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Abstract—With the rapid growth of smartphones, mobile crowdsensing emerges as a new paradigm which takes advantage of the
pervasive sensor-embedded smartphones to collect data efficiently. Many auction-based incentive mechanisms have been proposed to
stimulate smartphone users to participate in the mobile crowdsensing applications and systems. However, none of them has taken into

consideration both the bid privacy of smartphone users and the social cost. In this paper, we design two frameworks for
privacy-preserving auction-based incentive mechanisms that also achieve approximate social cost minimization. In the former, each
user submits a bid for a set of tasks it is willing to perform; in the latter, each user submits a bid for each task in its task set. Both
frameworks select users based on platform-defined score functions. As examples, we propose two score functions, linear and log
functions, to realize the two frameworks. We rigorously prove that both proposed frameworks achieve computational efficiency,
individual rationality, truthfulness, differential privacy and approximate social cost minimization. In addition, with log score function, the
two frameworks are asymptotically optimal in terms of the social cost. Extensive simulations evaluate the performance of the two
frameworks and demonstrate that our frameworks achieve bid-privacy preservation although sacrificing social cost.

Index Terms—Mobile crowdsensing, incentive mechanism, differential privacy.

1 INTRODUCTION

OWADAYS, the proliferation of smartphones is chang-
Ning people’s daily lives. With the advance of high-
speed 3G/4G networks and more powerful embedded
sensors (e.g., camera, accelerometer, compass, etc.), mobile
crowdsensing emerges as a new paradigm which takes
advantage of the pervasive sensor-embedded smartphones
to collect data efficiently.

A typical mobile crowdsensing system consists of a
cloud-based platform and a large number of smartphone
users. The platform works as a sensing service buyer who
posts the required sensing information and recruits a set
of smartphone users to provide sensing services. Once se-
lected by the platform, a smartphone user starts to collect
the required data and sends it back to the platform. The
potential effectiveness of mobile crowdsensing, especially
with geographically distributed smartphone users, enables
numerous mobile crowdsensing applications [34], [47], [53].
However, most of them assume that the smartphone users
contribute to the platform voluntarily. In reality, smartphone
users consume their own resources such as battery and sens-
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ing time while completing the sensing tasks. In addition,
they might suffer from the potential privacy disclosure by
sharing their sensed data with personal information (e.g.,
location tags and bid price). Therefore, smartphone users
may be reluctant to participate in a mobile crowdsensing
system and application, unless they are paid some rewards
to compensate their resource consumption or potential pri-
vacy leaks. Since the number of participating smartphone
users has a significant impact on the performance of the
mobile crowdsensing systems, it is necessary to stimulate
users to join the systems.

Auction is an efficient method to design incentive mech-
anisms. Many auction-based incentive mechanisms have
been proposed for mobile crowdsensing [46], [47], [49], [51].
They are essentially reverse auctions in which the platform
is the service buyer and the smartphone users are the
bidders selling sensing services. In these mechanisms, the
service buyer selects bidders according to their submitted
task-bid pairs (elaborated in Section 3). The objectives of
these mechanisms focus on either maximizing the total
value gained by the platform or minimizing the total pay-
ment to the selected users. However, none of them takes
users’ privacy into consideration.

In most of the proposed truthful auction-based incen-
tive mechanisms, bidders are stimulated to bid their true
costs, which are private information of smartphone users.
For transparency, the platform will publish the outcome of
the auction mechanism, which consists of winning bidders
and their payments. Ensuring transparency in the procure-
ment procedure is essential to efficiency, as it enhances the
competitiveness of public procurement [36]. Meanwhile, it
has been proven by bid sale dealers for years that trans-
parency leads to profit [37]. The FCC uses auctions to sell
the licenses to transmit signals over specific bands of the
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electromagnetic spectrum, and releases the result of each
auction online for transparency [3]. In recent years, many
commercial platforms have put more emphasis on trans-
parency as well, e.g., Auction.com [1], which is a trusted
leader in the web-based real estate auction industry, and
eBay [2], which is a multinational e-commerce corpora-
tion. However, once the true cost of a smartphone user
is reported to the platform, other bidders might infer this
private information based on the published outcome. This
is known as inference attack [20] (we give two examples in
Section 3). Inference attack has been analyzed in many areas,
e.g., multilevel secure databases [22], data mining [10], web-
based applications [40] and mobile devices [31]. Protecting
users’ bid privacy is important because its disclosure might
also incur threats to users’ other private information, such
as location [25], [44]. In this paper, we focus on designing
truthful auction-based mechanisms to protect users’ bid
privacy.

To formalize the notion of users” bid privacy, we em-
ploy the concept of differential privacy [12]. Intuitively, a
mechanism provides differential privacy if the change of
one user’s bid has limited impact on the outcome. We
also leverage the exponential mechanism [33], a technique to
design differentially private mechanisms, to preserve users’
bid privacy.

In this paper, we study the problem of designing truth-
ful mechanisms, which achieve computational efficiency,
individual rationality, differential privacy, and approximate
social cost minimization. We consider the scenario where
there is one buyer and multiple sellers. Smartphone users
act as bidders and submit their bids to compete for the
chance of being selected to perform the corresponding tasks.
Besides, smartphone users do not want others to know their
own bid information. We first consider the single-bid model
in which each user can only submit a set of tasks. Then we
consider the multi-bid model in which each user can submit
a bid for each task in its task set. For each of these two
models, we propose a differentially private truthful auction-
based framework, named BidGuard and BidGuard-M, re-
spectively. One important component of both frameworks
is a platform-defined score function for selecting users. As
examples, we propose two score functions to realize the
frameworks.

The main contributions of this paper are as follows:

e In this paper, we propose two frameworks, BidGuard
and BidGuard-M, for privacy-preserving mobile crowd-
sensing incentive mechanisms for two different models,
which achieve computational efficiency, individual ratio-
nality, truthfulness, differential privacy, and approximate
social cost minimization. Specifically, we design two
different score functions, linear score function and log
score function, to realize this two frameworks.

e With linear score function, BidGuard achieves
(e(e — 1)/e,0)-differential privacy and the social
cost is at most gOPT + O(lnn) with the probability
of at least 1 — 1/no(1), where ¢ > 0 is a constant,
§ € (0,4] and g is the cardinality of the largest user
task set, e is the base of the natural logarithm, OP7T
is the optimal social cost, and n is the number of the
users. BidGuard-M achieves 2me-differential privacy
and the social cost is at most OPT + mO(lnn) with

2

the probability of at least 1 — 1/n°(1), where m is the

number of sensing tasks.

e With log score function, BidGuard achieves
(e(e — 1)/e,0)-differential privacy and the social
cost is at most 2¢ H,,, OPT with the probability of at least
1 — et for any constant ¢t > 0, where H,, = Z;”:l 1/4,
and m is the number of sensing tasks. BidGuard-M
achieves 2mlogy (ﬁ)e-differential privacy and the
social cost is at most 2°‘OPT with the probability of at
least 1 — 1/n°(M), where A is the maximum difference
in the bidding price. In addition, both BidGuard and
BidGuard-M are proved to be asymptotically optimal.

e We evaluate the performance of BidGuard and
BidGuard-M through simulations based on a real data
set. Extensive numerical results demonstrate that both
frameworks achieve bid-privacy preservation although
sacrificing social cost.

The remainder of this paper is organized as follows. In
Section 2, we briefly review the related work. In Section 3,
we introduce two system models and the objectives. In
Section 4 and 5, we present frameworks for the two models
in detail and prove their properties, respectively. We eval-
uate the performance of our frameworks in Section 6. We
conclude this paper in Section 7.

2 RELATED WORK

In recent years, incentive mechanisms in mobile crowd-
sensing have been widely studied [16], [38]. As one of the
pioneering works on designing incentive mechanisms for
mobile crowdsensing, Yang et al. [48], [49] proposed two
incentive mechanisms for both user-centric and platform-
centric models using auction and Stackelberg game, respec-
tively. The objectives of most of the state-of-art incentive
mechanisms are either maximizing the total utility /value of
the platform under a certain constraint (e.g., budget) [52]
or minimizing the total payment of the platform [32].
Feng et al. [15] proposed a mechanism called TRAC, which
takes into consideration the importance of location informa-
tion when assigning sensing tasks.

Many pieces of works have explored the privacy-
preserving mechanisms in mobile crowdsourcing. Most of
them [17], [26] apply the spacial and temporal cloaking
techniques like K-anonymity to blur users’ locations in a
cloaked area or cloaked time interval to preserve users’ pri-
vacy. PEPSI [11] and AnonySense [39] focus on anonymous
data collection, which could protect users” identities when
they submit the tasks.

Some efforts have been specially made to protect users’
privacy in mobile crowdsensing [8]. Although providing
good performance in privacy preservation, the mechanisms
in [14], [18], [27], [28], [29], [35], [43], [50] are based on cryp-
tography techniques and do not take into consideration the
users’ strategic behaviors. Besides, all of the cryptography-
based works are vulnerable to inference attack, since an
attacker can infer users’ private information through the
published results. Sun et al. [41] proposed an auction-based
incentive mechanism which encrypts users’ bids by obliv-
ious transfer. But it does not solve the issue of inference
attack because one user still can infer others’ bids from the
received payment. Jin et al. proposed a privacy-preserving

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2780091, IEEE

Transactions on Mobile Computing

approximately truthful incentive mechanism [23], which
minimizes the total payment, and a privacy-preserving
framework [24] for data aggregation. However, none of the
above works has a performance guarantee on social cost.
In this paper, our objectives are preserve users’ bid privacy
from inference attack while achieving approximate social
cost minimization.

Differential ~privacy was firstly introduced by
Dwork et al. [12]. The first differentially private auction
mechanism was proposed by McSherry et al. [33]. They also
incorporate exponential mechanism and mechanism design
to achieve differential privacy with different objectives.
General methods to design truthful mechanisms while
still preserving differential privacy have been studied
in [7], [21], [45]. However, our objective is different from
above works. Recently, differential privacy has been used
in other applications, e.g., location-based systems [4] and
spatial crowdsoucing [42]. Zhu et al. [54] proposed the first
differentially private spectrum auction mechanism, which
achieves strategy-proofness and approximate revenue
maximization. Note that our objective is to minimize the
social cost, which differs from that in [54].

3 MODELS AND PROBLEM FORMULATION

In this section, we model the mobile crowdsensing system as
a reverse auction and present two different models. Similar
to most mobile crowdsensing systems [15], [47], [48], [49],
[51], we consider a mobile crowdsensing system consisting
of a platform and multiple smartphone users who are inter-
ested in performing sensing tasks. In the first model, each
user can submit only one task-bid pair. Our second model
allows each user to submit multiple task-bid pairs and can
be assigned to work on multiple tasks. Then we describe the
threat models, which threaten both of the models. At the
end of this section, we present some important properties
and give our design objective.

3.1 Single-bid Model

The platform first publicizes a set T = {t1,t2,...,tm} Of
m sensing tasks. Assume there is a set U = {1,2,...,n} of
n > 2 smartphone users. Each user ¢ has a task set I'; C 7,
which it can perform. Each I'; is associated with a cost ¢;,
which is a private information of user i. The platform selects
a subset of users S C U to complete all the sensing tasks in
T. At last, the platform calculates the payment p; for each
selected user i € S. Let ? = (p1,p2,-.-,pn) denote the
payment profile. The utility of any user ¢ € U is

i — ¢, ifieS;
m:{ 151 ;

otherwise.

In this paper, we model the interactive process between
the platform and the users as a sealed-bid reverse auction,
where the platform buys sensing service and the users are
bidders who sell sensing service. In order to prevent the
monopoly and guarantee the quality of sensing task, we
assume each task in 7 can be completed by more than
one user in U. This assumption is reasonable for mobile
crowdsensing as made in [15]. If a task in 7 can only be
completed by at most one user in I/, we simply remove it
from T.

3

At the beginning of this auction, each user ¢ € U submits
a task-bid pair ; = (I';, b;) to the platform, where b; is user
i’s bid, representing the minimum price user 7 wants to sell
its sensing service for. Note that in a truthful auction-based
incentive mechanism, users are stimulated to bid their true
costs, i.e., b; = c¢;. Without loss of generality, we assume
that each user’s bid is bounded by [bmin, bmaz], Wwhere byin
is normalized to 1 and b,,,., is a constant. Let A denote the
difference between by, and byin. Let 5 = (51,82, Bn)
denote the task-bid profile. Given the task-bid profile ?
the platform determines the outcome of the auction, which
consists of selected winning users S and the payment profile

7

3.2 Multi-bid Model

In the single-bid model, each user submit a bid for a set
of tasks. In the multi-bid model, each user is allowed to
submit a bid for each task in its task set, and each user can
be assigned to work on multiple tasks.

The definitions of 7, U, S, T;, ? and A are the same as in
Section 3.1. In the multi-bid model, for each user i € U, each
task t¥ in T; has an associated cost c¥. Each user i submits a
set B; = {B+,B2,... ,ﬁ ‘} of k; = |T;| task-bid pairs. Each
task-bid pair is denoted by 8F = (tf ,bF), where t¥ is a single
task from I';, and bf is the minimum price user 7 wants to
sell its sensing service for t¥. Note that in a truthful auction-
based incentive mechanisrn sers are stimulated to bid their
true costs, i.e., b¥ = c¥. Let B = (By, B, ..., B,) denote the
task-bid profile. Given the task-bid profile g the platform
determines the winning task-bid pair set By C J;yy Bi
such that Ugrep,, tk = T. For each winning task-bid pair
BE € Byy, the platform calculates a payment p¥. A user i is
called a winner and be added into S if it has at least one
winning task-bid pair, i.e., B; N Byy # (). The payment for
each winner ¢isp; = BrEB,NByy p¥. The utility of any user
ieUis '

o { Pi— Ygrepinsy G fIES
u; = i .
0, otherwise.

3.3 Threat Models

Threats to Incentive: We assume that users are selfish but
rational. Hence user ¢ could report a bid b; differs from its
true cost ¢;, i.e., b; # ¢; in the single-bid model or report
a bid b¥ # c¥ in the multi-bid model to maximize its own
utility. We also assume that user ¢ does not misreport its task
set I'; in the single-bid model as in [15], [47], [48], [49], [51],
and does not misreport any ¥ € I'; in the multi-bid model'.
Other threats to incentive (e.g., collusion among bidders) are
out of the scope of this paper.

Threats to Privacy: As mentioned earlier, bidders are
stimulated to bid their true costs in a truthful auction-based
incentive mechanism, i.e., b; = ¢; in the single-bid model

1. In the single-bid model, if user i reports I'} containing tasks not in
Ty, ie., I, \ T'; # 0, it cannot finish I", when selected. If user i reports
I} C I'; with ¢;, the probability of user ¢ being selected will not increase
according to our mechanism. The case where user ¢ misreports both I';
and ¢; is challenging, because calculating the true cost of I'; C I'; is still
an open question. In the multi-bid model, if user i reports ¥ containing
tasks notin I';, i.e., t,’ik ¢ T';, it cannot finish t;k when selected.
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TABLE 1 TABLE 2
Example showing the inference attack in single-bid model Example showing the inference attack in multi-bid model
User | 2 3 4 5 . User 1 2 3 4 5
r; ti,t2 | t1 | ti,t3 | ti,t2 | t1,i3 f t1 to t1 t1 ts t1 | to t1 t3
b; $3 $1 $4 $5 $5 f $1.5 | $1.5 | $1 | $1.6 | $2.4 | $3 | $2 | $2.5 | $2.5

and b¥ = c¥ in the multi-bid model. However, one bidder
could infer other bidders’ bid according to the outcome of
the mechanism. This inference attack can be seen from the
following examples.

We first consider the single-bid model, suppose there
are 5 users in the system and their task-bid pairs 3; =
(T'i,b;),1 € [1,5] are shown in Table 1. The platform pub-
licizes a set of 3 sensing tasks 7 = {t1, t2,t3}. According to
the proposed truthful mechanism in TRAC [15], the winning
users S = {2, 1, 3}. Suppose user 5 is a bidder who want to
infer other bidders’ bid, and it changes its bid b5 from $5 to
$3 in the next auction while the other four bidders do not
change their task-bid pairs. The winning users of the new
auction is § = {2,1,5}. Since the platform publishes the
outcome of the mechanism for transparency, user 5 could
know the results and infer that user 3’s bid is between $3
and $5 by the fact that if it bids $5 it will be replaced by user
3 and if it bid $3 it will replace user 3. We can see that, after
many rounds of auction, user 5 might narrow down user
3’s bid range, and even infer the exact value in some cases.

Next we consider the inference attack in multi-bid model
using the example shown in Table 2. According to the
proposed truthful mechanism in TRAC [15], the winning
bid-pairs are By, = {63, 57,53}, and thus S = {2,1,3}.
Suppose user 5 is a bidder who want to infer other bidders’
bid, and it changes its bid b% from $2.5 to $2 in the next
auction while the other four bidders do not change their
task-bid pairs. Then the winning bid-pairs of the new auc-
tion are Byy = {53, 8%, 32}. Based on this outcome, user 5
could infer that user 3’s bid for 3 is between $2 and $2.5
by the fact that if it bids $2.5 it will be replaced by user 3
and if it bids $2 it will replace user 3. After many rounds of
auction, user 5 might also narrow down user 3’s bid range,
and even infer the exact value in some cases.

This inference attack is practical in most mobile crowd-
sensing applications, e.g., [34], [53], where tasks are pub-
licized periodically for collecting dynamic sensing data.
Protecting users’ bid privacy from such inference attack is
important because its disclosure might also incur threats to
users’ other private information, such as location [25], [44].
For example, in [25] each user ¢’s cost of task ¢; is modeled
as a linear function of its distance d; to the task. In a truthful
mechanism, user i’s bid b; = ¢;. Therefore, an attacker can
infer user ¢’s location inside a suspicion region, which is the
circle centered at the task with radius d;, by inferring its
bid b;. Besides, an attacker can also improve the inference
accuracy by narrowing down the victim’s bid through many
rounds of auction.

3.4 Desired Properties

We consider the following important properties.
o Computational Efficiency: A mechanism is computa-
tionally efficient if it terminates in polynomial time.

o Individual Rationality: A mechanism is individually
rational if each user will have a non-negative utility
when bidding its true cost.

e Truthfulness: A mechanism is truthful if any user’s
utility is maximized when bidding its true cost.

« Social Cost Minimization: A mechanism achieves social
cost minimization if the total cost of the users in S is
minimized subject to certain constraints on S.

In addition, we consider users’ bid privacy preservation.

Definition 1. (Differential Privacy [12]). A randomized function
M has e-differential privacy if for any two input sets A and B
with a single input difference, and for any set of outcomes O C
Range(M),

Pr[M(A) € O] < exp(e) x Pr[M(B) € O].

In this paper, the randomized function M is correspond-
ing to our frameworks, and Range(M) is the outcome space
of the frameworks. One relaxation of differential privacy is
as follows.

Definition 2. (Approximate Differential Privacy [13]). A ran-
domized function M gives (e, d)-differential privacy if for any
two input sets A and B with a single data difference, and for any
set of outcomes O C Range(M),

Pr[M(A) € O] <exp(e) x Pr[M(B) € O] +6.

The truthfulness of an auction mechanism is guaranteed
by the following theorem.

Theorem 1. [5] Let Pr;(z) denote the probability that bidder
i is selected when its bid is z. A mechanism with bids b and
payments T is truthful in expectation if and only if, for any
bidder 1,

1) Pr;(z) is monotonically non-increasing in b;;

2) [° Pri(z)dz < oo;

3) The expected payment satisfies E [p;] = biPr;(b;) +
fl:o Pri(z)dz.

Next, we introduce the concept of the exponential mech-
anism and its properties. In the literature of differential
privacy, the exponential mechanism is often used to design
privacy-preserving mechanisms. A key component of the
exponential mechanism is the score function f(4, o), which
maps the input set A and an outcome o € O to a real-valued
score. The score represents how good the outcome o is for
the input set A compared with the optimal outcome.

Exponential mechanism €% (A): Given an outcome space
O, an input set A, a score function f and a small constant
¢, the exponential mechanism €$(A4) chooses an outcome
o € O with probability

Pr[e5(A) = o] < exp (ef(A,0)).
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Let A denote an upper-bound of the difference of any two
input sets, the exponential mechanism has the following
properties.

Theorem 2. [33] The exponential mechanism gives 2eA-
differential privacy.

Theorem 3. [19] For any o > 0, the exponential mechanism,
when used to select an output o € O, €}(A) yields 2eA-
differential privacy, letting O* be the subset of O achieving
f(A,0) = max f(A, o), ensures that

[f (A4, €7(A)) < max f(A,0) — In(|O|/|O%])/e — a/e}
exp(—a)

Pr
<

3.5 Design Objective

The goal of our framework design is to minimize the social
cost while achieving computational efficiency, individual
rationality, truthfulness and differential privacy. Specifically,
the minimization problem in the single-bid model is referred
to as the Social Cost Minimization (SCM) problem and the
minimization problem in the multi-bid model is referred
to as the SCM-M problem. Next, we give the formal for-
mulation of the SCM problem and the SCM-M problem,
respectively.

SCM problem: Given a task set 7 and a user set U,
the goal of the SCM-S problem is to find a subset of users
S C U, such that C(S) = ;.5 ¢ is minimized subject to
Uies Ti = T-

SCM-M problem: Given a task set 7 and a user set
U, the goal of the SCM-M problem is to find a subset
of users S C U and their assigned task-bid pairs By,
such that C(Bw) = X greg,, c¥ is minimized subject to
U,Bf EBw tf =T.

Note that SCM problem is challenging because it is NP-
hard (proved by Theorem 4 in [30]), let alone combining
with computational efficiency, individual rationality, truth-
fulness and differential privacy. Although SCM-M can be
solved optimally, it is still challenging when combining
with the other properties. Therefore, we aim to design
differentially private truthful frameworks with theoretically
guaranteed approximate social cost.

4 BIDGUARD: DIFFERENTIALLY PRIVATE AuUcC-
TION FRAMEWORK FOR THE SINGLE-BID MODEL

In this section, we design and analyze BidGuard, a differen-
tially private auction framework for the Single-bid Model.

4.1

BidGuard integrates the exponential mechanism with the
reverse auction to achieve computational efficiency, individ-
ual rationality, truthfulness, differential privacy and approx-
imate social cost minimization. In this framework, users are
selected iteratively. In each iteration, redundant users are
eliminated and each remaining user is assigned a probability
to be selected. The framework then selects one of them as the
winner based on the probability distribution. Specifically,
the probability of a user to be selected is set according to a
specific criterion. The above processes repeats until all the
sensing tasks can be completed by the selected users. Finally,
the framework computes the payment to each winner.

Design Rationale

4.2 Design of BidGuard

In this section, we will describe BidGuard in detail. As il-
lustrated in Algorithm 1, BidGuard consists of three phases:
user screening, winner selection, and payment determina-
tion. It executes these three phases iteratively until all the
sensing tasks can be completed by the selected users.

Algorithm 1: BidGuard
Input : A set of sensing tasks 7, a set of users U,
submitted task-bid profile §, and differential
privacy parameters ¢ > 0 and ¢ € (0, %]
Output: A set of winners S and a payment profile 7.
S+ 0,T.+0,R«+U;
foreach ¢ € U do p; + 0;
while 7. # T do
foreach i € R do
| if I; € Tc then R < R\ {i};
end
foreach i € R do
Calculate the probability Pr;(b;) of each user
being selected according to the score function;
9 end
10 Select one user randomly, denoted by ¢/, according
to the computed probability distribution;
S+ SU{i}, T+ T.UTly, R+ R\ {i'};
end

W g Ul R WN e

11
12
foreach i € S do p; < b; + fbi?(;;z)z;

return S and ?

13

Jy
IS

1) User Screening Phase

BidGuard will eliminate all the redundant users, whose
task set can be completed by the currently selected users.
The set of remaining users is denoted by R.
2) Winner Selection Phase

BidGuard will assign each user ¢ € R a probability of
being selected as follows. It first computes a criterion 7(/5;),
which is the bid divided by the number of tasks that cannot
be completed by the currently selected users, i.e.,

bi

T (61) |Fz T ‘ ;
where 7. is the set of tasks that can be completed by the
currently selected users. BidGuard selects the user with the
lowest r(f3;) in each iteration. To apply the exponential
mechanism, we need to design a score function, which is
a non-increasing function of r(5;). The probability of each
user to be selected is set according to the value of the score
function.
3) Payment Determination Phase

Let Pr;(z) denote the probability of user ¢ being selected
with bid z. According to Theorem 1, the payment to winner
iis

M

fbb_m‘”” Pr;i(2)dz
pi =b +
4.3 Design of Score Functions

To apply the exponential mechanism, we need to design a
score function. Specifically, we design two score functions,
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linear score function and log score function. We will show that
they have different theoretical bounds on the social cost
(Section 4.4) and performance in simulations (Section 6).

Linear score function: f;rn(z) = 1 — z. For any bidder
1 € 'R, the probability to be selected in each iteration is

1 b; e .
Prey o | @0 (€0 = mfimy) . H1ER
0, otherwise,
where € = ¢/(eAln(e/d)). Note that in order to guarantee
the value of the score function is nonnegative, we normalize
r(Bi), ie., m Then the probability is

) Gl rves veserb))
> jeRr €XP 5'(1—m)
0, otherwise.
2
Log score function: froc(7) = log; /5 x. For any bidder
1 € R, the probability to be selected in each iteration is

ifi € R;

b e .
Pra(bi) o exp (e’ log1/2 bmamll“i—Tcl) , ifieR;
0, otherwise,

where ¢ = ¢/(eln(e/d)log; 5 (1/(1+ A))). We also nor-
malize the 7(5;), ie., % to guarantee the value of
the score function is nonnegative. Then the probability is

exp (¢ 1081/ 5 =7 )

PTz‘(bi) = Yjer CXP<E’ log, /2 m
0, otherwise.

®)

Throughout the rest of this paper, we denote the
BidGuard with linear score function fr;y and log score
function frog by LIN and LOG, respectively.

Illustrating example: We use the example in Table 1 to
illustrate how LIN works. Assuming bpin, = 1, bjpee = 6,
then A = 5. Let the differential privacy parameters ¢ = 0.1
and 6 = 0.5, then ¢ = 0.1/(e x 51n(e/0.5)). At the begin-
ning, T: {tl,tg,tg},s = @,7-0 = @,R =U= {1,2,3,4,5}.
LIN starts to select users iteratively. In the first iteration,
LIN calculates |I'; — 7;| for each user i € R. We have
1 =Tl =2,[T2=Tc| =1,[I5—-Tc| =2,[I's—T¢| = 2,and
IT's — 7.] = 2. Based on (2), LIN calculates the probability
of every user in R to be selected in this iteration, e.g.,
Pri(3) = exp(0.7€¢') /(exp(0.7¢") + exp(0.8¢) + exp(0.6€’) +
exp(0.5¢') + exp(0.5¢')). LIN selects a user based on the
calculated probability distribution. Assume LIN selects user
1,then § = {1}, T. = {t1,t2}, R = {3,5}. At the beginning
of the second iteration, LIN calculates |I'; — 7.| for the re-
maining users user 3 and user 5. We have |I's —7;| = 1 and
IT's — 7c| = 1. Then LIN calculates the probabilities of user
3 and user 5 to be selected in this iteration according to (2).
We have Pr3(4) = exp(0.2€¢')/(exp(0.2¢') 4+ exp(€’)) and
Prs(5) = exp(€’)/(exp(0.2€¢') + exp(€’)). Assume user 3 is
selected in this iteration, then LIN terminates since 7, = 7.
At last, LIN calculates the payment to all the selected users,

I8 Pri(z)d=
W and

ifi € R;

ie., user 1 and user 3. We have p; = 3 +

- I8 Pry(z)d=
Py =4+ S5

4.4 Analysis of BidGuard

In this section, we first analyze the properties of LIN.

Theorem 4. LIN achieves computational efficiency, individual
rationality, truthfulness, and (e(e — 1) /e, §)-differential privacy,
where € > 0 and § € (0, %] are constants, e is the base of the
natural logarithm. In addition, it has social cost at most gOPT +
O(Inn) with probability at least 1 — 1/n°W), where g is the
cardinality of the largest user task set, OPT is the optimal social
cost of the SCM problem, and n is the number of users.

Proof: We first prove the computational efficiency. The
outer while-loop (Lines 3-12) will run at most m iterations
since there are m tasks. Meanwhile, the two inner for-loops
(Lines 4-6) and (Lines 7-9) will run at most n iterations
since there are n users. Therefore, the total computational
complexity of LIN is O(mn). The individual rationality is
guaranteed by the fact that the payment to each winner ¢ is

fbb?"‘”” Pri(z)dz
pi = b; + R (R > b;. In order to prove the rest of

this theorem, we prove the following lemmas. O
Lemma 1. LIN is fruthful.

Proof: According to (2) and (3), the probability Pr;(b;)
of user 7 being selected in BidGuard is monotonically non-
increasing in its bid b;. In addition, no bid is greater
than b,,,, in our model. Thus we have fooo Pri(2)dz =

fé) e Pri(z)dz < oo. Furthermore, we have

Elp;]
bmar Pr,(z2)dz
= (1= Pri(b;)) x 0+ Pri(b;) x <bi + M)

= biPri(bi)—&—/ Pri(z)dz.
Jb,

Then, according to Theorem 1, the lemma holds. O

Lemma 2. For any constants € > 0.and ¢ € (0, %], LIN achieves
(e(e — 1)/e, d)-differential privacy, where e is the base of the
natural logarithm.

%
Proof: Let F and [’ be two input task-bid profiles t}l‘;‘t
differ in any user d’s bid, respectively. Let M (ﬁ) and M (5’
denote the sequences of users selected by LIN with inputs

and ', respectively. We show that LIN, even revealing the
order in which the users are chosen, achieves differential
privacy for an arbitrary sequence of users I = iy,%2,...,7
of arbitrary length [. We consider the relative probability of

—
LIN for given task-bid inputs F and /"
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7

o € O is a sequence of users iy, iz, - ,i;. We split O into

) ’ " r_ l
exp(ﬁ/(l_ hiww‘bﬁjj =Tl )) two sets O’ and O”, where 0" = {0 € O|}_,_; Eicy,[0i] <

Aln(e/d)} and O” = O\ O’. Thus we have
Pr {M(F) = ]I:| li[ Zieuv cxp(e’(l—m)) ( / )} \
- = 7 = b
Pr [M(ﬂl) = H} =1 exp( (- Wj—ﬂo Pr [M(F) < O}
Tieu, eXP(f'(l—m)) = Z Pr [M(ﬁ) - 0}
b 0O
1 exp(e’(l—m)> = ZPT[M(?): }-&-ZPT[M(?):O}
= 11 v, 00’ 0€0” .
s — ! - 3
J=1 exp (6 S o —T|)> < Y exp((e — 1)éAln(e/d)) Pr [M(ﬁ') = o} )
LY ieu; €Xp (e (1- #LT\)) 0€0’ .
H m”bf —, < exp((e—1)€Aln(e/d)Pr [M(B’) € (’)} +6
i=1 2icu, exp( (1~ m)) I
o _ T = exple(e—1)/e)Pr [M(§) € O] +6.
where U; = U \ {i1,12,...,1j—1} and the first equation is
based on (2). We then prove this lemma by cases. When The lemma holds O

by < bl;, the second product is at most 1 because the factor
for any j € [1,0] is less than 1 if d € U; and equal to 1
otherwise. Therefore, we have

Lemma 3. With probability at least 1 — 1/n°(), LIN has social
cost at most gOPT + O(lnn), where g is the cardinality of the

o ) largest user task set, OPT is the optimal social cost of the SCM
— / ’
pr [M(E) — e ’Zl} < =P (6 mar\Fd Tel )) problem, and n is the number of users.
7 I . . -
Pr [M(B ) =iz, ’”} exp (6, maz\l“d 7_c|)) Proof: Let §* denote the optimal solution to the

SCM problem. For LIN, we consider a sequence W of
winners according to the order they are selected, i.e., W =
w1,W2,y...,W;.

For each w;,1 < ¢ < [, let W; denote the set of users
satisfying Vj € W;:

1)jess

2)T; Ny, #0;

3)I;NTy, =0,Vk e [1,i—1];
W; is the set of users in S§* but not in W because of w;.
Pr [ M (ﬁ) =i1,19,... 71'[} For truthful mechanisms, we have b; = c¢;. According to

— Theorem 3, by taking o = O(Inn), we have

PrM(F) =inia, ..

¢ ( bl - bd )
= X €
P maa: |Fd |

exp (€'(by — b))
exp(e'A).

When by > b/, the first product is at most 1 because the
factor for any j € [1,1] is less than 1 if i; = d and equal to
1 otherwise. In the remainder of the proof, we focus on this
case. Therefore, we have

VASIV/AN

Cu, ¢
b, 1—— % 51 %9 __ _O@n),
o Do (0 i) e i A
= . (1 b
3=1 Lieu; OXP (6 Sl e )) with a probability of at least 1 — 1/n°(). This implies that
97; bi
- l Zieuj exp (EITD—TTI) exp (6/(1 — T )) o

T = Te| =

To =T O(Inn),

= CJ >

b;
ieu, €Xp (€’<1 - mn

g.
. / ¢ —
_— {eXp ( T, mﬂ

< 1 Eiew, lexp(e'6:)],

j=1

<.
Il
Jan

with a probability of at least 1 — 1/n°(}). Summing over all
7 € W;, we have

Cw7
Z - (Fuu - T‘

JEW;

|
o

- O( lnn) Z T, —
JEW;
Cu;

>
|Fwi 77—C|

where 6; = b, — b;. For all x < 1, €”
Therefore, for all ¢ < 1, we have
1 l

<l4+(e—1)- 2 —O(Inn)

with a probability of at least 1 — 1/n?(). The first inequal-

Ficu. '9; FEicu. |1 —1)€'6;
1;[1 eu; [exp(€'6:)] 1;[1 eu; [1+ (e — )] ity holds because Y~y [I'; — Tc| > [W;|. The second
! ! inequality holds because 3¢y, [I'; — 7c| > 1. Note that
IT'w, — 7¢| can be upper bounded by a constant g, which
< exp | (e—1e Z Eieu [0 is the cardinality of the largest user task set. Therefore, we

have

Lemma B.2 in [19] implies that PT[ijl Eicy,[0:] >
Aln(e/d)] < 6. Let O denote the outcome space, where each

cw’ —O(lnn)

> 6>

JEW;
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Summing over all w; € W, we have

OPT =3 ci= Y D e+ > ¢

jES wiEW JEW; JESTW
Cuw;
> Z L —O(Ilnn),
w;EW 9

where the inequality holds because when n is large, |W| <
n.
Then the lemma holds. O
For LOG we have the following properties. The proofs
are similar to those for LIN, and thus omitted.

Theorem 5. LOG achieves computational efficiency, individual
rationality, truthfulness, and (e(e — 1) /e, §)-differential privacy,
where € > 0 and 6 € (0, %] are two constants, e is the base
of the natural logarithm. In addition, it has social cost at most
2'H,,OPT with probability at least 1 — e~*, for any constant
t > 0and H,, =Y.', 1/j, where m is the number of sensing

tasks, and OPT is the optimal social cost of the SCM problem.

Remarks: According to Theorem 4 in [30], the minimum
weighted set cover problem can be reduced to the SCM
problem. It is well known that the best-possible polyno-
mial time approximation algorithm is an H,,,-approximation
algorithm for the weighted set cover problem [9], where
H,, is the m-th harmonic number. LOG has social cost
at most 2'H,,OPT, where t is a constant, and thus it is
asymptotically optimal. Even though LIN cannot be proved
to be asymptotically optimal in terms of the social cost,
we will show in Section 6 that it achieves better privacy
protection than LOG.

5 BIDGUARD-M: DIFFERENTIALLY PRIVATE AuUcC-
TION FRAMEWORK FOR THE MULTI-BID MODEL

In this section, we design and analyze BidGuard-M, a differ-
entially private auction framework for the multi-bid Model.

5.1 Design Rationale

BidGuard-M integrates the exponential mechanism with
the reverse auction to achieve computational efficiency, in-
dividual rationality, truthfulness, differential privacy and
approximate social cost minimization. In this framework,
task-bid pairs are selected iteratively. In each iteration, one
task is considered. Each of the task-bid pairs with this task
is assigned a probability to be selected. The framework then
selects one of them as the winning task-bid pair according to
the probability distribution. Specifically, the probability of a
task-bid pair to be selected is set according to a specific cri-
terion. The above process repeats until all the sensing tasks
can be completed by the selected task-bid pairs. Finally, the
framework computes the payment to each winning task-bid
pair.

5.2 Design of BidGuard-M

In this section, we will describe BidGuard-M in detail as
illustrated in Algorithm 2.

BidGuard-M selects a winning task-bid pair for each task
in T iteratively until all the tasks can be completed. All the
winning task-bid pairs constitute By. At the beginning of

Algorithm 2: BidGuard-M
Input : A set of sensing tasks 7, a set of users U,

submitted task-bid profile g, and differential
privacy parameter € > 0.
Output: A set of winners S and a payment profile 7.

1 By 0,8 0, B« 0;

2 foreach i € U do p; < 0;

3 foreach t € T do

4 foreach i € U do

5 if 38F € B; such that t¥ =t then

6 end

7 foreach 3F € B; do

8 Calculate the probability Pr;(b¥) of each
task-bid pair being selected according to the
score function;

9 end
10 Select one task-bid pair randomly, denoted by 55/,
according to the computed probability

distribution;
1 | Bw <« By U{BE}, B« 0;
12 end

13 foreach 3¥ € By do

fb];"‘” Pri(z)dz
k k bs .

14 py —bf + I

15 end

16 foreach i € U do

17 if B; N By # () then

18 S« Su{i};

19 Di < Zﬁ}?eBmBW ol
20 end

21 end

22 return S and ?

each iteration, BidGuard-M firstly selects for an unassigned
task t € T a set of task-bid pairs B; in which t¥ = ¢ for all
BF € B;. BidGuard-M will assign each task-bid pair 3 € B;
a probability to be selected as follows. It is desired to select
the task-bid pair with the lowest b* from B;. To apply the
exponential mechanism, we need to design a score function,
which is a non-increasing function of b¥. The probability
of each task-bid pair to be selected is set according to the
value of the score function. At last, BidGuard-M calculates
the payment p¥ for each winning task-bid pair 8 € By .
Let Pr;(z) denote the probability of a task-bid pair being
selected with bid z. According to Theorem 1, the payment
to a winning task-bid pair is

fbb,_c’"'” Pri(2)dz
Pr;(bf)

For each user, if it has at least one winning task-bid
pair, it is added into the winner set § and its payment

k
pi = ZﬂfesmBW p;-

py = bf +

5.3 Design of Score Functions

Same as the single-bid model, we adopt fr;n and froc
as score functions. We will show that they have different
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theoretical bounds on the social cost (Section 5.4) and per-
formance in simulations (Section 6).

Linear score function: For any task-bid pair 3* € B;, the
probability to be selected is

k

Pr;i(b¥) o< exp <e(1 _ b )) .

b7na.’£

Note that in order to guarantee the value of the score
k
Y% Then

ma

function is nonnegative, we normalize bf, ie., g
the probability is
k

exp (e(l— b ))

bmaw

2 gten, OXP <6(1 - )) |

bmax

Pri(by) =

4)

Log score function: For any task-bid pair 8f € B, the
probability to be selected is

bk
Pri(b) o< exp (elogl/2 ’) .

bmaw

b

We also normalize the bf, i.e, ;—— to guarantee the value
of the score function is nonnegative. Then the probability is

k

exp (elog1/2 bi )

bmaa

Pri(by) = — )
Z,@feBt exp <e 10g1/2 1;7,77)

rax

Throughout the rest of this paper, we denote the
BidGuard-M with linear score function fr;x and log score
function frog by LIN-M and LOG-M, respectively.

Illustrating example: We use the example in Table 2
to illustrate how LIN-M works. Let b = 1, bpae =
4, and the differential privacy parameter ¢ = 0.1. At
the beginning, 7 = {t1,t2,t3}, S = 0, Bw = 0,
B, = 0, and U = {1,2,3,4,5}. LIN-M starts to se-
lect users for every task in 7T iteratively. For ¢;, LIN-M
first constructs By = {B1,83,83, 8%, 8L} By (4), LIN-M
calculates the probability of every task-bid pair in B;
to be selected. For example, the probability of 3] to
be selected is Pri(1.5) = exp(0.0625)/(exp(0.0625) +
exp(0.075) + exp(0.06) + exp(0.025) + exp(0.0375)). LIN-M
selects one task-bid pair based on the calculated probability
distribution. Assume j3 is selected, then By = {j33}.
LIN-M executes the same process for t;. We have By =
{B3%,52}. The probabilities of 57 and 537 to be selected
are Pri(1.5) = exp(0.0625)/(exp(0.0625) + exp(0.05)) and
Pry(2) = exp(0.05)/(exp(0.0625)+exp(0.05)), respectively.
Assume LIN-M selects 37, then By = {j1,3%?}. For t3,
LIN-M constructs B = {f33, 32}. The probabilities of 35 and
B2 to be selected are Pr3(2.4) = exp(0.06)/(exp(0.06) +
exp(0.0375)) and Prs(2.5) = exp(0.0375)/(exp(0.06) +
exp(0.0375)), respectively. Assume LIN-M selects 32, then
Bw = {B3,B% B3}. Once all tasks are assigned, LIN-M

calculates the payment for each task-bid pair in By,. We
[{Pra(2)dz o fﬁ5 Prq(z)dz

have py = 1+ “525—, pi = 1.5+ S5, 775, and
4
p% =24+ %. At last, LIN-M calculates the winners

set S = {1,2,3} and corresponding payments, i.e., p1 = p3,
p2 = p; and p3 = pj.

5.4 Analysis of BidGuard-M
In this section, we first analyze the properties of LIN-M.

Theorem 6. LIN-M achieves computational efficiency, individual
rationality, truthfulness, and 2me-differential privacy, where € >
0 is a constant and m is the number of sensing tasks. In addition,
it has social cost at most OPT + mO(Inn) with probability at
least 1 — 1/n®W), where OPT is the optimal social cost of the
SCM-M problem, and n is the number of users.

Proof: We first prove the computational efficiency. The
outer while-loop (Lines 3-12) will run at most m iterations
since there are m tasks. Meanwhile, the two inner for-loops
(Lines 4-6) and (Lines 7-9) will run at most n iterations since
there are n users. The payment calculation for the winning
task-bid pairs (Lines 13-15) will run at most m iterations
since there are m tasks. The winner selection and payment
calculation (Lines 16-21) will run at most n iterations since
there are n users. Therefore, the total computational com-
plexity of LIN-M is O(mn). The individual rationality is
guaranteed by the fact that the payment to each winning

I L .
task-bid pair is pj = b + — Prioh) > b7. In order
to prove the rest of this theorem, we prove the following
lemmas. O

Lemma 4. LIN-M is truthful.

Proof: According to (4) and (5), the probability
Pr;(b¥) of task-bid pair B¥ € B; being selected in
BidGuard-M is monotonically non-increasing in its bid b. In
addition, no bid is greater than b,,,,, in our model. Thus we
have [;° Pri(z)dz = fob’"‘” Pr;(z)dz < oo. Furthermore,
we have

E[p}]

e Pri(z)dz

= bFPr(bF) + Pri(z)dz.
Jok

Then, according to Theorem 1, the lemma holds. O
In order to quantify the differential privacy performance
of LIN-M, we use the following lemmas.

Lemma 5. (Composability [33]). The sequential application of
randomized computation M;, each giving e;-differential privacy,
yields (3", €;)-differential privacy.

Lemma 6. For any constant ¢ > 0, LIN-M achieves 2me-
differential privacy, where m is the number of sensing tasks.

Proof: Since LIN-M follows the exponential mecha-
nism, it selects a task-bid pair for each task based on
(4). According to Theorem 2, for each task LIN-M is 2e-
differential privacy, since the largest difference in the score
function (A) is 1. LIN-M selects a task-bid pair for each
task in 7 iteratively until all tasks can be finished. This
is a sequential application of the selection mechanism for
one task. Therefore, according to Lemma 5, LIN-M is 2me-
differential privacy, since there are m tasks. O

Next, we bound the social cost of LIN-M.
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Lemma 7. With probability at least 1 — 1/n°®), LIN-M has
social cost at most OPT +mO(Inn), where OPT is the optimal
social cost of the SCM-M problem, m is the number of sensing
tasks and n is the number of users.

Proof: Let B* denote the optimal solution to the
SCM-M problem. We denote as By, an arbitrary set of
winning task-bid pairs returned by LIN-M. Because only one
task-bid pair is selected for each task and all tasks need to
be completed, we have |B*| = |Byy|. Therefore, for any task-
bid pair 5]’? € B*, there exists a task-bid pair @k € Bw such
that t¥ = t?, and vice versa. According to Theorem 3, by
taking @ = O(Ilnn), we have

by < by +O(Inn) (6)

with a probability of at least 1 —1/n°(") for each task ¢ € 7.
Summing (6) over all tasks, > grep,, <> s by +
mO(Inn) with a probability at least 1 — 1/n°(). For
truthful mechanisms, we have v = cF and b;? = C?.

K3

Thus Z,BfeBw bf is the social cost of LIN-M, and OPT =

S gren b
This concludes the proof. O
For LOG-M we have the following properties. The proofs

are similar to those for LIN-M, and thus omitted.

Theorem 7. LOG-M achieves computational efficiency, indi-
vidual rationality, truthfulness, and 2mlog 1 (ﬁ)e—diﬁerential
privacy, where m is the number of sensing tasks, A is the
maximum difference in the bidding price, and € > 0 is a constant.
In addition, it has social cost at most 2'OPT with probability at
least 1 — e, for any constant t > 0 and OPT is the optimal

social cost of the SCM-M problem.

Remarks: LOG-M has social cost at most 22OPT, where t
is a constant, and thus it is asymptotically optimal.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of BidGuard
and BidGuard-M and compare them respectively with
TRAC [15] and DP-hSRC [23]. TRAC is closest to our work
in terms of the design objective, but does not protect users’
bid privacy. DP-hSRC considers users’ bid privacy, but
minimizes total payment instead of social cost.

6.1 Simulation Setup

All the evaluation results are based on a real data set of taxi
traces. The dataset consists of the traces of 320 taxi drivers,
who work in the center of Rome [6]. Each taxi driver has a
tablet that periodically (every 7s) retrieves the GPS locations
(latitude and longitude) and sends it with the corresponding
driver ID to a central server. The mobility pattern of taxi
traces can be used to depict the mobility of smartphone
users as in [25], [47].

We consider a mobile crowdsensing system where the
task is to measure the cellular signal strength at specific
locations. Each user can sense the cellular signal strength
within the area centered at the user’s location with a radius
of 30m. Tasks are represented by GPS locations reported by
taxis. We assume that the driver of each taxi is a user. We
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preprocess the tasks such that each task can be sensed by at
least two users according to our system model.

We use three metrics to evaluate the performance: social
cost, total payment and privacy leakage. The social cost, as
defined in Section 3, refers to the total cost of all selected
users. The total payment measures the payment paid by
the platform to all selected users. We first compare the
social cost and total payment of BidGuard and BidGuard-M
with TRAC. Then we compare the social cost of BidGuard
with the optimal social cost. We define privacy leakage to
quantitatively measure the differential privacy performance
of BidGuard and BidGuard-M.

Privacy Leakage: Given a mechanism M, let ? and

" be two task-bid profiles, which only differ in one user’s
bid. Let M () and M (
input 5 and (', respectively. The privacy leakage, denoted
by PL, is defined as the Kullback-Leibler divergence of the

two outcome probability distributions based on 5 and [/,
Pr [M(F) =
Pr [M (?' ) = o}

Note that the smaller the PL value is, the harder it is to
distinguish the two task-bid profiles, and thus the better the
privacy preserving performance is achieved.

In our evaluation, we randomly select locations as the
sensing tasks according to the settings. We assume the bids
of users are randomly distributed over [1, 50] for BidGuard
and [1, 10] for BidGuard-M. Because users in BidGuard bid
for a set of tasks, while users in BidGuard-M bid for a single
task. We generate users’ bids according to two different
distributions, i.e., uniform distribution and normal distribu-
tion. To evaluate the impact of the number of sensing tasks
on the performance metrics, we set the number of users to
200 and vary the number of sensing tasks from 20 to 60
with a step of 10. To evaluate the impact of the number
of users on the performance metrics, we set the number of
sensing tasks to 150 and vary the number of users from
100 to 300 with a step of 50. For the differential privacy
parameters, we set ¢ = 0.1 and § = 0.25 as default. All
the results are averaged over 1000 independent runs for
each setting. Note that since the performances under both
uniform and normal distributions follow the same pattern
according to our evaluation, in the following we only show
the performance under the uniform distribution.

") denote the outcome of M with

@)

PL=Y3" Pr[M(F)=0o|m

0€O

6.2 Evaluation of Social Cost

We first compare the social cost of BidGuard and
BidGuard-M with that of TRAC and DP-hSRC. Note that
TRAC is optimal in the multi-bid model. The impact of
the number of sensing tasks on the social cost of BidGuard
and that of BidGuard-M is shown in Fig. 1(a) and Fig. 1(b),
respectively. We observe that the social cost of TRAC, DP-
hSRC, BidGuard and BidGuard-M all increase when the
number of sensing tasks grows. This is because with more
sensing tasks, the platform may select more users incur-
ring a higher social cost. We also see that the social cost
of TRAC is lower than those of DP-hSRC, BidGuard and
BidGuard-M. This is because, in each iteration, TRAC is
determinate to select the user with the lowest criterion value
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Fig. 1. Impact of the number of sensing tasks on the social cost. (a)
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Fig. 2. Impact of the number of users on the social cost. (a) BidGuard.
(b) BidGuard-M.

(defined in (1)) in the single-bid model and the user with the
lowest bid for each task in the multi-bid model. In contrast,
since both BidGuard and BidGuard-M are randomized,
they cannot always guarantee to select the user with the
lowest criterion value or the lowest bid in each iteration.
DP-hSRC selects users based on a threshold price and has
no performance guarantee on the social cost. Besides, the
social cost of LOG is smaller than that of LIN, and the social
cost of LOG-M is lower than that of LIN-M. This is because,
both LOG and LOG-M prefer to select users with low bid,
as the log score function will give more probability of being
selected to low-bid users.

Fig. 2(a) and Fig. 2(b) depict the impact of the number
of users on the social cost of BidGuard and BidGuard-M,
respectively. We see that the social cost decreases slightly
when the number of users increases for TRAC, DP-hSRC,
BidGuard and BidGuard-M. This is because, with more
users, the platform can find more low-cost users to complete
the sensing tasks. The social cost of TRAC is lower than
those of DP-hSRC, BidGuard and BidGuard-M. The reason
is same as explained for Fig. 1. Meanwhile, for the same
reason as above, the social cost of LOG is lower than that
of LIN, and the social cost of LOG-M is lower than that of
LIN-M.

In Fig. 3, we compare the social cost of incentive mecha-
nisms in the single-bid model. Let OPT denote the optimal
solution. Since finding the optimal solution takes exponen-
tial time, we set the number of the users to 10 for Fig. 3(a),
and set the number of sensing tasks to 4 for Fig. 3(b). We
observe that Fig. 3(a) and Fig. 3(b) have the same pattern in
Fig. 1(a) and Fig. 2(a), respectively. The reason is similar to
those explained for Fig. 1(a) and Fig. 2(a). Furthermore, we
observe that BidGuard sacrifices the social cost for the users’
bid privacy, compared to TRAC and the optimal solution.
Note that in Fig. 3(b), the social cost of TRAC is very close to
that of OPT. This is because TRAC is an H g-approximation
algorithm, where H}, ~ 2.34 in this figure.
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6.3 Evaluation of Total Payment

In Fig. 4 and Fig. 5, we plot the impact of the number of
sensing tasks and the impact of the number of users on the
total payment of BidGuard and BidGuard-M, respectively.
The results show that the total payment of TRAC, DP-hSRC,
BidGuard and BidGuard-M all follow the same pattern as
the social cost. In addition, both LOG and LOG-M have
lower total payment than LIN and LIN-M, respectively. This
is because the log score function could select users with
lower bids as shown in Fig. 1 and Fig. 2. We also observe
that the total payment of DP-hSRC is lower than BidGuard
and BidGuard-M. This is because DP-hSRC selects and pays
users according to a single-price, and thus it has perfor-
mance guarantee on the total payment. However, DP-hSRC
can only achieve approximate truthfulness, which ensures
that no user is able to make more than a slight gain in its
expected utility by bidding untruthfully. In addition, in the
next subsection, we will see that the privacy protection of
LIN and LIN-M are better than that of DP-hSRC.

6.4 Evaluation of Privacy Leakage

Next, we evaluate BidGuard and BidGuard-M in terms of
privacy leakage. Fig. 6(a) and Fig. 7(a) plot the impact
of the number of sensing tasks on the privacy leakage
for BidGuard and BidGuard-M, respectively. Fig. 6(b) and
Fig. 7(b) plot the impact of the number of users on the pri-
vacy leakage for BidGuard and BidGuard-M, respectively.

We observe that the privacy leakage values of BidGuard,
BidGuard-M and DP-hSRC are very small. This is because
they all achieve differential privacy. However, the privacy
leakage value of TRAC is positive infinity, which indicates a
bad differential privacy performance. This is because TRAC
does not protect users” bid privacy, and the denominator
could be 0 for TRAC according to (7).

In both Fig. 6(a) and Fig. 7(a), we see that the privacy
leakage of both LIN and LIN-M are always smaller than
that of LOG and LOG-M, respectively, which indicates that
LIN and LIN-M have better privacy protection performance
than LOG and LOG-M, respectively. This is because the
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linear score function treats the probability of every out-
come uniformly, however, the log score function gives more
probability to the outcome with low social cost. We also
observe that the privacy leakage of both LIN and LIN-M
are always smaller than that of DP-hSRC. This is because
DP-hSRC is a single-price mechanism in which one user’s
bid change may significantly change the outcome of the
mechanism, and thus increases PL according to (7). We
do not observe a pattern of the privacy leakage when the
number of tasks increases for BidGuard. The reason is,
according to the definition of privacy leakage, the difference
between the probabilities of two outcomes to be selected is
independent of the number of sensing tasks. However, the
privacy leakage value increases when the number of tasks
increases for BidGuard-M. This is because, according to The-
orem 6 and Theorem 7, the differential privacy performance
of BidGuard-M is reversely linear to the number of sensing
tasks.

In both Fig. 6(b) and Fig. 7(b), we can see the impact
of the number of users on the privacy leakage of BidGuard
and BidGuard-M, respectively. Note that the privacy leakage
value decreases when the number of users increases for both
DP-hSRC, BidGuard and BidGuard-M. This is because the
probability of each outcome decreases as the number of
users increases. Specifically, the more users in the system,
the more possible outcomes for DP-hSRC, BidGuard and
BidGuard-M, the less difference between the probabilities of

two outcomes to be selected, and thus the better differential
privacy performance. We also see the privacy protection
performance of LIN and LIN-M are better than that of LOG
and LOG-M, respectively. In addition, the privacy protection
performance of LIN and LIN-M are also better than that of
DP-hSRC. The reason for this is similar to that discussed
before.

Fig. 6(c) and Fig. 7(c) show the impact of the differential
privacy parameter € on the privacy leakage for BidGuard
and BidGuard-M, respectively. The results show that the
value of € has more impact on the privacy leakage for LOG
and LOG-M than that of LIN and LIN-M, respectively. This is
because the log score function is more sensitive than the
linear score function. For LOG and LOG-M, the privacy
leakage increases slightly when the value of € grows. This
is because, theoretically, the larger the € is, the worse the
differential privacy is achieved, and thus the higher privacy
leakage. Meanwhile, it is easy to observe that the privacy
leakage of LIN and LIN-M are smaller than that of DP-hSRC,
LOG and LOG-M, respectively. This can also be explained
by the same reason for Fig. 6(a).

Fig. 6(d) and Fig. 7(d) illustrate the tradeoff between the
social cost and the privacy leakage of LOG and LOG-M,
respectively. We observe that the privacy leakage decreases
as the decreasing of €. The reason is similar to that discussed
for Fig. 6(c). However, this improvement in privacy comes at
a cost of the increased social cost for both LOG and LOG-M.

Remarks: Compared with TRAC, which does not protect
users’ bid privacy, both BidGuard and BidGuard-M sacrifice
the social cost and payment for the users’ bid privacy.
Compared with DP-hSRC, BidGuard and BidGuard-M have
better bid privacy preservation and lower social cost in
most cases although incurring higher total payment. In
addition, BidGuard and BidGuard-M achieve truthfulness
while DP-hSRC achieves approximate truthfulness. Besides,
LIN and LIN-M outperform LOG and LOG-M in terms of
privacy protection, respectively. However LOG and LOG-M
have lower social cost and payment.
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CONCLUSION AND FUTURE WORK

In this paper, we have proposed two general frameworks,
BidGuard and BidGuard-M, for privacy-preserving mobile
crowdsensing incentive mechanisms, which achieve com-
putational efficiency, individual rationality, truthfulness, ap-
proximate social cost minimization, and differential privacy.
We designed two score functions, linear and log, to realize
the frameworks. Note that, both BidGuard and BidGuard-M
with log function are asymptotically optimal in terms of
the social cost. We evaluated the performance of our frame-
works through extensive simulations.

In the future, we plan to design different score functions

which might have better performance in terms of differential
privacy or proximate social cost minimization. In addition,
we plan to evaluate our frameworks by using real-world
experiments.
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