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Abstract—Mobile crowd sensing emerges as a new paradigm 

which takes advantage of the pervasive sensor-embedded 
smartphones to collect data efficiently. Many incentive 
mechanisms for mobile crowd sensing have been proposed. 
However, none of them takes into consideration the cooperative 
compatibility of users for multiple cooperative tasks. In this 
paper, we design truthful incentive mechanisms to minimize the 
social cost such that each of the cooperative tasks can be 
completed by a group of compatible users. We consider that the 
mobile crowd sensing is launched in an online community. We 
study two bid models and formulated the Social Optimization 
Compatible User Selection (SOCUS) problem for each model. We 
also define three compatibility models and use real-life 
relationships from social networks to model the compatibility 
relationships. We design two reverse auction based incentive 
mechanisms, MCT-M and MCT-S. Both of them consist of two 
steps: compatible user grouping and reverse auction. Through 
both rigorous theoretical analysis and extensive simulations, we 
demonstrate that the proposed mechanisms achieve 
computational efficiency, individual rationality and truthfulness. 
In addition, MCT-M can output the optimal solution. 

Keywords—Mobile crowd sensing; Incentive mechanism design; 
Online community; Compatibility 

I. INTRODUCTION  
Smartphones are widely available in the recent years. The 

worldwide smartphone market reached a total of 1.45 billion 
units shipped in 2016. From there, shipments will reach 1.71 
billion units in 2020 [1]. Nowadays, smartphones are 
integrated with a variety of sensors such as camera, light 
sensor, GPS, accelerometer, digital compass, gyroscope, 
microphone, and proximity sensor. These sensors can 
collectively monitor a diverse range of human activities and 
surrounding environment. Mobile crowd sensing has become 
an efficient approach to meeting the demands in large-scale 
sensing applications [2], such as Sensorly [3] for 3G/WiFi 
discovery, TrMCD [4] for estimating user motion trajectory, 
crowd-participated system [5] for bus arrival time prediction, 
and participAct [6] for urban crowdsensing. 

Incentive mechanisms are crucial to mobile crowd sensing 
while the smartphone users spend their time and consume 
battery, memory, computing power and data traffic of device 
to sense, store and transmit the data. Moreover, there are 
potential privacy threats to smartphone users by sharing their 
sensed data with location tags, interests or identities. A lot of 
research efforts have been focused on designing incentive 
mechanisms to entice users to participate in mobile crowd 

sensing system. However, they either focus on the multiple 
independent task scenario [7, 9-17], where each task only 
needs one user to perform, or pay attention to the single 
cooperative task scenario [8, 18], where the task requires a 
group of users to perform cooperatively. An incentive 
mechanism for multiple cooperative tasks has been designed 
in [19, 24], however, they neglect the relation among users.  

The multiple cooperative task scenarios are very common. 
For example, the construct of fingerprint database [4] requires 
enough users to report sensor readings such that the 
correctness of trajectory can be guaranteed. In the bus arrival 
time prediction system [5], insufficient amount of uploaded 
information may result in inaccuracy in matching the bus 
route. Many time window dependent crowd sensing tasks [8], 
such as continuous measure of trace, traffic condition, noise 
and air pollution need a large sample space such that its result 
has statistical meaning. All above applications require users’ 
collective contributions. 

In multiple cooperative task scenarios, people would 
prefer to cooperate with trustworthy friends, especially when 
people are required to shall their privacy with the cooperators 
for performing sensing tasks. For example, the users in the bus 
arrival time prediction system [5] need to shall their location 
information with other users to guarantee that the pieces of 
sensed data from multiple users can be assembled to picture 
the intact bus route status. For the monitoring tasks [8], the 
users can allocate the sensing time intervals according to their 
private future schedules, habits, preferences or behavior 
profiles [20]. Thus choosing the compatible users to perform 
cooperative tasks can improve not only the participation 
willingness of users, but also the quality and success rates of 
mobile crowd sensing service. 

In this paper, we consider that the mobile crowd sensing 
with multiple cooperative tasks is launched in an online 
community, in which the members (referred as users in the 
rest of this paper) are interested in participating sensing tasks. 
Each of cooperative tasks requires a specific amount of 
compatible users to perform. We use real-life relationships 
from social networks to model the compatibility relationships. 
The objective is designing truthful incentive mechanisms to 
minimize the social cost (the total cost of winners) such that 
each cooperative task can be completed by a group of 
compatible users. In our system model, each user submits the 
tasks it can perform and corresponding bid prices. Meanwhile, 
each user can submit a set of recommended users according to 
its preference. Specifically, if there is no recommended user, 
the user can simply submit the empty set. The platform selects 
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a subset of users and notifies winners of the determination. 
The winners perform the sensing tasks and send data back to 
the platform. Finally, each user obtains the payment, which is 
determined by the platform. The process is illustrated by Fig.1. 

 
Fig. 1 Mobile crowd sensing process with multiple cooperative tasks 

The problem of designing truthful incentive mechanisms 
to minimize the social cost for such mobile crowd sensing 
system is very challenging. First, the compatibility models 
should be defined to measure the different compatibility levels. 
Second, when selecting winners for tasks, the incentive 
mechanisms should consider not only the social optimization 
but also the compatibility of the users. Moreover, the user can 
take a strategic behavior by submitting dishonest 
recommended users or bid price to maximize its utility.  

The main contributions of this paper are as follows: 
 To the best of our knowledge, this is the first work to 

design truthful incentive mechanisms for the mobile crowd 
sensing system, where each task needs to be performed by a 
group of compatible users. 

 We present two bid models, and formulate the Social 
Optimization Compatible User Selection (SOCUS) problem 
for each. We further present three compatibility models, which 
can depict the different compatibility levels, and use real-life 
relationships from social networks to model the compatibility 
relationships. 

 We design two incentive mechanisms MCT-M and 
MCT-S for two bid models. We show that the designed 
mechanisms satisfy desirable properties of computational 
efficiency, individual rationality and truthfulness. In addition, 
MCT-M can output the optimal solution. 

The rest of the paper is organized as follows. Section � 
formulates two bid models and three compatibility models, 
and lists some desirable properties. Section � and Section IV 
present the detailed design of our incentive mechanisms for 
two bid models, respectively. Performance evaluation is 
presented in Section V. We review the state-of-art research in 
Section �, and conclude this paper in Section �. 

II. SYSTEM MODEL AND DESIRABLE PROPERTIES 
In this section, we model the mobile crowd sensing system 

as a reverse auction and present two different bid models: 
multi-bid model and single-bid model. In the multi-bid model, 
each user can submit multiple task-bid pairs and can be 
recruited to work on a portion of submitted tasks. The single-
bid model allows each user to bid a global price for multiple 
tasks it can perform. Each user is required to perform all 
submitted tasks once he is selected as a winner in the single-
bid model. Thus the single-bid model is suitable for the single-
minded users, while multi-bid model provides more flexibility 
to the users. Moreover, we present three compatibility models 
of users: weak compatibility model, medium compatibility 
model and strong compatibility model. At the end of this 
section, we present some desirable properties. 

A. Multi-bid Model 
We consider a mobile crowd sensing system consisting of 

a social network application platform and an online 
community with many smartphone users. The platform resides 
in the cloud. The platform publicizes a set  
of m cooperative tasks in an online community 

 of n smartphone users, who are interested in 
participating sensing tasks. Each task  is associated with 
the cooperative index , which is the least number of 
compatible users to perform . 

Each user i submits a 2-tuple , where 
 is a set of ki task-bid pairs. The task-bid pair 

for task j is denoted by . Each  is 
associated with the cost , which is the private information 
and known only to user i.  is the claimed cost, which is the 
bid price that user i wants to charge for performing . Each 
user can submit a set of recommended users, called 
compatible user set, according to its preference. The user 
prefers to cooperate with the users in its compatible user set to 
perform the tasks. We also consider that the real compatible 
user set is the private information and known only to user i. 

 is the claimed compatible user set of i.  
Given the task set T and the bid profile 

, the platform calculates the winning task-bid 
pair set  and the payment  for each winning 
task-bid pair . The payment for each winner i is 

. A user i is called a winner and added into 
winner set S if it has at least one winning task-bid pair, i.e., 

. We define the utility of user i as the difference 
between the payment and its real cost: 
                                                         (1) 

Since we consider the users are selfish and rational 
individuals, each user can behave strategically by submitting a 
dishonest compatible user set or dishonest bid prices to 
maximize its utility. We assume that the truthfulness of 
submitted task can be achieved since they can be verified by 
the platform. In order to prevent the monopoly and guarantee 
the sensing quality, we assume each cooperative task can be 
completed by at least two different groups of compatible users. 
Here, we say two groups are different iff there is at least one 
different user between them. This assumption is reasonable for 
mobile crowd sensing systems as made in [7, 8, 9]. If a task 
can only be completed by the unique group of compatible 
users, the platform can simply remove it from T. 

The incentive mechanism  outputs a winning 
task-bid pair set  and a payment profile . 
The objective is minimizing the social cost such that each of 
cooperative tasks in T can be completed by a group of 
compatible users. We will present the compatibility models in 
Section -C. We refer this problem as Social Optimization 
Compatible User Selection (SOCUS) problem, which can be 
formulated as follows: 
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B. Single-bid Model 

The definitions of  are the same as those 
in Section -A. Each user i submits a 3-tuple , 
where  is a set of ki tasks. The task set  is 
associated with the cost , which is the private information 
and known only to user i.  is the claimed cost. We also 
consider the real compatible user set is the private information 
and known only to user i.  

Given the task set T and the bid profile 
, the platform calculates the winner set  

and the payment  for each winner . We define the 
utility of user i as: 
                                                                           (2) 

A user can behave strategically by submitting a dishonest 
compatible user set or a dishonest bid price to maximize its 
utility. The incentive mechanism  outputs a winner 
set  and a payment profile . The objective 
is minimizing the social cost such that each of the cooperative 
tasks in T can be completed by a group of compatible users. 
The Social Optimization Compatible User Selection (SOCUS) 
problem in the single-bid model can be formulated as follows: 

 

             

C. Compatibility Model 
In this subsection, we present three compatibility models 

to depict the different compatibility levels: 
 Weak Compatibility Model: The two users i and j 

satisfy the weak compatibility (denote as ) if  or 
 for any . We consider that the relation of weak 

compatibility is symmetric and transitive. Then we define 
Weak Compatibility Group (WCG) as . 
Essentially, the weak compatibility model is established on the 
one-way preferences between the users. 

 Medium Compatibility Model: We define the 
transitive relation : If , we say 
. The two users i and j satisfy the medium compatibility 

(denote as ) if  and  for any . Then we 
define Medium Compatibility Group (MCG) as 

. The medium compatibility model is established on the 
transitive two-way preferences between the users. 

 Strong Compatibility Model: The two users i and j 
satisfy the strong compatibility (denote as ) if  and 

 for any . We consider that the relation of strong 
compatibility is symmetric and transitive. Then we define 
Strong Compatibility Group (SCG) as . The 
strong compatibility model is established on the two-way 
preferences between the users. 

                                    
(a)                                      (b)                                        (c)  

Fig. 2 Examples illustrating WCG, MCG and SCG with 3 users, where the 
disks represent users, and the arrows represent the compatible user sets: (a) 
An example of WSG. (b) An example of MSG. (c) An example of SCG. 

Obviously, the medium compatibility model is a special 

case of strong compatibility model, and the weak 
compatibility model is a special case of medium compatibility 
model. We give three simple examples for illustrating WCG, 
MCG and SCG in Fig.2, respectively. 

D. Desirable Properties 
Our objective is to design the incentive mechanisms 

satisfying the following four desirable properties: 
• Computational Efficiency: An incentive mechanism  

is computationally efficient if the outcome can be 
computed in polynomial time. 

• Individual Rationality: Each user will have a non-
negative utility when bidding its true cost and 
compatible user set, i.e., . 

• Truthfulness: An incentive mechanism is compatibility- 
and cost-truthful (called truthful simply) if reporting the 
true compatible user set and cost is a weakly dominant 
strategy for all users. In other words, no user can 
improve its utility by submitting a false compatible user 
set or cost, no matter what others submit. 

• Social Optimization: A mechanism achieves social 
optimization if it can output the optimal solution. 

III. INCENTIVE MECHANISM FOR THE MULTI-BID MODEL  
In this section, we present an incentive mechanism for 

Multiple Cooperative Tasks in the Multi-bid model (MCT-M). 
MCT-M consists of two steps: compatible user grouping and 
reverse auction. MCT-M first divides the users into 
compatible user groups, in which each user is compatible with 
others. Afterwards, MCT-M performs a reverse auction 
mechanism to select the winning task-bid pairs and determine 
the payment for each user. 

A. Compatible User Grouping 
MCT-M first divides the users into compatible user groups 

based on the compatibility models defined in Section -C, 
and constructs WCGs, MCGs or SCGs.  

For the weak compatibility model, we construct an 
undirected graph to represent the user compatibility relation 
based on the claimed compatible user set. For any 
, if there is  or , we add an edge between i and j. 

Then the WCGs can be constructed within  time through 
computing the connected components of the graph. 

For the medium compatibility model, we construct a 
directed graph. For any , if there is , we add 
a directed edge from i to j. Then we can construct MCGs 
through computing the strongly connected components of the 
graph, which can be solved within  time. 

For the strong compatibility model, we construct an 
undirected graph. For arbitrary , if there is  
and , we add an edge between i and j. Then we can 
construct SCGs through computing the connected components.  

It is straightforward to construct the compatible user 
groups according to the original compatible user sets. 
However, the outcome of compatible user grouping depends 
strongly on the claimed compatible user sets. In other words, 
the users can change the outcome of grouping by misreporting 
their compatible user sets. We use the example in Fig.3 to 
illustrate that grouping according to the original compatible 
user set leads untruthfulness in weak compatibility model. Let 

173



. All users bid for task j. We first consider 
the case where all three users submit real compatible user sets. 
Obviously, ,  since user 1 cannot 
cooperate with any user. We now consider the case where user 
1 lies by submitting . In this case, , 

 and the payment for user 1 would be 3 if we use 
VCG payment rule [10]. Thus, . Note that user 
1 improves its utility from 0 to 2 by lying about its compatible 
user set. The similar examples can be illustrated for both 
medium compatibility model and strong compatibility model. 

                    
(a)                                         (b)  

Fig. 3 An example showing the untruthfulness of grouping according to the 
original compatible user sets in the weak compatibility model, where the disks 
represent users, and the arrows represent the compatible user sets. The 
numbers beside the disks represent the cost for performing task j. The dotted 
disks represent WCGs: (a) All users submit real compatible user sets. (b) User 
1 lies by submitting . 

 Algorithm 1: Compatible User Grouping 
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5 
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Input: graph G 
; ; 

foreach  do 
 ; ; 

end 
Assign each user independently and uniformly at random 
to one of  subsets ; 
Let  be a random subset with size ; 
foreach  do  

if  then 
   if  then 
      ; ; 
   else 

Let  be the set of  users with highest 
indegree based only on edges from ; 

; ; 
end 

else  
   if  then 

; ; 
   else 

Let  be the set of  users with highest 
indegree based only on edges from ; 

; ; 
end 

end 
end 
if  then 

for i=1 to  do 
Select  j uniformly from ; 

; 
end 

end 
Group the users in  based on the specific compatibility 
model. Let  be the set of compatible users groups. 
return ; 

To solve this issue, we introduce the Random -Partition 
Mechanism ( -RP) [11], which is a randomized truthful 
mechanism for the approval voting [12]. We construct a 
directed graph G without self-loops: For any , if 
there is , we add a directed edge from i to j. Then we 
select a subset  of  users to maximize the total indegree of 
selected users. In our system model, we adopt -RP to select 

 users with the maximum recommendations. Then MCT-M 
constructs WCGs, MCGs or SCGs based on the 
recommendations of  users selected through -RP. 

The whole process of compatible user grouping is 
illustrated in Algorithm 1, which works as follows:  

(1) The users are assigned independently and uniformly at 
random to one of  subsets (denoted as ). Let A 
be the set of these  subsets.  

(2) Select  subsets from A randomly. Let  
be the set of these  subsets.  

(3) For each , if , select  users from 
 with highest indegree based on edges from ; if 
, select  users from  with highest indegree based 

on edges from . 
(4) If any subset  is smaller than the number of users 

needs to be selected, select all users in this subset. 
(5) If the size of winner set  is smaller than , select 

 additional users from the unselected users uniformly.  
(6) Group the users in  based on the specific 

compatibility model. 

B. Auction mechanism design 
Consider that the outcome of compatible user grouping is 

a set of d compatible user groups . Let  
be the set of  users. MCT-M then selects a set of winners to 
minimize the social cost through a reverse auction such that 
each cooperative task can be completed by a group of users, 
who belong to the same compatible user group. 

In the multi-bid model, each task submitted by users is 
with a bid price, thus we can select winning task-bid pairs for 
each task independently. For any task , we process each 
compatible user group . In each iteration, we 
check if there are  users, who bid for  in . If so, we select 

 users from  with minimum total bid price, and the set is 
denoted as . Then MCT-M selects the set with minimum 

 as the winner set for  from all 
. We apply VCG based payment rule to determine the 

payment for each winning task-bid pair. A winning task-bid 
pair will be paid an amount equal to the benefit it introduces to 
the system, i.e., the difference between other users’ minimum 
social cost with and without it: 

 

Here function  means the minimum social cost 
computed by MCT-M. Finally, we determine the payment for 
each winner i as . The whole process is 
illustrated in Algorithm 2. 

Algorithm 2: Reverse Auction for Multi-bid Model
 
 
 

Input: task set T, bid profile B, compatible user group 
set , the set of  users  
// Winner Selection phase 
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1 
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19 
20 
21 
22 
23 
24 

; ; ; };
for  to  do ; 
foreach  do 
   foreach  to  do 
      ; 

; 
      if  then 
         do 
            ; 
            ; 
         until ; 
      end 
   end 
   ; 

foreach  do ; 
 ; 

    ; 
end 
//Payment Determination Phase 
foreach i∈U do ; 
foreach  do 
   ; 
end 
foreach i∈S do   ; 
return , ; 

C.   Mechanism Analysis 
In the following, we present the theoretical analysis, 

demonstrating that MCT-M can achieve the desired properties. 
Lemma 1. MCT-M is computationally efficient. 
Proof: It suffices to prove that both Algorithm 1 and 

Algorithm 2 are computationally efficient. 
In Algorithm 1, the running time of -RP (Line1-29) is 

dominated by sorting the users in  (Line12 or Line19). For 
each of  subset, -RP performs the sorting. The worst case 
happens when all users are assigned to the same subset. In this 
case, -RP takes  time. Grouping the users in  
(Line30) takes  time. Thus Algorithm 1 takes 

 time.  
In Algorithm 2, the running time of winner selection phase 

is dominated by sorting the users based on bid price in each 
compatible user group (Line8-11). For each task in T, the 
winner selection phase executes the sorting for each of  
compatible user group. The worst case happens when all users 
are in the same compatible user group. In this case, the winner 
selection phase takes  time. In the payment 
determination phase, a process similar to winner selection 
phase is executed for each winning task-bid pair. Since there 
are at most  winning task-bid pairs, running time of the 
Algorithm 2 is bounded by .               

Lemma 2. MCT-M is individually rational. 
Proof: It is easy to know that MCT-M can output the 

optimal solution of SOCUS problem. We denote  and 
 as the optimal social cost of SOCUS problem in multi-

bid model with and without task-bid pair 
, respectively. Then  based on 

line 21 in Algorithm 2. Since  is the optimal social cost, 
we have , and it is easy to deduce . 
Thus we have   based 
on formula (1). If user i is not chosen, its utility .        

Before analyzing the truthfulness of MCT-M, we first 
introduce the Theorem about -RP. 

Theorem 1. ([11, Theorem4.1]) For every value of , -
RP is truthful. 

The truthfulness in Theorem 1 means that no user can 
improve the chance of being selected into  by submitting a 
false compatible user set, no matter what others submit.  

Lemma 3. MCT-M is truthful. 
Proof: The compatibility-truthfulness can be guaranteed 

by Theorem 1. Since we adopt VCG payment rule, which is 
known as a cost-truthful auction, MCT-M is cost-truthful.     

The above three lemmas prove the following theorem. 
Theorem 2. MCT-M is computationally efficient, 

individually rational, truthful and an optimal algorithm of 
SOCUS problem in the multi-bid model.  

IV. INCENTIVE MECHANISM FOR THE SINGLE-BID MODEL  
In this section, we consider the case where each user can 

submit a global bid price for all submitted tasks, and present 
an incentive mechanism for Multiple Cooperative Tasks in the 
Single-bid model (MCT-S).  

A. Mechanism design 
Similar with MCT-M, MCT-S is a two-step mechanism. 

The grouping method is as same as that in MCT-M. Thus we 
focus on solving the SOCUS problem in the single-bid model 
in this subsection. Unfortunately, the following theorem 
shows that it is NP-hard to find the optimal solution. 

Theorem 3. The SOCUS problem in the single-bid model 
is NP-hard. 

Proof: We consider the Weighted Set Multiple Cover 
(WSMC) problem: there are a set  of m 
elements, a family of sets  and a positive 
real v, each  has its weight  for , and each 

 is with a positive integer , . The question 
is whether exists a set  with , such that 
each element  in T is covered  times by the members of . 
We can see that the SOCUS problem in the single-bid model is 
a generalization of the WSMC problem when each  only 
can be covered by  users who are within the same 
compatible user group. Since the WSMC problem is NP-
hard, the SOCUS problem in the single-bid model is NP-hard.                  

 
Since the SOCUS problem in the single-bid model is NP-

hard, we turn our attention to develop a polynomial algorithm. 
The main idea of MCT-S is selecting winners iteratively with 
minimum marginal cost for each task. Illustrated in Algorithm 
3, the reverse auction still consists of the winner selection 
phase and the payment determination phase. 

In the winner selection phase, MCT-S processes tasks in 
arbitrary fixed order. For each task , we process each 
compatible user group , iteratively. In each 
iteration, let  be the set of winners in  in current state. Let 

 be the set of winners, who bid for . Then MCT-S 
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checks if there are  users, who bid for  in . If so, we 
select additional users in  as winners, denoted by 

, with minimum marginal cost. The minimum marginal cost 
of  for  is denoted as . For task , 
MCT-S selects  as the additional winner set with minimum 

 among all . The winner selection phase 
terminates when all tasks have been processed. 

 Algorithm 3: Reverse Auction for Single-bid Model 
 
 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
 
29 
30 
31 
32 
33 
 
34 
 
35 
36 
 
37 
38 

Input: task set T, bid profile B, compatible user group 
set , the set of  users  
// Winner Selection Phase 

; }; 
for  to  do 

; ; 
foreach  do ; 

end 
foreach  in arbitrary fixed order do 
   foreach  to  do 
      ; 
      ; 
      ; 
      if  then 
         if  then  

break; 
else 
   do 
      ; 
       
      ; 
   until ; 
end 

else 
          ; 

end 
  end 
   ; 

; 
    ; 
end 
//Payment Determination Phase 
foreach  do ; 
foreach  do 

foreach  in the same fixed order do 
Select winners from  for ; 
Let  be the marginal cost for 
performing  without i; 
Let  be the marginal cost for performing 

 with i; 
if  then 

         
}; 

end 
end 

39
40

end
return (S, p); 

In the payment determination phase, for each winner , 
MCT-S calls the winner selection phase to select winners from 

 for all tasks iteratively. Let  be the 
marginal cost for performing  without i. Let  be 
the marginal cost for performing  with i. If i is a winner for 

, i.e., , we compute the 
maximum price of i to make the group including i can be 
selected instead of another group without i. We will prove that 
this price is a critical payment for user i later. 

B. A Walk-Through Example 
We use the example in Fig.4 to illustrate how the reverse 

auction of MCT-S works. 

 
Fig. 4 An example illustrating how the reverse auction of MCT-S works, 
where the disks represent users, the squares represent tasks. The numbers 
below the disks represent the costs. The numbers above squares represent 
cooperative index. 

. The dotted squares represent compatible 
user groups. . 

Winner Selection: 
• For task 1, , , 

. 
• For task 2, , , 

. 
• For task 3, , , 

. 
During the payment determination phase, we directly give 

the winners when user i is excluded from the consideration, 
due to the space limitations. 
Payment Determination: 
• : For task 1, winners are {5,6}, 

. For task 2, additional winners are 
{7}, . For task 3, additional 
winners are . Thus . 
• : For task 1, winners are {1,3}, 

. For task 2, additional winners are {5,6,7}, 
. For task 3, 

additional winners are . Thus . 
• : For task 1, winners are {5,6}, 

. For task 2, additional winners are 
{7}, . For task 3, additional 
winners are. Thus . 
• : For task 1, winners are {1,3}, 

. For task 2, additional winners are {5,6,7}, 
. For task 3, 

additional winners are . Thus . 

C. Mechanism Analysis 
In the following, we present the theoretical analysis, 

demonstrating that MCT-S can achieve the desired properties. 
Lemma 4. MCT-S is computationally efficient. 
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Proof: Since MCT-S adopts the same compatible user 
grouping method (Algorithm 1) of MCT-M, the first step of 
MCT-S takes  time. In reverse auction 
step (Algorithm 3), the winner selection phase in the worst 
case takes  time, which is as same as that in 
MCT-M. In the payment determination phase, a process 
similar to winner selection phase is executed for each winner. 
Since there are at most  winners, the running 
time of Algorithm 3 is .          

Lemma 5. MCT-S is individually rational. 
Proof: We assume that user i is selected for task j in 

winner selection phase. Since the payment determination 
phase processes all tasks and compatible user groups in the 
same order, the output of winner selection before task j would 
not be changed. This means that, in the payment determination 
phase, for task j, it will obtain less or equal marginal cost to 
choose a group of additional winners including i than another 
group of additional winners without i, i.e., 

. Hence we have 
. This is sufficient to guarantee 

.    
Before analyzing the truthfulness of MCT-S, we firstly 

introduce the Myerson’s Theorem [13]. 
Theorem 4. ([14, Theorem 2.1]) An auction mechanism is 

truthful if and only if: 
• The selection rule is monotone: If user i wins the auction 
by bidding bi, it also wins by bidding ; 
• Each winner is paid the critical value: User i would not 
win the auction if it bids higher than this value. 
Lemma 6. MCT-S is truthful. 
Proof: The compatibility-truthfulness can be guaranteed 

by Theorem 1. Based on Theorem 4, it suffices to prove that 
the selection rule of MCT-S is monotone and the payment pi 
for each i is the critical value. The monotonicity of the 
selection rule is obvious as bidding a smaller value cannot 
push user i backwards in the sorting. 

We next show that pi is the critical value for i in the sense 
that bidding higher pi could prevent i from winning the 
auction. Note that in the iteration of , 

. If user i bids , the group of 
additional winners including i would be replaced by another 
group without i since 

 implies . Hence, user i would 
not win the auction for . Based on line 36 in Algorithm 3, 

. User i 
would not win the auction because each  has chosen a 
group of additional winners without i.                                     

The above three lemmas prove the following theorem. 
Theorem 5. MCT-S is computationally efficient, 

individually rational and truthful in the single-bid model. 

V. PERFORMANCE EVALUATION 
We have conducted thorough simulations to investigate the 

performance of MCT-M and MCT-S for all three compatibility 
models. Due to the space limitations, we only give the 
numerical results under weak compatibility model. To 
investigate the performance of social optimization for SOCUS 

problem, we also implement two benchmark algorithms 
without considering the compatibility among users: 
Benchmark-M for multi-bid model and Benchmark-S for 
single-bid model, respectively. Specifically, there is no 
compatible user grouping step in both benchmark algorithms. 
In Benchmark-M, a set of winning task-bid pairs with 
minimum social cost is selected from original user set U for 
each cooperative task. The objective of Benchmark-S is 
selecting a set of winners with minimum social cost for the 
multiple cooperative tasks. Obviously, this is equivalent to the 
weighted set multiple cover problem described in the proof of 
Theorem 3. It is known that the greedy based approximation 
algorithm [22] can approximate the optimal solution within a 
factor of . 

We measure the number of winners, social cost, running 
time and overpayment ratio (a metric to measure the frugality 
of a mechanism [23], calculated by ), and reveal 
the impacts of the key parameters, including the number of 
users (n), the number of cooperative tasks (m) and cooperative 
index (r). 

A. Simulation Setup  
The simulations are based on Wikipedia vote network [21], 

which contains all the Wikipedia voting data for adminship 
election from the inception of Wikipedia till January 2008. 
Nodes in the network represent Wikipedia users and a directed 
edge from node i to node j represents that user i voted on 
user j. There are 7115 nodes and 103689 edges in the network. 

For our simulations, we select a set of users uniformly 
from whole Wikipedia vote network, and construct a sub-
network only consisting of selected users and the edges among 
them. We set the compatible user set of arbitrary user as the 
set of users it voted on within the sub-network. We set the 
default value of parameters as follows: The cost of each bid is 
uniformly distributed in [5, 10]. The cooperative index and the 
number of bidding tasks of each user are uniformly distributed 
in [2, 5] and [3, 5], respectively. Let n=300, m=10, =250. 
However, we will vary the value of key parameters to explore 
the impacts of these parameters respectively. All the 
simulations were run on an Ubuntu 14.04.4 LTS machine with 
Intel Xeon CPU E5-2420 and 16 GB memory. Each 
measurement is averaged over 100 instances. 

B. Impact of n 
To investigate the scalability of designed mechanisms, we 

vary the number of users from 300 to 900, and select 80% 
users for each instance through -RP, i.e., . As 
shown in Fig.5, the number of compatible user groups goes up 
under all three compatibility models when the number of users 
increases. There are 2.5, 1.75 and 1.32 users in each WCG, 
MCG and SCG on average, respectively. The social cost 
decreases with increasing user number since the platform can 
find more cheap users. However, the change of social cost is 
very slight because in our system model, the user number 
needs to be large enough in order to complete all cooperative 
tasks. The social cost of MCT-M is very close to that of 
BenchmarkM (only 1.8% more social cost than BenchmarkM 
on average) since MCT-M can output optimal solution in the 
multi-bid model. However, MCT-S outputs 48.9% more social 
cost than BenchmarkS on average. Moreover, the designed 
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mechanisms are computational efficient since the running time 
of MCT-M and MCT-S is bounded by 0.8s and 0.4s, 
respectively, even there are 900 users. Based on the frugality 
theory, the overpayment ratio depends on the competition 
among users. As seen from Fig.5(d), the overpayment ratio of 
both MCT-M and MCT-S decrease because the competition 

among users intensify when there are more users. The 
overpayment ratio of MCT-M is less than that of MCT-S. 
Obviously, the competition of users in MCT-M is more than 
that of MCT-S since MCT-M can select winning task-bid pairs 
independently from all task-bid pairs and the cost of each task 
follows the identical distribution. 

 
(a)                                                          (b)                                                             (c)                                                            (d)  

Fig. 5 Impact of the number of users (n): (a) Number of groups. (b) Social cost. (c) Running time.  (d) Overpayment ratio 

 
                 (a)                                                           (b)                                                               (c)                                                        (d)  

Fig. 6 Impact of the number of cooperative tasks (m): (a) Number of winners.  (b) Social cost.  (c) Running time.  (d) Overpayment ratio 

  
                  (a)                                                          (b)                                                              (c)                                                             (d)  

Fig. 7 Impact of cooperative index(r): (a) Number of winners. (b) Social cost.  (c) Running time. (d) Overpayment ratio 

C. Impact of m 
The number of cooperative tasks can depict the workload 

of mobile crowd sensing system. We fix , , 
and vary m from 6 to 14. As shown in Fig.6, the number of 
winners and the social cost increase severely in both MCT-M 
and MCT-S with increasing m since the platform needs more 
users to complete the tasks. The winners of MCT-M are much 
more than that of MCT-S because any user will be the winner 
if one of the task-bid pairs it submits is selected in the multi-
bid model. Accordingly, the social cost of MCT-M is more 
than that of MCT-S since the cost of each winner follows the 
identical distribution in our settings. The running time also 
increases with increasing tasks. However the running time of 
MCT-M is still lower than 0.4s when there are 300 users and 
14 cooperative tasks. The overpayment ratio also increases 
since the platform needs to recruit more users to perform tasks, 
which mitigates the competition among users accordingly. 

D. Impact of r 
To investigate the performance for the tasks associated 

with different cooperative levels, we vary the distribution 

interval of cooperative index from [2, 2] to [2, 8]. As can be 
seen from Fig.7, MCT-S cannot output the solution when the 
cooperative index is too large (the upper limit of distribution 
interval exceeds 7). Both the winners and the social cost 
increase with increasing cooperative level since the platform 
needs more users to perform each cooperative task averagely. 
MCT-M and MCT-S output 6.7% and 52.6% more social cost 
than benchmark algorithms, respectively. The running time 
and overpayment ratio also increase when the cooperative 
index goes up. The running time of MCT-S is only 32.9% of 
that of MCT-M, while the overpayment of MCT-M is much 
less than that of MCT-S. 

VI.RELATED WORK 
Many incentive mechanisms for mobile crowd sensing 

have been proposed thus far. Yang et al. proposed two 
different models for smartphone crowd sensing [9]: the 
platform-centric model where the platform provides a reward 
shared by participating users, and the user-centric model 
where users have more control over the payment they will 
receive. Feng et al. [7] formulated the location-aware 
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collaborative sensing problem as the winning bids 
determination problem, and presented a truthful auction using 
the proportional share allocation rule proposed in [15].  
Koutsopoulos designed an optimal reverse auction [14], 
considering the data quality as user participation level. 
However, the quality indicator, which essentially measures 
the relevance or usefulness of information, is empirical and 
relies on users’ historical information. Zhao et al. [16] 
investigated the online crowdsourcing scenario where the 
users submit their profiles to the crowdsourcer when they 
arrive. The objective is selecting a subset of users for 
maximizing the value of the crowdsourcer under the budget 
constraint. They designed two online mechanisms, OMZ, 
OMG for different user models. Zhang et al. proposed IMC 
[17], which consider the competition among the requesters in 
crowdsourcing. The incentive mechanisms considering the 
biased requesters were proposed in [25]. However, all above 
works focus on the multiple independent task scenarios, where 
each task only needs one user to perform. 

Some works aim to the single cooperative task scenario, 
where the task requires a group of users to perform 
cooperatively. Xu et al. proposed truthful incentive 
mechanisms for the mobile crowd sensing system where the 
cooperative task is time window dependent, and the platform 
has strong requirement of data integrity [8]. Furthermore, they 
studied the budget feasible mechanisms for the same crowd 
sensing system [20]. Luo et al. designed the truthful 
mechanisms for multiple cooperative tasks [19, 24]. However, 
they don’t consider the compatibility among users.  

Overall, there is no off-the-shelf incentive mechanism 
designed in the literature for the mobile crowd sensing system, 
where there are multiple cooperative tasks, and each of tasks 
requires a group of compatible users to perform. 

VII.CONCLUSION 
In this paper, we have designed the incentive mechanisms 

for the mobile crowd sensing system with multiple 
cooperative tasks. We use real-life relationships from social 
networks to model the compatibility relationships. We have 
presented two bid models and three compatibility models for 
this new scenario, and designed two incentive mechanisms: 
MCT-M and MCT-S to solve the SOCUS problem for the two 
bid models, respectively. Through both rigorous theoretical 
analyses and extensive simulations, we have demonstrated that 
the proposed incentive mechanisms achieve computational 
efficiency, individual rationality and truthfulness. Moreover, 
MCT-M can output the optimal solution. 
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