0;Að Þ is maximizing the

social efficiency in multiple BTI case, which can be for-

mulated as follows:

min
X

l2S0
cl

s:t:W0 � [l2S0;j2 1;...;klf g s
j
l ; e

j
l

� � ð11Þ

This problem is essentially a modified minimum

weighted set cover problem, which is an NP-complete

problem [28]. We use the truthful mechanism MMT [25],

which can approximate the optimal solution within a factor

of In W0j j þ 1. MMT selects the winners through a greedy

approach, which choose the user with minimum effective

average cost iteratively. Specifically, in the ith iteration,

given the uncovered time interval W0
i�1 � W0, we select

the user h with min
h2UnS0

bh

W0
i�1\ [8j2 1;...;khf g s

j

h
;e j

h½ �
� � as the winner.

Repeat the selection until whole W0 is covered. Finally, the
critical payment [19] is calculated for each winner.

We review the important and useful properties ofMMThere.
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Lemma 7 ([25, Lemma 5]) The running time of MMT is

O n3 � maxi2 1;...;nf gki
� �

.

Lemma 8 ([25, Theorem 3]) MMT is individually

rational and truthful.

For convenience, we named the mechanism using BFF-

STI and MMT as BFF-STI-MMT. Accordingly, the

mechanism using BFF-BTI and MMT is denoted as BFF-

BTI-MMT.

Lemma 1 to Lemma 4 and Lemma 7 to Lemma 8

together prove the following theorems.

Theorem 3 The running time of BFF-STI-MMT is

O Wj j2n3 � maxi2 1;...;nf gki

� �
. Furthermore, BFF-STI-MMT

is individually rational, truthful and budget feasible.

Theorem 4 The running time of BFF-BTI-MMT is

O n5 � maxi2 1;...;nf gki
� �

. Furthermore, BFF-BTI-MMT is

individually rational, truthful and budget feasible.

6 Performance evaluation

In this section, we conduct thorough simulations to inves-

tigate the performance of our budget feasible frameworks.

Firstly, we evaluate the budget feasible frameworks based

on real word experience data traces. Then we conduct the

simulations based on random users in order to reveal the

impacts of the key parameters. The performance metrics

include the value of the platform, the total payment and the

running time. For our simulations, the cost of each bid is

uniformly distributed in [1,100]. All the simulations were

run on an Ubuntu 14.04.3 LTS machine with Intel Xeon

CPU E5-2420 and 16 GB memory. Each measurement is

averaged over 1000 instances. For convenience, we named

the budget feasible framework in single BTI case as BFF-

MST. Accordingly, the budget feasible framework in

multiple BTI case is denoted as BFF-MMT.

6.1 Performance evaluation based on real traces

We use the real mobility traces of 370 taxi cabs that report

their position every 15 s around the city of Rome during

2014-02-01 to 2014-03-02 [29]. For our simulations, we

use the traces at the time snapshot in 2014-02-01. We

consider the maximum continuous time interval coverage

tasks are performed in the specific geographical areas

under budget constraint. We choose three different places

in the city of Rome: Piazza Colonna, Quirinal Palace and

University of Arkansas Rome Center (UARC). The geo-

graphical areas are set as the circulars with the centers of

the three places respectively, and the radius for each cir-

cular is 1 km. We assume that a smartphone is carried by

the passenger or the driver of each taxi. The platform

publicizes different STIs for different geographical areas,

and the bidders are taxis who are in the specific geo-

graphical areas during the STIs.

6.1.1 Evaluation of BFF-MST

We set the maximum STI of 15600 s for Piazza Colonna,

10800 s for Quirinal Palace and UARC, respectively, and

Fig. 3 Illustration of the time interval coverage mobile crowd sensing system with multiple BTIs
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measure the performance with different end time of STI.

The time unit length is one second. We select the maxi-

mum length time interval in the STI of each taxi as the BTI

in this single BTI case. Figure 4 depicts the performance of

BFF under the budget 200. Since the start time is same, the

different end time means different STI, which is an indi-

cation of workload for the crowd sensing application. As

can be seen from the figure, the number of taxis increases

when STI goes up. This is because more taxis pass through

the pre-set geographical areas when there is more time for

sensing. Given the same STI, the number of taxis depends

on the taxi density in corresponding area. The value of the

platform also increases because there are more taxis.

Specifically, the value in Quirinal Palace area always equal

to the length of STI. This means that the winning taxis

selected by BFF can always complete the tasks in the

whole STI under the budget in this setting. Moreover, the

running time of BFF-STI increases severely with increas-

ing STI since the running time largely depends on the

length of STI and the number of taxis involved. However,

the running time of BFF-BTI, which largely depends on the

number of taxis, is much less than that of BFF-STI since

the number of taxis is much fewer relative to the length of

STI in the setting.

Then we fix the end time 3000 s of STI for all three

geographical areas, and vary the budget. As can be seen

from Fig. 5, the value of the platform increases when the

budget goes up. This is because we can select more taxis or

more valuable taxis to perform the tasks. The value in

different geographical areas is quite different since the

value also depends on the real mobility traces of taxis. The

total payment also increases with the budget; moreover, the

total payment is under the budget strictly.

6.1.2 Evaluation of BFF-MMT

In multiple BTI case, we use all time intervals of each taxi

in the STI as the BTIs. We set the maximum STI of 520,

480 and 280 min for Piazza Colonna, Quirinal Palace and

(a)

(b)

(c)

Fig. 4 Performance of BFF with various end time of the STI under

budget = 200 in single BTI case a number of taxis, b value of the

platform, c running time

(a)

(b)

Fig. 5 Performance of BFF under various budgets in single BTI case

a value of the platform, b total payment
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UARC, respectively, and measure the performance with

different end time. The time unit length is 1 min. In this

setting, there are at most 26 BTIs in one bid. Figure 6

shows the performance of BFF with different end time

under budget 200. The number of taxis increases when STI

goes up. The value of the platform also increases because

there are more taxis. Specifically, the value in UARC area

is almost equal to the maximum value of the platform (i.e.

the length of STI). This means that the winning taxis

selected by BFF almost complete the tasks in the whole

STI under such budget constraint. Moreover, the running

time of BFF-STI increases with increasing STI. However,

the running time of BFF-BTI is much less than that of BFF-

STI since the number of taxis is much fewer relative to the

length of STI in the setting.

We fix the end time 140 m of STI for all three geo-

graphical areas, and measure the performance with differ-

ent budgets. As can be seen from Fig. 7, the value of the

platform increases when the budget goes up. The value in

Quirinal Palace is very close to the maximum value 140

when the budget is more than 100. However, the value also

depends on the real mobility traces of taxis, and can be

very different in different geographical areas. The total

payment also increases with the budget, and the budget

utilization ratio (
P

i2S pi=B) is 89.6 % in average.

6.2 Revealing the impacts of the key parameters

There are four common key parameters: the upper limit

ratio of BTI d, the number of users n, the budget constraint

B and the length of STI. There is a special parameter for

BFF-MMT: the upper limit number of BTIs for each bid c.
For our simulations, the length of BTI is uniformly dis-

tributed in the interval 1; d Wj j½ �. Since the users are

rational and know that any BTI out of STI cannot get the

payoff, the start time of bid si is uniformly distributed in

whole STI and satisfies si � Ts and ei � TE. In BFF-MMT,

each bid can contain more than one BTI. The number of

BTIs for each bid in BFF-MMT is uniformly distributed in

[1,c]. We set n = 180, Wj j ¼ 100, d = 0.1, c = 9, B = 30

as the default setting, however we will vary them for

exploring the impacts of these parameters respectively. The

(a)

(b)

(c)

Fig. 6 Performance of BFF with various end time of the STI under

budget = 200 in multiple BTI case a number of taxis, b value of the

platform, c running time

(a)

(b)

Fig. 7 Performance of BFF under various budgets in multiple BTI

case a value of the platform, b total payment
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impact of the length of STI has been investigated in

Sect. 6.1. Thus we measure the impacts of other key

parameters here.

6.2.1 Impact of d

The BTI length of each bid responded by users can depict

the interest and suitability of users for participating in

mobile crowd sensing. We set the BTI length of each bid in

1; d Wj j½ � with uniform distribution, and then vary d from

0.08 to 0.26 to investigate the impact on BFF. As can be

shown in Fig. 8, the value increases with increasing d
because each user can provide more value in average.

Specifically, BFF-MMT can obtain 96.03 % of the maxi-

mum value when d ¼ 0:16, while BFF-MST obtain

50.54 % of the maximum value even when d ¼ 0:26. This

is because the users in multiple BTI case are more powerful

than that in single BTI case. Moreover, the running time

decreases with increasing d. In detail, given Wj j and n, the

running time of BFF is related to the current maximum of

value vmax because each time interval W0 � vmax is not

considered and is dropped directly in BFF (Line 10 of

Algorithm 1 and Line 9 of Algorithm 2). Although there is

no quantitative analysis, the simulation results indicate that

the running time of BBF would decrease dramatically

when BFF can obtain large value of the platform. On the

other hand, BFF-BTI takes more time than BFF-STI in

both single BTI case and multiple BTI case since the

number of users is greater than the length of STI in the

random user simulation setting.

6.2.2 Impact of n

To investigate the scalability of designed mechanisms, we

fix the upper limit ratio of BTI d = 0.1, and vary the

number of users from 180 to 270. Figure 9 shows the

impact of user number on the performance of BFF. The

value of the platform increases both in single BTI case and

in multiple BTI case. The value from BFF-MST goes up

slowly due to the limited budget, while BFF-MMT can

obtain more than 90.46 % of maximum value when the

number of users exceeds 240. Moreover, the running time

of all mechanisms increase, which conforms to the

expected running time properties of BFF proved in Theo-

rem 1 to Theorem 4.

6.2.3 Impact of B

Then we fix the number of users n = 180, and vary the

budget constraint from 20 to 110. Figure 10 depicts the

performance of BFF in such setting. BFF can obtain more

(a)

(b)

Fig. 8 Impact of the upper limit ratio of BTI d a value of the

platform, b running time

(a)

(b)

Fig. 9 Impact of the number of users n a value of the platform,

b running time
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value when the budget is relaxed. The total payment also

increases with increasing budget with budget utilization

ratio 91.31 and 91.36 % respectively in single BTI case

and multiple BTI case in average. Moreover, all mecha-

nisms can take less time when we increase the budget

constraint.

6.2.4 Impact of c in BFF-MMT

Since each user can respond with multiple BTIs in one bid

in BFF-MMT, the number of BTIs for each bid is a key

parameter which depends largely on users’ movement habit

in practice. Figure 11 depicts the performance of BFF-

MMT with the upper limit number of BTIs for each bid c

being varied from 5 to 23. With more BTIs each user can

provide, the value increases dramatically since each user

can perform more tasks in STI. Meanwhile, the running

time decreases severely when BFF can obtain larger value.

7 Related work

Many incentive mechanisms for mobile crowd sensing

have been proposed thus far. Yang et al. [12] proposed two

different models for smartphone crowdsourcing: the plat-

form-centric model where the platform provides a reward

shared by participating users, and the user-centric model

where users have more control over the payment they will

receive. In [20], they further extended the user-centric

model to three cases: single requester with single bid,

single requester with multiple bids and multiple requesters

with multiple bids. Koutsopoulos [19] designed an optimal

reverse auction, considering the data quality as user par-

ticipation level. However, the quality indicator, which

essentially measures the relevance or usefulness of infor-

mation, is empirical and relies on user’s historical infor-

mation. In [15], Feng et al. formulated the location-aware

collaborative sensing problem as the winning bids deter-

mination problem, and presented a truthful auction using

the proportional share allocation rule proposed in [18].

(a)

(b)

(c)

Fig. 10 Impact of the budget constraint B a value of the platform,

b total payment, c running time

(a)

(b)

Fig. 11 Impact of the upper limit number of BTIs for each bid c
a value of the platform, b running time
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However the mechanism is only effective to perform

location-aware tasks. In [13], Zhao et al. investigated the

online crowdsourcing scenario where the users submit their

profiles to the crowdsourcer when they arrive. The objec-

tive is selecting a subset of users for maximizing the value

of the crowdsourcer under the budget constraint. They

designed two online mechanisms, OMZ, OMG for different

user models. In [30], Peng et al. incorporate the consider-

ation of data quality into the design of incentive mecha-

nism for crowd sensing, and propose to pay the participants

as how well they do, to motivate the rational participants to

perform data sensing efficiently.

At present, there are some studies on budget feasible

incentive mechanism design for mobile crowd sensing.

Singer proposed a truthful budget feasible mechanism [18]

based on the proportional share allocation rule. However,

the designed mechanism was not established on any crowd

sensing system model and only valid for submodular

functions. Pricing mechanisms were also developed in [14]

for the budget feasible maximizing task problem and the

budget feasible minimizing payment problem based on the

method proposed in [18]. Han et al. [31] proposed two

truthful and budget feasible scheduling mechanisms with

constant approximation ratio. In [32], Zhang et al. profiled

the tasks’ difficulty levels and workers’ quality in crowd-

sourcing systems, where the collected labels are aggregated

with sequential Bayesian approach, and proposed a budget

feasible mechanism for incentivizing crowd labeling. In

general, these existing incentive mechanisms have not

considered the time interval coverage tasks.

8 Conclusion

In this paper, we have investigated budget feasible

frameworks for maximum continuous time interval cover-

age under budget constraint in mobile crowd sensing. We

have presented a system model based on reverse auction

framework. The objective of our budget feasible frame-

works is maximizing the value of the platform. We have

designed two budget feasible frameworks, BFF-STI and

BFF-BTI, and integrated MST as the truthful mechanism to

maximize the social efficiency. Then we extend the pro-

posed budget feasible frameworks to the multiple bidding

time interval case. The truthful mechanism MMT was

applied in this case. We show the proposed budget feasible

frameworks with MST or MMT are computationally effi-

cient, individually rational, truthful and budget feasible.

The simulation results show that BFF-STI has superiority

in large scale mobile crowd sensing applications, while

BFF-STI is more suitable for long-term sensing

applications.

In the future work, we will further extend the frame-

works to multiple STI case. We consider there are several

heterogeneous time interval coverage tasks which need to

be performed simultaneously. Each task corresponds to a

STI with independent budget. In the multiple STI case, if

each user bids only for one of the tasks, we can apply our

budget feasible frameworks for each STI. However, if the

user can bid multiple BTIs for multiple STIs simultane-

ously, the problem can be very intractable.
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